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Eye-brain connections revealed by
multimodal retinal and brain imaging
genetics
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Xiaochen Yang2, Yilin Yang1, Xifeng Wang8, Bingxuan Li 9, Xiyao Wang9,
Carlos Copana 2, Yue Yang 8, Jinjie Lin10, Yun Li 8,11, Jason L. Stein 11,12,
Joan M. O’Brien13,14, Tengfei Li 15,16 & Hongtu Zhu 8,11,17,18

The retina, an anatomical extension of the brain, forms physiological con-
nections with the visual cortex of the brain. Although retinal structures offer a
unique opportunity to assess brain disorders, their relationship to brain
structure and function is not well understood. In this study, we conducted a
systematic cross-organ genetic architecture analysis of eye-brain connections
using retinal and brain imaging endophenotypes. We identified novel pheno-
typic andgenetic links between retinal imaging biomarkers andbrain structure
and function measures from multimodal magnetic resonance imaging (MRI),
with many associations involving the primary visual cortex and visual path-
ways. Retinal imaging biomarkers shared genetic influences with brain dis-
eases and complex traits in 65 genomic regions, with 18 showing genetic
overlap with brain MRI traits. Mendelian randomization suggests bidirectional
genetic causal links between retinal structures and neurological and neu-
ropsychiatric disorders, such as Alzheimer’s disease. Overall, our findings
reveal the genetic basis for eye-brain connections, suggesting that retinal
images can help uncover genetic risk factors for brain disorders and disease-
related changes in intracranial structure and function.

The retina, an important component of the central nervous system
that can be non-invasively visualized through retinal imaging, plays a
critical role in the visual pathway. It connects synaptically to the
visual cortex through the optic nerve, thalamus, and optic radiations.
The retina and brain share anatomical, physiological, and embry-
ological similarities in cell types, vasculature, and immune
responses1. During the thirdweek of gestation, the eye develops from
the forebrain2, with the retina originating from the diencephalon,
which later becomes the thalamus. This developmental connection
links the retina to specific brain regions. As a result, the retina serves
as a unique window into brain structure/function1,3 and various
disorders4, such as Alzheimer’s disease5–8, Parkinson’s disease9,
stroke10,11, cerebral small vessel disease12, schizophrenia13, cognitive

decline11,14,15, and many others. Retinal neurodegeneration, for
example, is strongly associated with amyloid β (Aβ) burdens in Alz-
heimer’s disease and has been widely studied as an easily accessible
biomarker for identifying individuals at high risk of developing Alz-
heimer’s disease or those with preclinical Alzheimer’s disease6,8,16–19.
Additionally, retinal abnormalities have been frequently reported in
Parkinson’s disease, with animal models showing similar molecular
mechanisms underlying Parkinson’s disease pathology and neuro-
degeneration in Parkinsonian eyes9. Despite these connections, lim-
ited knowledge exists on shared genetic effects underlying eye-brain
relationships and parallel pathological changes between the two
organs, except for a few disease pairs like primary open-angle glau-
coma and Alzheimer’s disease20.
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The retina and brain images offer well-defined clinical endophe-
notypes for eye and brain disorders. Widely used retinal imaging
modalities include color fundus photography and optical coherence
tomography (OCT). Retinal images serve as the gold standard for
screening age-related macular degeneration21, diabetic retinopathy22,
and other retinal pathologies. These images provide a colorful view of
the eye’s posterior, encompassing the retina, optic nerve head, and
retinal vasculature. Retinal OCT imaging presents a high-resolution
cross-sectional view of the retina23. In neurological conditions, OCT
imaging facilitates the evaluation of retinal layer thickness and struc-
tural alterations due toneuronal and retinal glial cellmodifications24. In
addition, magnetic resonance imaging (MRI) captures brain structure
and function, resulting in various clinical applications for neurological
and neuropsychiatric disorders25. Recent large-scale genome-wide
association studies (GWAS) have demonstrated the heritability of both
retinal imaging biomarkers26–34 and brain MRI traits35–42, with genetic
influences from common genetic variants identified in numerous
genomic regions. As anticipated, genetic overlaps were discovered
between retinal imaging traits and eye disorders, such as optic nerve
head cupping and glaucoma31, as well as between brain MRI traits and
brain disorders, like functional connectivity of the visual network and
Alzheimer’s disease40. However, few studies have used imaging
genetics to examine brain health from a retinal perspective. A com-
prehensive cross-organ analysis of retinal and brain imaging traits
could potentially offer an opportunity to identify retinal imaging bio-
markers for brain disorders and to uncover the genetic basis for eye-
brain connections.

We explored the genetic relationship between the eye and brain
by analyzing multimodal retinal and brain imaging traits from the UK
Biobank (UKB) study43. The majority of our study’s cohort consists of
healthy subjects, with an overall low prevalence of ocular or brain
disorders (Supplementary Note). We examined a total of 156 retinal
imaging traits, including 46 derived from OCT images and 110 from
fundus photographs. The OCT-derived measures, including retinal
thickness across layers44,45 (such as the retinal nerve fiber layer [RNFL],
inner nuclear layer [INL], and the ganglion cell and inner plexiform
layer [GCIPL]) and vertical cup-to-disc ratio30, were already available in
the UKB database. For fundus images, we used 11 different pre-trained
transfer learning32 models built from ImageNet46. We considered the
top 10 principal components (PCs) in each deep transfer learning
model, accounting for an average of 70.71% variance (range = [50.58%,
95.84%]) in the final layer, resulting in 110 fundus image features
(11 × 10). These deep learning-based image embeddings and low-
dimensional representations contain eye-specific biological informa-
tion not found in standard eye measurements32. We conducted GWAS
for these 156 retinal imaging traits and assessed their genetic correla-
tions with 458 imaging traits from three primary brain MRI modalities:
(1) 101 regional brain volumes36 and 63 cortical thickness traits47 from
structuralMRI; (2) 110 diffusion tensor imaging (DTI) parameters from
diffusion MRI38; and (3) 92 functional connectivity and activity (or
amplitude) traits from resting-state and task-based functional MRI
(fMRI)40. Further details on these retinal and brain imaging data, such
as the specific retinal layers and brain regions, are provided in the
“Methods” section and Supplementary Data 1. Figure 1 provides an
overview of the study design and data analysis. GWAS summary sta-
tistics for retinal imaging traits and our data analysis results will be
accessible through the eye imaging genetics knowledge portal (Eye-
KP) at https://www.eyekp.org/.

Results
Phenotypic multimodal eye-brain connections
We examined phenotypic associations between 156 retinal imaging
traits and 458 brain MRI traits after adjusting for a wide variety of
vascular risk factors3 and imaging confounders35, as well as body size,
age, and sex effects (see the “Methods” section for the complete list of

adjusted covariates). For discovery, we analyzed data of UKB white
British individuals (average n = 6454 across different modalities). At
the false discovery rate (FDR) level of 5% (by the Benjamini–Hochberg
procedure, P < 4.37 × 10−4, 156 × 458 tests), we identified 625 associa-
tions (Figs. 2A and S1), 135 of which were replicated in a hold-out
independent validation dataset (average n = 959) with concordant
association signs (Fig. S2). Among the 625 associations, 121 further
survived the conservative Bonferroni significance level (P < 6.99 × 10−7,
156 × 458 tests), and 66 can be replicated in the same hold-out inde-
pendent dataset. These significant results were mainly related to
multiple brain structural modalities, including regional brain volumes,
cortical thickness, and DTI parameters. They were broadly related to
both OCT measures and fundus image features (Supplementary
Data 2). Below we summarized the patterns of associations that have
been replicated.

