
Research Article

Patterning in stratified epithelia depends on
cell–cell adhesion
Yosuke Mai1 , Yasuaki Kobayashi2,3 , Hiroyuki Kitahata4 , Takashi Seo1, Takuma Nohara1 , Sota Itamoto1 ,
Shoko Mai1, Junichi Kumamoto2 , Masaharu Nagayama2 , Wataru Nishie1, Hideyuki Ujiie1, Ken Natsuga1

Epithelia consist of proliferating and differentiating cells that
often display patterned arrangements. However, the mechanism
regulating these spatial arrangements remains unclear. Here, we
show that cell–cell adhesion dictates multicellular patterning in
stratified epithelia. When cultured keratinocytes, a type of epi-
thelial cell in the skin, are subjected to starvation, they spon-
taneously develop a pattern characterized by areas of high and
low cell density. Pharmacological and knockout experiments
show that adherens junctions are essential for patterning,
whereas the mathematical model that only considers local
cell–cell adhesion as a source of attractive interactions can form
regions with high/low cell density. This phenomenon, called
cell–cell adhesion-induced patterning (CAIP), influences cell
differentiation and proliferation through Yes-associated protein
modulation. Starvation, which induces CAIP, enhances the
stratification of the epithelia. These findings highlight the in-
trinsic self-organizing property of epithelial cells.
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Introduction

Epithelial tissue is composed of layers of cells that cover the
surfaces of organs, and their homeostasis is maintained through
the spatial organization of cells with various fates. Epithelial cells
are distributed in a coordinatedmanner and typically exhibit visible
patterns in stratified epithelia, such as human fingerprints (1), bird
feathers (2), and mouse tail scales (3, 4, 5), at the macroscopic level.
Genetic, developmental, and environmental factors contribute to
the unique arrangement of stem cells, proliferating cells, and
differentiating cells in tissues, leading to context-dependent epi-
thelial patterning.

Keratinocytes are the primary cells in the epidermis, the strat-
ified epithelium of the skin. Previous studies have highlighted
keratinocytes’ ability to develop patterns. Seminal research by

Green and Thomas demonstrated that human keratinocytes
formed patterns resembling human fingerprints when cultured on
feeder cells (6). Subsequent studies revealed that human kerati-
nocytes can self-organize into clusters expressing stem cell
markers (7, 8), implying that the multicellular arrangements might
affect cell fate. However, the characteristics and mechanisms
underlying keratinocyte patterning are not yet thoroughly
understood.

Cell–cell adhesion is a characteristic of epithelia and is sup-
ported by specialized junctional complexes, including adherens
junctions (AJs). AJs are composed of cadherins and catenins
and provide mechanical attachments between neighboring epi-
thelial cells (9). Perinatal lethality has been observed in mice
lacking any of the AJ components (10, 11, 12, 13), underscoring the
significance of AJs.

Here, we show that cell–cell adhesion governs keratinocyte
patterning. The patterning is mediated by AJs and facilitates
cell dynamics with the help of the Yes-associated protein (YAP)
pathway. Our findings elucidate the molecular and cellular
basis underlying the spatial organization of cells in the
epidermis.

Results

Spontaneous patterning of keratinocytes

First, we observed the morphology of epithelial cell sheets by
using HaCaT cells, an immortalized keratinocyte line (14). The
cells were seeded in a high-calcium medium containing 10% FBS
and allowed to reach full confluence in 1 d (day 1; Fig 1A). On
day 4, the cells displayed a self-organized pattern, comprising
areas of high and low cell density (Fig 1A and B). HaCaT cells
were originally derived from the back skin of a 62-yr-old male
and not from a single cell (14); therefore, heterogeneous cells
might have formed the regions of high or low cell densities. To
rule out this possibility, we performed single-cell cloning of
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HaCaT cells by integrating a puromycin cassette and the Cas9
gene into the cells, the latter of which enabled further knockout
experiments (15). Single-cell-cloned HaCaT cells developed a
self-organized pattern similar to that observed in the parental
cells (Fig S1), indicating the presence of an intrinsic cell
property that gives rise to regions of high or low cell density.
Morphologically, phalloidin staining revealed that cells in the
areas of high cell density were cuboidal, compact, and stratified,
whereas those in the areas of low cell density were flat (Figs 1C
and S2).