Thickness measures of the macular45, RNFL44, GCIPL44, and INL44

were positively associated with volumes of multiple brain cortical and
subcortical structures, including the pericalcarine, thalamus, pallidum,
and putamen (Figs. 2B, C and S3). The pericalcarine is the location
where the primary visual cortex (V1) concentrates, and we found
consistent positive associations between regional brain volumes of the
pericalcarine and the RNFL, GCIPL, and macular thickness (β >0.052,
P < 5.90 × 10−5). We also observed positive associations with brain
structures in thedorsal and ventral visualpathways extending from the
primary visual cortex, such as the cuneus (β >0.057, P < 1.08 × 10−4).
The thalamus and macular both originate from the diencephalon, and
positive associations between regional brain volumes of the thalamus
and macular thickness were found (β >0.120, P < 1.24 × 10−8), empha-
sizing their developmental origins. Negative associations between
retinal layer thickness and enlargement of the lateral ventricles were
also detected. The left and right hemispheres of the brain demon-
strated consistent associations with retinal imaging traits. For exam-
ple, the left and right brain thalamus volumes were significantly
correlated with the thicknesses of the macular and GCIPL in both eyes
(β >0.120, P < 1.24 × 10−8). These regional brain volume traits were
extracted using advanced normalization tools (ANTs)48, we addition-
ally conducted further analyses with traits of visual cortical regions
generated from Freesurfer49, which yielded consistent findings (Sup-
plementary Note and Fig. S4). The GCIPL thickness was also positively
associated with global and regional brain cortical thickness measures,
including the primary visual cortex (the pericalcarine, β = 0.048,
P = 7.74 × 10−5). The top two regions with the strongest links were the
precuneus, which is in the dorsal visual pathway (β =0.073,
P = 2.33 × 10−8), and the fusiform, which is in the ventral visual pathway
(β =0.064, P = 4.22 × 10−7, Figs. 2D and S3).

Moreover, thicknesses of the macular, RNFL, and GCIPL con-
sistently exhibited positive associations with the fractional anisotropy
(FA) of multiple white matter tracts, including those related to the
visual pathway (Figs. 2E, F and S5). Retinal thinning is linked to various
eye diseases50, and previous studies have shown that the thinning of
the RNFL and GCIPL is associated with cerebrovascular diseases51 and
early-stage Alzheimer’s disease52. These results suggest a parallel
relationship between retinal and brain health, along with changes in
brain white matter that may be connected to both. The strongest
associations were observed between the left eye’s GCIPL thickness and
themeanFAof brain posterior thalamic radiation, sagittal stratum, and
fornix-stria terminalis tracts (β >0.142, P < 1.91 × 10−23). The posterior
thalamic radiation overlaps with the optic radiation in the visual
pathway, which connects the lateral geniculate nucleus to the primary
visual cortex and transmits visual input from the eye. Similar associa-
tions between fundus image features and DTI parameters were found,
although they were weaker than those for retinal thickness
traits (Fig. S5).

We conducted separate analyses for females and males to
examine sex-specific patterns (average n = 3338 and 3150,
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respectively). At the FDR 5% level (P < 4.37 × 10−4), 53 associations
were identified in both females and males, with an additional 191
additional associations found in females, and 62 more found only in
males. The extra associations found in analyses including only
females or males were primarily related to fundus image traits.
Specifically, the female analysis showedmore significant associations
with DTI parameters, while the male analysis revealed more sig-
nificant associations with cortical thickness measures (Figs. S6–S8).
For OCT measures, males and females exhibited similar eye-brain
association patterns, although the number of significant pairs that
survived multiple testing adjustments varied between the two sam-
ples. For example, the mean FA of the fornix-stria terminalis, pos-
terior thalamic radiation, and sagittal stratum tracts was associated
with the thickness of RNFL, GCIPL, and macula in both males and
females, with more significant pairs being identified in females
(Fig. S9). These retinal thickness traits were also consistently asso-
ciated with volumes of the pericalcarine, thalamus, and accumbens
regions in sex-specific analyses (Fig. S10). We performed additional
sensitivity analysis to account for the ocular and brain disorders as
covariates. We found consistent patterns with those observed in our
main analysis, more details can be found in the Supplementary Note
(Figs. S11–12). In summary, although only a relatively small percen-
tage of subjects in the UKB study had both brain and retinal imaging

data, we discovered that retinal imaging biomarkers, such as the
thickness of different retinal layers, were associated with smaller
brain volumes, reduced cortical thickness, and weaker white matter
structural connections in the brain. Many retina-related brain struc-
tural variations were observed in the primary visual cortex and
structures in the visual pathways.

GWAS for 156 retinal imaging traits
We analyzed data from UKB individuals of white British ancestry53,
estimating phenotypic variance explained by single nucleotide poly-
morphisms (SNPs) for the 156 retinal imaging traits (average
n = 60,748). The average SNP-based heritability (h2) was 42.21% for the
46 OCT measures (h2 range = (19.28%, 68.28%)), all of which were sig-
nificant at a 5% FDR level (Fig. 3, Fig. S13, and Supplementary Data 3).
Out of the 110 fundus image traits, 90 were significant at the 5% FDR
level, and the mean h2 was 19.27%, ranging from 4.06% to 42.75%. In
each of the 11 transfer learningmodels, at least seven out of the 10 PCs
showed significant h2. Additionally, we estimated h2 separately for
females andmales, and the results were highly consistent between the
two sexes, with a mean h2 of 24.83% in females and 23.33% in males
(correlation = 0.972, P = 0.457, Fig. S14).

We conducted a GWAS using the same white British cohort to
investigate the genetic architecture of the 156 retinal imaging traits

Fig. 1 | Study overview andworkflow. AAnoverview of the study design.We used
multimodal retinal and brain imaging data to understand the phenotypic and
genetic connections between the brain and the eye. We considered multiple brain
magnetic resonance imaging (MRI) modalities, including structural MRI, diffusion
MRI, resting-state functionalMRI (fMRI), and task-based fMRI. For the eye, we used

traits derived from retinal optical coherence tomography (OCT) and extracted
from fundus retinal images using pre-trained transfer learning models. B A brief
description of the overall workflow and major analyses in each part. This figure is
created with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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(average n = 60,748). QQ and Manhattan plots can be viewed on our
server (http://165.227.78.169:443/) created using PheWeb54. Linkage
disequilibrium score regression (LDSC) intercepts55 were all close to
one, suggesting no confounding factors resulted in genomic inflation
of test statistics (average = 1.004, range = (0.974, 1.031)). Sensitivity

analysis, which additionally included ocular and brain disorders
as covariates, yielded highly consistent GWAS results (Supplemen-
tary Note). Applying a stringent GWAS significance level of
3.20 × 10−10 (which is 5 × 10−8/156, accounting for Bonferroni-type
adjustment for 156 retinal imaging traits), we identified independent

Fig. 2 | Phenotypic eye-brain imaging associations. A This figure shows the
−log10(p-value) for testing associations between 156 retinal imaging traits (46
derived OCT measures and 110 fundus image traits) and 458 brain MRI traits,
comprising 101 regional brain volumes, 63 cortical thickness traits, 110 diffusion
tensor imaging (DTI) parameters, 92 resting fMRI traits, and 92 task fMRI traits.
Supplementary Data 1 provides further information on these imaging traits. The red
dashed horizontal line signifies the Benjamini–Hochberg FDR 5% significance level
(raw P < 4.37 × 10-4). Each brain imaging modality is marked with a different color,
and the brain structures with the strongest associations in each modality are

labeled. B, C The location of brain regions with volumes significantly associated
withB the thickness of the ganglion cell and inner plexiform layer (GCIPL, right eye)
andC the overall thickness of themacula (right eye).DThe location of cortical brain
regions exhibiting a significant association between their thickness and the thick-
ness of GCIPL (left eye). E, F The location of whitematter tracts with DTI parameters
associated with E the thickness of GCIPL (left eye) and F the overall thickness of the
macula (left eye). AD axial diffusivity, RD radial diffusivity, MOmode of anisotropy,
FA fractional anisotropy. For all associations, we used two-sided t-tests and adjusted
for multiple comparisons. Matplotlib157 contributed to the creation of this figure.
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(linkage disequilibrium [LD] r2 < 0.1) significant genetic associations
in 258 genomic regions (cytogenetic bands). We found significant
associations for all 46 OCT measures and 91 of the 110 fundus
image traits (Fig. S15 and Supplementary Data 4). Furthermore, we
estimated these significant genetic effects separately for males
and females in a sex-specific analysis. The genetic effects showed a

high level of consistency in both sexes (correlation = 0.975, P = 0.76,
Fig. S16).

We validatedourGWASfindings using independent Europeanand
non-European datasets (“Methods” section). First, we conducted a
GWAS of the 156 retinal imaging traits using the UKB participants of
European ancestry but not of British origin (average n = 5320). Among

Fig. 3 | Heritability of selected retinal imaging traits. A SNP heritability of the 46
derived OCT measures and 30 fundus image traits from three selected transfer
learning models. The x-axis displays the retinal imaging traits, see Supplementary
Data 1 for more information on these traits and Fig. S13 for the heritability of more
fundus image traits. The error bars represent 95% confidence intervals basedon the
standard errors of the point estimates and the assumption of normality.BWe show
the relative locations of 18 selected OCT measures and their SNP heritability (h2),
including the thickness ofmacula, RNFL, GCIPL, INL, INL-ELM, ELM-ISOS, ISOS-RPE,
and INL-RPE, optic disc diameter, and VCDR (vertical cup-to-disk-ratio). B Created

with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license. All values are represented as
h2 = (left eye, right eye) except for the optic disc, where only the left eye data is
available. In the lower panel, we also illustrate the process of acquiring fundus
imaging traits from fundus photography and the heritability statistics of the 110
resulting traits. ELM external limiting membrane, ISOS inner and outer photo-
receptor segments, INL inner nuclear layer, RPE retinal pigment epithelium, RNFL
retinal nerve fiber layer, GCIPL ganglion cell-inner plexiform layer.
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the 4329 identified independent (LD r2 < 0.1) image-variant associa-
tions in 258 genomic regions, 1630 (37.65%, in 162 genomic regions)
passed the 5%FDR significance level in this European validationGWAS,
and 2210 (51.05%, in 189 regions) were significant at the nominal sig-
nificance level (0.05) (Fig. S17 and Supplementary Data 5). Most of the
significant genetic effects (2207/2210, in 188 regions) had concordant
directions in the two independent GWAS, with a correlation of 0.958
for their genetic effects (Fig. S18). Among the 188 replicated genomic
regions, 146 were associated with OCT measures, and 103 were asso-
ciated with fundus image traits, suggesting the high generalizability of
our GWAS findings in European samples. Next, we performed a vali-
dation GWAS on non-European UKB subjects (average n = 6490). We
found that 25.18% (1090/4329, in 142 regions) associations were sig-
nificant at the nominal significance level, with most of them (1068/
1090, in 140 regions) having the same genetic effect directions as the
discovery GWAS (Fig. S19). In non-European validation analysis, 107
replicated regions were observed for OCTmeasures and 51 for fundus
image traits.We alsoperformed the replications analysis separately for
UKB subjects of Asian and Black ancestries (Supplementary Note).

We developed polygenic risk scores (PRS) via PRS-CS56 to assess
the out-of-sample prediction performance of our discovery GWAS
results (“Methods” section). The PRS for 133 of the 156 retinal imaging
traits were significant at a 5% FDR level (P range = (6.90 × 10−98,
3.82 × 10−2), Supplementary Data 6 and Fig. S20), with the mean
incremental R-squared being 2.51% (S.E. = 2.29%). A total of 22 traits
had R-squared greater than 5%. The highest prediction accuracy was
observed for traits related to the INL44, such as the thickness from the
INL to the retinal pigment epithelium (RPE) (R-squared = 9.46% and
8.43% for right and left eyes, respectively) and the thickness between
the INL to the external limiting membrane (ELM) (R-squared = 7.68%
and 7.20% for right and left eyes, respectively). To evaluate the trans-
ferability of our GWAS findings, we examined the PRS performance on
non-European UKB subjects as well. We discovered that 101 retinal
imaging PRS had significant prediction performance in the non-
European UKB dataset at a 5% FDR level (P range = (2.77 × 10−65,
2.88 × 10−2)). The average incremental R-squared of these significant
PRS was 1.39% (S.E. = 1.45%), which was significantly lower than their
corresponding performance in the European dataset (P = 7.89 × 10−9).
These results demonstrate the capability of our GWAS summary sta-
tistics in out-of-sample analyses and illustrate the challenge of cross-
population genetic prediction.

Genetic underpinnings of eye-brain connections in 65
genomic loci
We investigated eye-brain genetic pleiotropy in 188 replicated geno-
mic regions of retinal imaging traits that exhibited concordant genetic
effect directions in the discovery and validation GWAS. First, for the
retinal imaging-significant genetic variants and those in LD with them
(r2 ≥0.6), we symmetrically searched for GWAS signals associated with
brain MRI traits36,38,40,47. Second, we performed association lookups in
the NHGRI-EBI GWAS catalog57 to identify shared genetic influences
between retinal imaging traits and brain-related complex traits and
diseases (“Methods” section). In 65 of these 188 genomic regions, we
discovered genetic overlaps between retinal imaging traits and brain
phenotypes, with 47 of them also being linked to various eye traits and
conditions, such as glaucoma58, refractive error59, advanced age-
related macular degeneration60, and cataracts61. Specifically, we iden-
tified genetic pleiotropy for a wide range of brain traits and disorders,
including stroke, Parkinson’s disease, Alzheimer’s Disease, glioma/
glioblastoma, neuropsychiatric disorders, migraine, mental health,
and cognitive traits (Fig. 4 and Supplementary Data 7). Shared genetic
influences were also detected in 18 regions with different brain MRI
modalities, including 10 regions with regional brain volumes36, 9
regionswithDTI parameters38, 3 regionswith cortical thickness traits47,
and 2 regions with resting fMRI traits40 (Fig. S21). Using Bayesian

colocalization analysis62, we examined whether common causal
genetic variants underlie the overlapping genetic signals between
retinal structures and brain phenotypes (posterior probability of the
shared causal variant hypothesis [PPH4] >0.862,63). In addition, we
found that many retinal imaging-significant genetic variants were
expression quantitative trait loci (eQTLs) reported in large-scale eQTL
studies of brain tissues64. Our results are summarized in Supplemen-
tary Data 8, with selected eye-brain trait pairs displayed in Figs. 5, 6
and S22–S82. We provide more details below for each brain MRI
modality and major brain phenotype category.

We found genetic overlaps between brain volumetric measures
and retinal structures in 10 genomic loci (LD r2 ≥0.6,
Figs. 5A and S22–30). For example, shared genetic components were
discovered between cerebrospinalfluid (CSF) volume and vertical cup-
to-disc ratio65 in 11q24.3 (Fig. 5A). The retinal index variant rs4937515,
which is an eQTL of ADAMTS8 in brain tissues64, showed strong evi-
dence of shared causal genetic variants between the two traits
(PPH4 =0.997). This variant was also in LD (r2 ≥0.6)66 with known
glaucoma risk variants (index variant rs2875238)58. CSF is the primary
fluid within the central nervous system, and its pressure plays a well-
established role in glaucoma and other ophthalmic diseases67,68. Our
findings reinforce the genetic connections between CSF and eye dis-
orders. Colocalizations between retinal imaging traits and brain
volumes were also observed in several other regions, such as 8q23.1
(e.g., right thalamus), 22q13.1 (e.g., left lateral ventricle), 17q24.2 (e.g.,
left caudal anterior cingulate), 6q25.1 (e.g., right hippocampus), and
7q22.1 (e.g., right accumbens area). As the first stop of sensory pro-
cessing in the visual system, the thalamus plays a fundamental role in
the visual pathway69. We found that multiple retinal imaging traits,
including the thickness of INL-RPE, INL-ELM, and GCIPL, had genetic
overlaps with both left and right thalamus volumes in 8q23.1 and
2q24.3. In these brain volume-associated regions, retinal imaging traits
were also linked to (LD r2 ≥0.6) schizophrenia, major depressive dis-
order, neuroticism, and cognitive traits. In addition, we found genetic
overlaps between retinal structures and cortical thickness traits in 3
loci (17q21.31, 8p23.1, and 1q21.3). Several brain structures in the visual
pathways were involved in these overlaps, including the precentral,
supramarginal, fusiform, and precuneus regions (Fig. 5B). In summary,
we identify locus-specific genetic overlaps between the thickness of
different retinal layers and themorphometry ofmultiple brain regions.
These brain regions play crucial roles in cognitive functions and are
affected by various brain disorders.