Time-lapse images of keratinocytes during patterning revealed
that cells initially moved randomly, and subsequently, the areas of
high and low cell density developed spontaneously (Fig S3A and B
and Video 1). This self-assembling pattern was obscured 1 d after a
medium change (MC) (day 4 to day 5; Fig 1D and E) and reappeared
on day 6 (Fig 1D and E). Time-lapse images showed that cells in the
areas of high cell density migrated toward regions of low cell
density after MCs and that the areas of high/low cell density re-
formed (Fig S4A–D; Video 2 and Video 3). The pattern was quantified
with an ImageJ plugin, in which the pattern index increases as the

Figure 1. The self-organizing pattern of
keratinocytes.
(A) Immunofluorescent images of keratinocytes
displaying a self-organized pattern 1 and 4 d after
seeding. Nuclei are labeled with Hoechst 33342.
Scale bar: 500 μm. (B) Schematic diagram of
keratinocyte pattern, comprising areas of high and
low cell density. (C) Orthogonal
immunofluorescent images of keratinocyte
pattern. Blue indicates nuclear labeling with
Hoechst 33342. Green indicates actin labeling
with phalloidin. The XZ orthogonal images
correspond to the red line of the XY orthogonal
view. The red and blue rectangles are enlarged
to show a high-density area and a low-density
area, respectively. Scale bar: 100 μm. (D) Schematic
diagram of medium changes (MCs) and
observation points. (E) Immunofluorescent
images of keratinocytes following MCs. Nuclei are
labeled with Hoechst 33342. Scale bar: 500 μm.
(F) Pattern index during the cell culture. Data are
presented as mean values ± SEM. N = 16 for each
time point. (G) The radial autocorrelation
function of fluorescent images of cultured
keratinocytes 2 and 4 d after seeding. Data are
presented as mean values ± SEM. N = 3 for each
time point. (G, H) Enlarged view of (G).
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distinction between areas of high and low cell density becomes
more evident (see the Materials and Methods section). This
quantitative analysis confirmed that the pattern was disrupted by
MCs (Fig 1F). To further confirm that the areas of high and low cell
density exhibited a pattern—defined as regularly repeated cell
arrangement—andwere notmerely an inhomogeneous distribution
of cell densities, the images of the cells at day 2 (patternless) and
day 4 (pattened) were analyzed using autocorrelation functions
(Figs 1G and H and S5). On day 2, the radial autocorrelation
gradually decreased with distance, indicating that no pattern was
present. In contrast, on day 4, the autocorrelation showed a pro-
nounced first-ordered nadir corresponding to the average nearest
distance between high cell density areas, demonstrating the
presence of patterning (Fig 1G and H).

Serum starvation induces the self-organizing pattern of
keratinocytes

The time course studies (Figs 1D–F and S3A and B and S4A–D; Video 1
and Video 2) led us to speculate that the starvation of the culture

medium induced the formation of keratinocyte patterns. To test this
hypothesis, we compared groups with and without MCs and found
that the pattern was disturbed in the group with MCs (Fig 2A–C). The
automated perfusion culture system (Fig 2D) demonstrated that the
procedure of the MC itself did not significantly impact the phe-
notype, as the cells maintained at a low perfusion rate exhibited
more pronounced patterns than those maintained at a high per-
fusion rate (Fig 2D–F). To further investigate the factors con-
tributing to pattern formation in the culture medium, we
compared cells that underwent MCs with or without 10% FBS (Fig
2G–I). 1 d after the MC, the pattern disappeared in the FBS group
but not in cells without FBS (Figs 2G–I and S6A and B; Video 4).
These results indicate that serum starvation is crucial for ker-
atinocyte patterning.