Retinal structures demonstrated genetic pleiotropy with brain
structural and functional connectivity. Retinal imaging traits and DTI
parameters shared genetic influences in 9 genomic regions, with
strong evidence of colocalization in 7 of these regions
(Figs. 5C and S31–38). For example, overall macular thickness45 and the
mode of anisotropy (MO)70 of the inferior fronto-occipital fasciculus
tract exhibited common causal genetic variants in 17q24.2 (PPH4 =
0.816, Fig. 5C). The inferior fronto-occipital fasciculus is a long asso-
ciative white matter tract connecting various brain areas and involved
in multiple functions. Thinner retinal layers were closely associated
with reduced volume and poorer microstructural integrity of the
brain’s white matter71. These findings offer genetic insights into the
connections between the retina and white matter. Additionally, both
retinal imaging traits and DTI parameters had genetic overlaps with
cognitive traits (e.g., intelligence in 22q13.1), psychiatric disorders
(e.g., in 14q24.3), and eye disorders (e.g., advanced age-related
macular degeneration in 17q25.3). We also found shared genetic
influences between functional connectivity of resting fMRI and retinal
imaging traits in 11q13.3 and 17q21.31 (Figs. 5D and S39).

Many genomic regions associated with retinal imaging traits have
been linked to brain-related complex traits and diseases in previous
GWAS. In the 6q14.2, 6q21, 13q14.2, 15q26.1, and 16q22.1 regions, the
thickness of different retinal layers was in LD (r2 ≥0.6) with
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schizophrenia72–74 (Figs. 6A and S40–S43). For example, the INL
thickness had shared causal genetic variants with schizophrenia
(PPH4 =0.952). The retinal index variant (rs7752421) was an eQTL of
SNAP91 in humanbrain tissues64, affecting gene expression levels in the
brain. In excitatory neurons, synaptic defects are increasingly asso-
ciated with schizophrenia, and altered expression of SNAP91 has been
observed to impact synaptic development75. Since schizophrenia
patients often report changes in visual perception, OCT measures of
the retinal structure have gained more attention in schizophrenia
research76. The genetic links identified in our analysis support the use
of retinal layer assessments as potential biomarkers for schizophrenia.

Retinal structureswere also in LD (r2 ≥0.6) with other neuropsychiatric
disorders andmental health traits, such asbipolar disorder77, anxiety78,
depressive symptoms79, neuroticism80, subjective well-being81, and
risk-taking tendency82 (Figs. S44–S52). For example, the thickness of
various retinal layers shared genetic influences with neuroticism in
multiple regions (Figs. S44–S50).

In addition, 23 genomic regions were associated with cognitive
traits (such as intelligence83, cognitive performance84, general cogni-
tive ability85, and reaction time86, Figs. S53–S60) and/or educational
attainment87 (Figs. 6B and S61–S75). Previous research has reported
that retinal layer thickness could serve as a prognostic biomarker of

Fig. 4 | Genomic loci associated with both eye imaging traits and brain-related
complex traits and diseases. A Ideogram displaying genomic regions (names are
in black) influencing both retinal imaging traits and brain-related complex traits
and diseases, including phenotypes reported on the NHGRI-EBI GWAS catalog
(https://www.ebi.ac.uk/gwas/) and brain MRI traits available on BIG-KP (https://
bigkp.org/). Each category of brain phenotypes is marked with a different color,

and distinct shapes are used for OCT measures and fundus image traits. B Table
summary, where the x-axis represents the genomic regions and the y-axis shows the
category of brain phenotypes. Derived OCT measures and fundus image traits are
indicated with different colors, while a third color is used when both are observed
in the same locus.
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Fig. 5 | Selected genetic loci that were associated with both eye and brain
imaging traits. A In 11q24.3, shared genetic influences were observed between
the vertical cup-to-disc ratio (regressed on disc diameter, left eye, VCDR_re-
gressed_left, index variant rs4937515) and the cerebrospinal fluid volume (CSF
volume, index variant rs4936099). Bayesian colocalization analysis suggested the
shared causal variant between the two traits (posterior probability PPH4 = 0.997).
B In 1q21.2, shared genetic influences were observed between the inner nuclear
layer (INL) thickness (left eye, INL_thickness_left) and the cortical thickness of the
right precentral brain region (Right_precentral_thickness, shared index variant
rs71578488, PPH4= 0.562). In this region, the INL_thickness_left was also in LD

(r2 ≥0.6) with cerebrospinal fluid biomarker levels. C In 17q24.2, shared genetic
influences were observed between the overall macular thickness (right eye,
overall_macular_thickness_right, index variant rs4791212) and themeanMO of the
inferior fronto-occipital fasciculus (IFO_MO, index variant rs12451721, PPH4 =
0.963). We also observed genetic overlaps (LD r2 ≥0.6) with self-reported math
ability, risk-taking tendency, and loneliness. D In 11q13.3, shared genetic influ-
ences were observed between the ninth PC of the Vgg19 model on fundus image
(Vgg19_PC9) and the functional connectivity within the auditory network (Audi-
tory < ≥Auditory, shared index variant rs12807936, PPH4 = 0.994).
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Fig. 6 | Selected genetic loci that were associated with both eye and brain-
related complex traits and disorders. A In 6q14.2, shared genetic influences were
observed between the inner nuclear layer (INL) thickness (right eye, INL_thick-
ness_right, index variant rs7752421) and schizophrenia (index variant rs3798869).
Bayesian colocalization analysis suggested the shared causal variant between the
two traits (posterior probability PPH4=0.952). In this region, the thickness of INL
was also in LD (r2 ≥0.6) with bipolar disorder and cognitive ability. B In 14q11.2,
shared genetic influences were observed between the overall macular thickness
(right eye, overall_macular_thickness_right, index variant rs200581586) and edu-
cational attainment (index variant rs4982712, PPH4 =0.764). In this region, the
overall macular thickness was also in LD (r2 ≥0.6) with intelligence and cognitive

ability. C In 9p21.3, shared genetic influences were observed between the vertical
cup-to-disc ratio (regressed on disc diameter, left eye, VCDR_regressed_left, index
variant 9:22053956_TA_T) and Glioma (index variant rs4977756). We also observed
genetic overlaps (LD r2 ≥0.6) with self-reported math ability, risk-taking tendency,
and loneliness.D In 13q14.13, shared genetic influenceswere observed between the
fifth PC of the Vgg16 model on fundus image (Vgg16_PC5, index variant rs866376)
and ischemic stroke (index variant rs9526212, PPH4 =0.994). The dotted lines
represent different significance levels in GWAS studies of these phenotypes, where
the genetic effects were assessed using either a linear model or a linear mixed-
effects model in a two-sided test.

Article https://doi.org/10.1038/s41467-024-50309-w

Nature Communications |         (2024) 15:6064 9



cognitive impairment and long-term cognitive decline in older
individuals88,89. Retinal imaging traitswere in LD (r2 ≥0.6) withmultiple
neurodegenerative disorders, such as in 2q24.3, 17q21.31, 8p23.1, and
15q12with Parkinson’s disease90 (Fig. S76); in 17q21.31with corticobasal
degeneration91; in 7p21.3 with frontotemporal dementia92; in 5q14.3,
17q21.31, 6p12.1 with Alzheimer’s disease93, and severalmore loci (such
as 1q32.1, 2p25.3, and 11q14.2) with biomarkers of Alzheimer’s disease94

(Figs. S77–79). Genetic overlaps with other brain diseases were also
observed. For example, the vertical cup-to-disc ratio30 was in LD
(r2 ≥0.6) with glioma/ glioblastoma95 and white matter microstructure
in 9p21.3 (Fig. 6C). Glioma can affect the optic nerve (optic nerve
glioma), which is the most common primary neoplasm of the optic
nerve96. Retinal imaging traits also shared genetic effects with
migraine/headache97 in 5 regions and cerebrovascular diseases in 9
regions, including stroke98, Moyamoya disease99, intracranial
aneurysm100, and cerebral aneurysm101 (Figs. 6D and S80–82).

Genetic correlation and heritability enrichment patterns
We examined genetic correlations (GC) between 156 retinal imaging
traits and 39 sets of publicly available GWAS summary statistics of
brain-related complex traits and diseases using cross-trait LDSC102

(Supplementary Data 9). At a 5% FDR level (P < 2.06 × 10−3), we
observed 246 significant genetic correlation pairs between 69 retinal
imaging traits and 21 brain phenotypes, including brain disorders,
cognitive traits, and mental health traits (Fig. S83).

Multiple cognitive traits (such as cognitive function, numerical
reasoning, intelligence, and cognitive performance) and education
consistently exhibited positive genetic correlations with the thickness
of RNFL44 and the overall thickness between the ELM to the inner and
outer photoreceptor segments (ISOS)44, as well as their subfields.
Consistent with our results, previous clinical studies have identified
RNFL thickness to be phenotypically related to global cognitive score,
executive function, and verbal function103–105. These studies examined
RNFL thickness as a possible early biomarker of cognitive decline,
whose thinning suggests axonal loss during the neurodegenerative
process of the brain105,106. On the other hand, negative genetic corre-
lations with cognitive traits were observed for the thickness of GCIPL,
INL, and RPE44, as well as disc diameter30. The negative correlations
betweenGCIPL thickness and cognitive traits were also in linewith one
recent study on patients with Alzheimer’s disease, where GCIPL
thickening correlated with poor cognition in Alzheimer’s disease107.
One hypothesis on the intrinsic mechanism for its thickening sug-
gested that pathological Aβ accumulation and neuroinflammation of
retinal ganglion cells (RGCs) contributed to the thickening of GCIPL107,
which was supported by a parallel study on RGCs in mouse model108.

The thickness between the ISOS and RPE and their subfields were
negatively associated with depression and neuroticism. Additionally,
negative associations were found between depression symptoms and
vertical cup-to-disc ratio30 (GC < −0.166, P < 7.72 × 10−4), between cross
disorder (five major psychiatric disorders109) and disc diameter (GC =
−0.116, P = 1.33 × 10−3), and between the RNFL thickness and cannabis
use disorder (GC = −0.174, P = 1.29 × 10−3). In addition, positive genetic
correlations were discovered between RPE thickness and attention-
deficit/hyperactivity disorder (ADHD), as well as between the INL
thickness and stroke (GC>0.149, P < 1.88 × 10−3). For fundus imaging
traits, widespread genetic correlations with the aforementioned brain
phenotypes identified by OCT measures were also observed, such as
ADHD, cannabis use disorder, cognitive traits, and cross disorder. In
addition, fundus imaging traits had higher correlations with schizo-
phrenia (|GC|= 0.133, P = 1.10 × 10−3), major depressive disorder (|GC|
= 0.316, P = 1.92 × 10−3), and risk tolerance ( | GC | = 0.097,
P = 1.92 × 10−3). These results demonstrated the genome-wide genetic
similarity between retinal structures andbraindisorders and traits. The
observed genetic correlations between retinal imaging traits and var-
ious brain-related complex traits and diseases further highlight the

potential of retinal assessments as valuable biomarkers for these
conditions.

We alsoperformedapartitionedheritability analysis110 using LDSC
to determine the tissues and cell types, in which genetic variation led
to changes in retinal imaging traits. First, we examined awide variety of
tissue and cell type-specific regulatory elements from the Roadmap
Epigenomics Consortium111. Among all tissue and cell types, the
strongest heritability enrichments were observed in active gene reg-
ulatory regions of multiple brain tissues (Fig. S84 and Supplementary
Data 10). Next, we repeated the partitioned heritability analysis using
chromatin accessibility data from neurons (NeuN+) and glia (NeuN−)
sampled from 14 cortical and subcortical brain regions112. We observed
that the heritability of retinal structures showed consistently stronger
enrichment in brain glial regulatory elements thanneuronal regulatory
elements (Fig. S85). These heritability enrichments suggest that
genetic variants associated with retinal structures may also alter the
function of regulatory elements in brain tissues, particularly glial cells.

Genetic causal links with brain disorders
We applied Mendelian randomization (MR) with GWAS summary sta-
tistics from the FinnGen database113 to examine the directional rela-
tionships between retinal structure and brain disorders. We used eight
different MR methods114–121, and prioritized significant results that
passed the Bonferroni adjustment of multiple testing in at least two
methods (“Methods” section). The results presented below have also
passed several robustness tests, such as the MR-Egger intercept test
for pleiotropy122.

Causal genetic effects were identified between retinal imaging
traits and brain disorders in both directions, suggesting close rela-
tionships between retinal structures and Alzheimer’s disease (Supple-
mentary Data 11). For example, causal genetic effects fromAlzheimer’s
disease to retinal structures were found in various OCT measures and
fundus imaging traits, including the thickness of INL (β >0.025,
P < 4.74 × 10−5) and the central subfield between the ISOS and RPE
(β >0.027, P < 1.12 × 10−5). We also observed causal effects from psy-
chiatric diseases and other degenerative diseases of the nervous sys-
tem to retinal structures, such as the INL thickness (β >0.040,
P < 3.56 × 10−7). These newly established positive causal effects
between psychiatric diseases and INL thickness can be linked to the
identified negative genetic correlations between INL thickness and
cognitive traits in our previous section. There was a similar conclusion
reached in previous studies regarding the thickness of the RNFL,
whose thinning was indicative of cognitive decline123,124. On the con-
trary, other recent studies have also noted correlations between INL
thickening and brain-related diseases, such as Alzheimer’s disease and
multiple sclerosis125,126. These studies suggested that INL thickness was
a responsemarker for inflammationduring the early stages of diseases,
whichwas further confirmed by another study, where effective disease
treatment was associated with a reduction in INL thickness127. In
addition, when using retinal imaging traits as exposures and brain
disorders as outcomes, we found causal effects from retinal structural
changes to dementia and Alzheimer’s disease. These causal links were
observed on fundus imaging traits generated frompre-trained transfer
learning models. For OCT measures, causal links were identified
between anxiety disorders and the thickness of the central subfield
between the INL and RPE (β = 0.278, P = 7.92 × 10−6). Overall, MR ana-
lysis indicates that retinal imaging traits have genetic interactions with
neurodegenerative andneuropsychiatric diseases, especially dementia
and Alzheimer’s disease.

Joint prediction of brain phenotypes using retinal and brain
imaging
By utilizing both retinal and brain imaging traits, we investigated
whether combining these data types could lead to better predictions
of brain-related complex traits and diseases compared to using just
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only one type of imaging data. We employed a training, validation, and
testing design, in which both retinal and brain images were available
for subjects in the validation and testing datasets. Model parameters
were fine-tuned based on the validation data, and prediction perfor-
mance was assessed in the independent testing dataset (“Methods”
section).

First, retinal imaging traits demonstrated significant predictive
power for 16 brain-related phenotypes, including cognitive traits (such
as fluid intelligence and prospective memory), neuroticism, family
history of stroke, mental and behavioral disorders (ICD-10 Chapter F,
such as depressive episode), and diseases of the nervous system (ICD-
10 Chapter G, such as multiple sclerosis and carpal tunnel syndrome)
(prediction correlation β range = [0.068, 0.179], P = [8.11 × 10−19,
7.88 × 10−4], Fig. S86 and Supplementary Data 12). The strongest pre-
diction accuracy was observed for fluid intelligence (β =0.179,
P = 8.11 × 10−19). The top-ranking features for fluid intelligence predic-
tion were derived from both OCTmeasures and fundus imaging traits,
such as the thickness of RNFL, INL, and GCIPL. Moreover, the predic-
tion accuracy was improved by adding more retinal imaging traits,
suggesting that various retinal structural variations captured by dif-
ferent retinal imaging modalities and pre-trained models can con-
tribute to cognitive performance prediction (Fig. S87A). Similar
additive effects were observed for other brain phenotypes, such as the
family history of stroke (Fig. S87B). Multiple clinical studies have
suggested that retinal imaging traits (such as retinal layer thickness)
show promising prediction power for pathological cognitive decline
and dementia diagnoses8,106.