Cell–cell adhesion through adherens junctions is essential for
pattern development

To elucidate the underlying mechanism(s) behind the pattern
formation, we performed RNA sequencing (RNA-seq) analysis to

Figure 2. Serum starvation induces keratinocyte pattern formation.
(A) Schematic diagram of the experiments comparing keratinocyte pattern formation with or without MC. (B) Immunofluorescent images of keratinocytes with or
without MC. Nuclei are labeled with Hoechst 33342. Scale bar: 500 μm. (C) Pattern index with or without MC. N = 8 for each group. (D) Schematic diagram of the
autoperfusion culture system and experiment. (E) Immunofluorescent images of keratinocytes cultured under low and high perfusion rates on day 4. Nuclei are labeled
with Hoechst 33342. Scale bar: 500 μm. (F) Pattern index for cultures with low and high perfusion rates. N = 5 for the culture group with the low perfusion rate and N = 6 for
the culture group with the high perfusion rate. All data are presented as mean values and analyzed with two-tailed Mann–Whitney U tests. *P < 0.05. (G) Schematic
diagram of the experiments comparing keratinocyte patterns after MC with or without FBS. (H) Immunofluorescent images of keratinocytes after MC with or without FBS.
Nuclei are labeled with Hoechst 33342. Scale bar: 500 μm. (I) Pattern index after MC with or without FBS. All data are presented as mean values. Statistical analysis was
performed with two-tailed Mann–Whitney U tests. *P < 0.05. ****P < 0.0001.
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compare HaCaT cells cultured under high- or low-density condi-
tions, as the pattern consisted of areas of high and low cell density.
The gene ontology biological process terms enriched among the
differentially expressed genes through DESeq2 (16) included cell
adhesion and keratinocyte differentiation (Fig S7A–C and Table S1).
The RNA-seq data prompted us to examine the distribution of AJ
molecules, such as E-cadherin and actin, given that AJs are main
contributors to cell adhesion. We found that these molecules were

localized at intercellular junctions in areas of high cell density (Figs
1C and 3A and S8A–C). E-cadherin and α-catenin form an AJ complex
(9), and through AJ development, α-catenin undergoes a confor-
mational change because of intercellular forces, which is recog-
nized by the α18 antibody (17). α18 labeling was also pronounced in
areas of high cell density (Figs 3B and S8D–H). These data suggest
that cells in regions of high cell density form AJs in response to
intercellular forces.

Figure 3. Adherens junctions regulate keratinocyte patterning.
(A, B) Immunofluorescent images of keratinocytes on day 4. Nuclei are stained with DAPI and Hoechst 33342 (blue). (A, B) Cell–cell adhesions are visualized with E-
cadherin (A) and α18 labeling (B) (green). Scale bar: 50 μm. (C) Schematic diagram of experiments investigating patterns under high-calcium (1.8 mM) and low-calcium
(0.06 mM) conditions. (D) Immunofluorescent images of keratinocytes under high- and low-calcium conditions. Nuclei are labeled with Hoechst 33342. Scale bar: 500 μm.
(E) Pattern index in high- and low-calcium conditions. N = 4 for each group. (F) Schematic diagram of experiments investigating patterns with or without the E-cadherin-
blocking antibody. (G) Immunofluorescent images of keratinocytes with or without the E-cadherin-blocking antibody. Nuclei are labeled with Hoechst 33342. Scale bar:
500 μm. (H) Pattern index with or without the E-cadherin-blocking antibody. N = 4 for each group. (I) Schematic diagram of experiments investigating patterns with or
without blebbistatin, a non-muscle myosin II inhibitor. (J) Immunofluorescent images of keratinocytes with or without blebbistatin. Nuclei are labeled with Hoechst
33342. Scale bar: 500 μm. (K) Pattern index with or without blebbistatin. N = 8 for each group. (L) Immunofluorescent images of WT and CTNNA1-knockout (KO)
keratinocytes. Nuclei are labeled with Hoechst 33342. Scale bar: 500 μm. (M) Pattern index of WT and CTNNA1-KO keratinocytes. N = 8 for each group. All data are presented
as mean values. Data for (E, H, K) were analyzed with two-tailed Mann–Whitney U tests. Data for (M) were analyzed with the Kruskal–Wallis test followed by Dunn’s
multiple comparison test. ns, not significant. *P < 0.05; **P < 0.01; ***P < 0.001.
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To investigate the role of AJs in pattern development, we first
compared cells under low- and high-calcium conditions because
calcium is necessary to form AJs (18). A high/low cell density pattern
developed under high-calcium conditions but was not observed
under low-calcium conditions (Fig 3C–E). Similarly, treatment with
SHE78-7 antibody, which blocks E-cadherin-mediated cell adhesion
(19, 20), inhibited patterning (Fig 3F–H). The force-dependent con-
formational change of α-catenin is induced by myosin-II (17), and its
inhibition by (−)-blebbistatin (21, 22) also disturbed pattern formation
(Fig 3I–K). CTNNA1-knockout (KO) HaCaT cell lines, in which α-catenin
expressionwas nullified by gene editing (Fig S9A andB), exhibited the
same phenotype (Fig 3L and M). These results demonstrate that AJs
are essential for forming keratinocyte patterns.