Next, we included brain MRI traits in the prediction model of
these brain-related phenotypes. Figure S88A shows that multimodal
brain imaging data can significantly predict all these brain phenotypes
(β range = [0.091, 0.314], P range = [7.61 × 10−6, 3.25 × 10−56]), and using
both retinal and brain imaging traits can further improve the perfor-
mance (β range = [0.120, 0.344], P range = [3.72 × 10−9, 7.54 × 10−68]).
For example, multiple categories of brain MRI traits can predict fluid
intelligence, including DTI parameters (β = 0.118, P = 7.05 × 10−9),
regional brain volumes (β =0.132, P = 8.17 × 10−11), cortical thickness
traits (β =0.100, P = 9.01 × 10−7), resting fMRI (β =0.216,
P = 7.01 × 10−27), and task fMRI (β = 0.197, P = 2.11 × 10−22). Adding retinal
imaging traits to each of these brain modalities improved the predic-
tion performance over only using this single brain modality. The lar-
gest improvementwasobservedwhenweadded all imagingdata types
together (β =0.344, P = 7.54× 10−68). The prediction accuracy further
moved up to 0.391 (P = 9.56 × 10−89) by adding the genetic PRS of fluid
intelligence (Fig. S88B). These results demonstrate that integrating
retinal and brain imaging modalities may lead to better predictions of
brain-related complex traits and diseases than using only one type of
imaging data alone.

Discussion
Imaging of the eye is inexpensive and noninvasive, and it can provide
rich information about the retina’s structure and function. Many brain
diseases, such as neuropsychiatric and neurodegenerative disorders,
are diagnosed andmonitored primarily based on subjective reports of
clinical symptoms128. The accuracy of these subjective reports is often
complicated by the fact that patients with impaired mental capacity
report inconsistent symptoms in varying degrees, which can bias the
downstreamdata analysis and clinicalprediction129.Moreover, patients
presenting with acute mental symptomatology may have hard-to-
define underlying ailments, leading to imprecise medical manage-
ment. Retinal imaging traits may serve as objective biomarkers for
brain abnormalities and to assess the progression of neurological
conditions130.

In this paper, we analyzed eye-brain connections using multi-
modal imaging data from both organs. The pericalcarine (primary
visual cortex) and other structures within the visual pathway were

associated with retinal features. Furthermore, we observed correla-
tions between retinal features and thalamic volume, both of which are
derived from the diencephalon. We then described the genetic co-
architectureof the eye and the brain in 65 genomic regions, suggesting
genetic associations that overlap among retinal features, brain MRI
traits, and eye and brain disorders.We discovered genetic correlations
and causal links between retinal imaging traits and various cognitive
and mental health traits, as well as brain disorders. Additionally, we
demonstrated that multi-organ images could be combined to improve
the prediction of brain phenotypes. These analyses represent a sig-
nificant step forward in understanding eye-brain interactions. Our
results are consistent with previous studies that have found parallel
changes in eye-brain structures during pathological progression1,3, as
well as providing further information on the most relevant imaging
modalities and phenotypes for future research. We also reveal close
genetic connections between the eye and the brain, and abnormalities
in retinal structure may provide insight into the genetic risk of neu-
rodegenerative diseases and neuropsychiatric disorders. Together,
these understandings could lead to improved diagnostic and treat-
ment strategies for brain conditions by leveraging retinal imaging
traits as potential phenotypes.

Specifically, the discovery of retinal imaging phenotypes and their
shared genetic risk factors with brain disorders could pave the way for
less invasive monitoring and early detection methods, providing valu-
able insights into the pathological processes of these conditions. For
example, we found that the thickness of various retinal layers, such as
the RNFL, shared genetic influences with schizophrenia across multiple
genomic loci (Figs. 6A and S40–S43). It is known that individuals with
schizophrenia often exhibit thinner retinal layers and reduced macular
thickness76,131. Beyond schizophrenia, these retinal layers also demon-
strated extensive genetic associations with neuroticism (Figs. S44–S50).
Such insights underscore the potential clinical utility of retinal imaging
phenotypes and their genetic risk scores in the diagnosis and man-
agement of psychiatric disorders and mental health issues.

Additionally, our findings reveal close genetic links between ret-
inal imaging traits and neurovegetative disorders, including Parkin-
son’s disease and Alzheimer’s disease. These results align with recent
research suggesting retinal measures as promising tools for early
assessment of Parkinson’s disease pathogenesis132,133 and corroborate
existing cohort studies indicating that retinal neurodegeneration
markers could assist in identifying individuals at elevated risk for
Alzheimer’s disease and related dementia6,8,16–19,134. Furthermore, we
discovered genetic links to glioma/glioblastoma, a type of tumor
known to predominantly spread along brain white matter, aligning
with the observed strong phenotypic correlations between retinal
imaging traits and DTI parameters. Retinal imaging could enhance the
early detection and stratification of neurological conditions, leading to
improved patient outcomes.

In addition to brain disorders, our analysis revealed associations
between retinal imaging traits and various brain MRI, cognitive, and
mental health traits, as well as showcasing predictive power over
several domains. These findings underscore the potential of retinal
imaging for monitoring brain health and well-being across a wide
range of ages in the general population, extending its applications
beyond the diagnosis of specific diseases. Moreover, the pronounced
genetic basis of these links suggests the feasibility of applying PRS of
retinal imaging in wider genetic cohorts lacking real imaging data135.
Future studies can delve further into building more powerful retinal
imaging-based prediction models for the brain and evaluating their
performance in the growing body of data resources.

This study has a few limitations. Our analyses were based on the
ongoing UKB brain imaging study, which currently covers only a small
proportion of all UKB participants and consists primarily of individuals
of European ancestry. We conducted phenotypic analyses on an even
smaller sample of UKB subjects with both eye and brain imaging data.
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It is anticipated thatmorebrain-related retinal imaging biomarkers can
be discovered and replicated as the UKB brain imaging study collects
data from additional subjects136. Furthermore, inferring phenotypic
causality between retinal and brain imaging phenotypes from our
current cross-sectional analysis is challenging. Repeated UKB eye and
brain imaging scans137 in the future will enable us to study the causal
relationships between eye and brain structural and functional changes
using a longitudinal study design.

In addition, the two-sample MR method used in this study, an
epidemiological approach for genetic causal inference, relies on
assumptions on genetic variants and may not offer full insights into
inter-organ biological processes. Insights at the molecular and cellular
levels are needed to better understand the causal connections
between the eye and the brain138. In addition, the eye-brain genetic
links identified were specific to European or UKB populations, and it
will be important to examine whether these cross-organ genetic
overlaps can be generalized to other populations or studies as more
data are collected139. In summary, our UKB-based study reveals sub-
stantial genetic connections between the brain and the eye, suggesting
the potential clinical applications of retinal imaging not only in neu-
ropsychiatric and neurological practice but also in routine brain health
care for the general population. The utility of these retinal imaging
phenotypes needs to be verified in future longitudinal studies and
clinical settings.

Methods
Eye and brain imaging data
Our study was based on data obtained from the UK Biobank (UKB)
study, which recruited approximately half a million individuals
between the ages of 40 and69between 2006 and 201043 (https://www.
ukbiobank.ac.uk/). The ethics approval of the UKB study was from the
North West Multicentre Research Ethics Committee (approval num-
ber: 11/NW/0382) and informed consent was obtained by participants.
The optical coherence tomography (OCT) and retinal imaging scans
were part of the eyemeasurements conducted during the participant’s
visit to the UKB assessment center. We considered two sets of retinal
imaging traits. First, we used the derived OCT measures in Category
100079, whichwere generated and returned by previous studies30,44,45.
Thesemeasuresmainly provide the thickness of different retinal layers
and their subfields, as well as the vertical cup-to-disc ratio and disc
diameter. As suggested, we used the data in Data-Fields 28552 &
2855344 to perform quality control for theseOCTmeasures by keeping
images with an image quality score >45.We further only keep the OCT
measureswith a sample size >30,000, resulting in 46measureswith an
average sample size of 62,425.

Second, we downloaded the raw fundus retinal eye images from
Category 100016 and performed GWAS on these whole images by
extracting imaging biomarkers using transfer learning models. Briefly,
we used multiple pre-trained deep convolutional neural networks
(CNNs) trained from the ImageNet46 database. The ImageNet database
containsmore than 14million images classified intomore than 20,000
classes, which canbe used to trainmodels that extract various features
from retinal fundus images. Many CNNs models have been trained on
ImageNet and were widely used in the image processing field to learn
complex patterns from images. In addition to the ResNet50140 model
used by the transferGWAS32, we implemented 10 more pre-trained
CNN models, including the AlexNet141, Vgg16142, Vgg19142, GoogLeNet
(Inception V1)143, Inception (V3)143, ResNet18140, ResNet34140,
SqueezeNet144, MobileNet145, and ShuffleNet146. These pre-trained
models are available on Pytorch147 and represent different designs
and architectures, such as layer depth, size of kernels, and hyper-
parameters. For example, the ResNet50 has 50 layers with kernel size
1 × 1, 3 × 3, and 7 × 7, while AlexNet has 8 layers with kernel size 3 × 3,
5 × 5, and 11 × 11. All pre-trained models use the rectified linear unit
(ReLU) as the activation function. We began by combining the original

left and right retinal fundus images and the rotated images with 90°,
180°, and 270°, each with and without horizontal mirroring. Next, we
input these eight retinal fundus images into each pre-trained model
and averaged the outputs from the last layer of convolutional net-
works. Then we generated the top-10 ranked principal components
(PCs) from each of the 11 models as retinal imaging biomarkers in
downstream GWAS analyses. The average sample size across all these
110 (10 × 11) fundus imaging traits is 78,513. In all theOCTmeasures and
fundus image traits, the values greater than five times the median
absolute deviation from the median were treated as outliers and
removed.

The UKB brain MRI data were generated from raw images down-
loaded from Category 100003. The multimodal brain imaging traits
used in the present paper have been extracted in previous papers by
our research group36,38,40,47. First, we had 101 regional brain volumes36

and 63 cortical thickness traits47 generated from T1-weighted struc-
tural MRI images. These structural MRI traits were produced by the
ANTs48. For the 101 volumetric traits, we had brain volumes for 98
predefined cortical and subcortical areas and three global brain
volume measures (total gray matter volume, total white matter
volume, and total brain volume).We also examined the thickness of 62
cortical areas and the global thickness. Second, the ENIGMA-DTI
pipeline148,149 was used to generate 110 tract-averaged DTI parameters
based on diffusion MRI, including fractional anisotropy, mean diffu-
sivity, axial diffusivity, radial diffusivity, andmode of anisotropy, for 21
predefined major white matter tracts and the whole brain (5 × 22). For
resting fMRI, we applied the Glasser360 atlas150 to partition the cere-
bral cortex into 360 regions for 12 functional networks151, including the
primary visual, secondary visual, auditory, somatomotor, cingulo-
opercular, default mode, dorsal attention, frontoparietal, language,
posterior multimodal, ventral multimodal, and orbito-affective net-
works. We generated 92 functional activity (amplitude) and functional
connectivity traits, including the average activity for each network and
the average connectivity for each pair of networks (including within
the samenetwork), aswell as the global activity and connectivity of the
whole cortex. Similarly, 92 functional activity and connectivity traits
were generated from task fMRI40. In summary,we considered458brain
MRI traits of brain structure and function. See Supplementary Data 1
for the complete ID list of both retinal imaging and brain imaging
traits.

Phenotypic eye-brain imaging analyses
In our phenotypic analysis, we examined pairwise associations
between 156 retinal imaging traits and 458 brain MRI traits. We used
the UKB subjects with both two imaging types and adjusted a wide
range of covariates, including age, sex (self-reported), standing height,
assessment center, body mass index, weight, waist-to-hip ratio,
smoking status, mean arterial blood pressure, age-squared, age-sex
interaction, age-squared-sex interaction, top 40 genetic PCs152, volu-
metric scaling, head motion, head motion-squared, brain position,
brain position-squared35,37, diabetes, ICD-10 disease code staring with
R73 (“elevated blood glucose level”, such as hyperglycemia), I70
(“atherosclerosis”, such as atherosclerosis of aorta), I10 (Essential
(primary) hypertension), and E78 (“disorders of lipoprotein metabo-
lism and other lipidaemias”, such as hyperlipidemia). For regional
brain volumes, we additionally corrected for total brain volume to
remove global effects.

We fitted linear models for each pair of imaging traits (R version
3.6.0) and used a discovery-validation design, in which the UKB indi-
viduals of white British ancestry (average n = 6454 across different
modalities) were used to discover eye-brain imaging associations,
which were verified by a hold-out independent validation dataset
(average n = 959). This hold-out dataset included all subjects not used
in the discovery dataset, encompassing various ancestry backgrounds.
Additionally, relatives152 of individuals from the discovery sample were
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excluded. The Benjamini–Hochberg procedure was used to adjust for
multiple testing, and we reported significant associations at the false
discovery rate (FDR) of 5%. Validation criteria included a P-value less
than 0.05 in the hold-out independent dataset with concordant asso-
ciation signs between the discovery and validation datasets. We also
considered the conservative Bonferroni multiple testing correction
and highlighted these top-ranking significant findings in the paper. In
addition, we repeated the above analysis separately for females and
males (average n = 3338 and 3150, respectively) and reported the sex-
specific association patterns. We also performed additional sensitivity
analysis to add ocular and brain disorders as covariates (Supplemen-
tary Note).

Genetic analysis of 156 retinal imaging traits
We performed GWAS for the 156 retinal imaging traits using the
imputed genotyping data from the UKB study. For the set of subjects
with both retinal imaging traits and genetic data, we performed the
following quality controls40: (1) removed individuals with missing
genotype rate >0.1; (2) removed variants with missing genotype rate
>0.1; (3) removed variants with minor allele frequency (MAF) < 0.01;
(4) removed variants that failed the Hardy-Weinberg equilibrium test
at 1 × 10−7 level; and (5) removed variants with imputation INFO score
<0.8. The SNP-based heritability of white British samples was esti-
mated based on all autosomal SNPs usingGCTA53 (average n = 60,748).
We adjusted for the effects of age, sex, assessment center, age-
squared, age-sex interaction, age-squared-sex interaction, and top 40
genetic PCs152.

Using the same set of subjects and covariates data, we per-
formed GWAS using linear mixed effect models via fastGWA153. SNP
heritability and GWAS were also conducted separately for males and
females. We defined the independent (LD r2 < 0.1) significant genetic
associations and loci using FUMA154 (version v1.3.8). The details of
FUMA annotations can be found at https://fuma.ctglab.nl/tutorial.
Briefly, FUMA first labeled independent significant variants, which
were variants whose P-values were smaller than 3.20 × 10−10 and were
independent of other significant variants (LD r2 < 0.6). Next, LD
boundaries were defined by tagging all variants (MAF ≥0.0005,
including those from the 1000 Genomes reference panel) in LD
(r2 ≥0.6) with at least one of these independent significant variants.
Based on the independent significant variants, FUMA further defined
independent lead variants as those that were independent of others
(LD r2 < 0.1). If there were independent significant variants that were
close to each other (<250 kb based on their LD boundaries), FUMA
merged their LD blocks into one single genomic locus to obtain the
LD boundaries. For independently significant associations and LD
blocks defined by FUMA, we performed validations using (1) the UKB
European but non-British subjects (average n = 5320) and (2) UKB
non-European subjects from different ancestry backgrounds (aver-
age n = 6490). The ancestry information was derived from self-
reported ethnicity (Data-Field 21000), the accuracy of which was
confirmed in Bycroft et al. 152. Relatives of the discovery GWAS sam-
ple were removed, and we adjusted for the same set of covariates as
in the discovery sample, including the top 40 genetic PCs to account
for population stratifications. We also developed PRS using summary
statistics from the discovery of GWAS and examined their prediction
accuracy on the two validation datasets. We constructed polygenic
risk scores (PRS) based on PRS-CS56 with all default parameters. To
avoid overlapping with the training discovery GWAS sample, the
validation genotype data were randomly selected from 1500 UKB
European subjects without retinal imaging data.

Genetic eye-brain imaging analyses
For the independently significant variants and all variants in their LD
blocks, we used FUMA to look them up on the NHGRI-EBI GWAS cat-
alog (version e104_2021-09-15) to search for any previous GWAS

results reported on these variants (P < 9 × 10−6). We focused on the
existing GWAS results of brain and eye-related complex traits and
diseases and manually categorized them into 14 groups, including
stroke (and other cerebrovascular disorders, such as Moyamoya dis-
ease, intracranial aneurysm, and cerebral aneurysm), Parkinson’s dis-
ease, Alzheimer’s disease, glioma/glioblastoma (GBM), other
neurological disorders (such as amyotrophic lateral sclerosis, pro-
gressive supranuclear palsy, corticobasal degeneration, and fronto-
temporal dementia), schizophrenia, other psychiatric disorders (such
as bipolar disorder, depression,major depressive disorder, and autism
spectrum disorder), psychological traits (such as neuroticism, anxiety,
subjective well-being, and risk tolerance), cognitive traits (such as
general cognitive ability, the highestmath class taken, intelligence, and
reaction time), education, brain structure/function, migraine, Alzhei-
mer’s diseasebiomarkers (such ascerebrospinalfluidbiomarker levels,
rate of cognitive decline in Alzheimer’s disease, and plasma t-tau
levels), and eye traits/diseases (such as macular thickness, refractive
error, spherical equivalent, and glaucoma). In addition, we system-
atically examined genetic overlaps with the GWAS results of brain MRI
traits reported in previous studies, including 101 regional brain
volumes36, 215 DTI parameters38 (including the 110 tract-average values
used in our phenotypic analysis and 105 additional PCs of fractional
anisotropy), 63 cortical thickness traits47, 92 resting fMRI traits, and 92
task fMRI traits40. For the index variants of retinal imaging traits
defined by FUMA, we looked up the MetaBrain database64 (https://
www.metabrain.nl/) to see if they were reported eQTLs in large-scale
gene expression meta-analysis of brain tissues. For each locus with
shared genetic influences, we tested for common causal genetic var-
iants between the retinal imaging trait and the brain phenotype using
Bayesian colocalization analysis62. The colocalizationwas established if
the posterior probability of the shared causal variant hypothesis
(PPH4) was greater than 0.862,63.

Cross-trait LDSC102 (https://github.com/bulik/ldsc/, version 1.0.1)
was used to examine the pairwise genetic correlation between 156
retinal imaging traits and 39 sets of publicly available GWAS summary
statistics of brain phenotypes. The default European LD scores pro-
vided by the LDSC software were used, which were based on the
HapMap3 genetic variants and were estimated from the 1000 Gen-
omes European samples. Themajorhistocompatibility complex region
was excluded due to the complex LD pattern. For the 46 OCT mea-
sures, we also used LDSC to perform the heritability enrichment
analysis110 with genetic variant annotations of tissue type and cell type-
specific regulatory elements. The heritability explained by the anno-
tated genome regions was estimated and tested with percentages and
enrichment scores. Baseline annotation models were included in the
analysis when we analyzed additional annotations. We tested for the
annotations of regulatory elements from multiple adult and fetal tis-
sues from the Roadmap Epigenomics Consortium111 and two major
brain cell types (neurons and glia) sampled from various brain cortical
and subcortical brain regions112.

Bi-directionalMendelian randomization (MR) analysis was used to
discover the causal effect between 156 retinal imaging traits and 25
brain-related clinical endpoints. Eight MR methods114–121 were imple-
mented, includingMREgger, simplemedian, simplemode, fixed effect
inverse variance weighted (IVW), multiplicative random effect IVW,
DIVW,MR-RAPS, and GRAPPLE. The 25 brain-related clinical endpoints
were all from the latest release (R7) of the FinnGen database (https://
www.finngen.fi/en/access_results), where 12 of them were mental and
behavior disorders, and the remaining 13 phenotypes were diseases of
the nervous system.Most of the diseaseswe selected have a number of
cases greater than 10,000, except for a few important brain diseases,
including Alzheimer’s disease (n > 6000), other neurological diseases
(n = 7288), and epilepsy (n = 8523). Supplementary Data 11 provides
more information on the MR methods and FinnGen data. Exposure
GWAS summary statistics were first clumped with Plink155 to guarantee

Article https://doi.org/10.1038/s41467-024-50309-w

Nature Communications |         (2024) 15:6064 13

https://fuma.ctglab.nl/tutorial
https://www.metabrain.nl/
https://www.metabrain.nl/
https://github.com/bulik/ldsc/
https://www.finngen.fi/en/access_results
https://www.finngen.fi/en/access_results


that the instrumental variables used in MR models are independent.
The P-value significance threshold (p1) and the secondary significance
threshold (p2) in clumping were set to 5 × 10−8, and the 1000Genomes
European reference panel was applied. Besides, the threshold over the
squared correlation between two genetic variants was set to be
r2 = 0.01 and window size = 1Mb. After clumping, the selected SNPs
from exposure GWAS data were extracted from outcome GWAS
summary statistics with function extract_outcome_data() in the two-
sample MR package (https://mrcieu.github.io/TwoSampleMR/). To
ensure that the effect of a genetic variant on the exposure and out-
come corresponded to the same allele, data harmonization was per-
formed using the harmonise_data function() with the default settings.
The estimated causal pairs of retinal imaging trait and brain disease
were further screened with several rules. The first step was to discard
pairs with fewer than six genetic variants. Second, we dropped the
pairs whose estimated MR Egger intercept differed significantly from
zero122. Bonferroni correctionwas then performedon theMR results of
eachmethod separately. Finally, we reported the causal pairs that were
significant for either of the IVWmethods and at least one of the robust
MR methods (DIVW, simple mode, simple median, MR-RAPS, and
GRAPPLE).

Prediction of brain phenotypes using retinal and brain
imaging data
We examined the prediction power of 156 retinal imaging traits on 32
brain-related complex traits and diseases, including cognitive traits,
neuroticism sum score, family history of brain disorders, mental and
behavioral disorders (ICD-10 Chapter F), and diseases of the nervous
system (ICD-10 Chapter G). We focused on unrelated white British
subjects and first randomly divided the subjects who had both retinal
and brain imaging data into validation and testing datasets
(2464 subjects in each dataset). This design enabled us to test the
prediction performance using both imaging types in later steps. The
remaining 50,944 subjects with retinal imaging data (but no brainMRI
data) were used as the training dataset. For each of the 32 traits, we
used ridge regression for prediction, and the effect sizes of retinal
imaging traits were estimated on the training dataset via the glmnet156

package (R version 3.6.0). All model parameters were tuned based on
validation data, and prediction performance was examined based on
the correlation between the predicted values and the observed ones in
the independent testing data. In all the training, validation, and testing
datasets, we removed the effects of age, sex, age-sex interaction, age-
squared, age-squared-sex interaction, assessment center, and top 40
genetic PCs. For brain phenotypes where retinal imaging traits had
significant predictive power after Bonferroni correction for multiple
testing, we further examined the predictive power of multiple brain
MRI modalities and the joint performance of using retinal and brain
imaging traits. In brain MRI prediction, we used the same validation
and testing datasets as the above retinal imaging analysis (2464 sub-
jects in each dataset) and all other unrelated white British subjects
(37,239 subjects) as training data. Finally, we examined the prediction
accuracy of genetic PRS for fluid intelligence. We used the unrelated
white British subjects without retinal or brain imaging data as training
GWAS (n = 71,406) and developed the PRS with PRS-CS56. The same set
of covariates as the imaging prediction analysis was removed.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheGWAS summary statistics of retinal imaging traits generated in this
study have been deposited in the Zenodo database under accession
code 11217687. TheGWAS summary statistics of brainMRI traits can be
freely downloaded at BIG-KP (https://www.med.unc.edu/bigs2/data/

gwas-summary-statistics/). The individual-level UK Biobank imaging
data used in this study can be obtained from https://www.ukbiobank.
ac.uk/.

Code availability
We made use of publicly available software and tools. The codes to
apply pre-trained transfer learningmodels to extract features from raw
retinal fundus images are available at https://github.com/mkirchler/
transferGWAS.
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