Cell–cell adhesion can contribute to pattern development

We then asked whether cell–cell adhesion is sufficient for the
formation of keratinocyte patterns and used mathematical mod-
eling to answer this question. We used a two-dimensional con-
tinuous model consisting of two variables: cell density and stress
caused by adhesion. The main assumptions of the model were that
the collective movement of cells is driven by the spatial imbalance
of adhesion strength and that cell–cell adhesion increases with cell
density. Note that these assumptions themselves do not tell
whether density patterning will emerge. We performed simulations
by varying the coefficient of adhesion strength as a control pa-
rameter. Each simulation began with spatially uniform density and
stress. We observed that for sufficiently strong adhesion, the initial
uniform distribution became unstable, and a spatial pattern of
density emerged over time. By contrast, for weak adhesion, no
coherent pattern appeared (Fig 4; Video 5, Video 6, and Video 7).
These patterns were robust against noise strengths accounting for
the random movements of individual cells (Fig S10). These results
suggest that adequately strong cell–cell adhesion can contribute to
the emergence of density patterns.

Keratinocyte patterns spatially dictate cell proliferation and
differentiation

We further characterized keratinocyte differentiation through our
experiments, as indicated by the RNA-seq data (Fig S7B and C).
Keratin 10 (KRT10)-positive differentiated cells were abundant and
stratified in areas of high cell density (Fig 5A and B). By contrast,
phospho (Thr3)-monomethyl (Lys4) histone H3 (PH3)-positive pro-
liferative cells were found in areas of low cell density (Fig 5C). These
data suggest that differentiation and proliferation are spatially
regulated through pattern formation. Because AJs are essential for
forming the high/low cell density pattern, wewonderedwhether they
were also involved in regulating pattern-dependent differentiation
and proliferation. CTNNA1-KO HaCaT cells failed to show pattern-
dependent differentiation (Fig 5D and E), suggesting that AJs involving
α-catenin play a role in this process.

We then focused on the YAP pathway, as the coordinated
pattern-dependent differentiation and proliferation seemed to be
linked to cell density, and YAP, a “crowd control” molecule, uses
α-catenin to sense cell density in keratinocytes (23). The locali-
zation of YAP, which is regulated by cell density, determines cell
fate; cytoplasmic YAP induces differentiation, and nuclear YAP
promotes proliferation (23, 24, 25, 26). As expected, cytoplasmic YAP
and nuclear YAP were found in areas of high and low cell density,
respectively (Fig 6A and B). In line with YAP dynamics, ANKRD1, a YAP
downstreammolecule (25, 27, 28), was localized to the nuclei of cells
in high-density areas but not in low-density areas (Fig 6C and D).
The YAP activator PY-60, which induced nuclear localization of YAP
and ANKRD1 in keratinocytes of high cell density areas (Fig S11A–D),
inhibited cell differentiation (Fig 6E and F) and disrupted pattern
formation (Fig S11E and F). This disturbed patterning might have
resulted from the impaired contact inhibition of proliferation (29) or
the dysregulation of AJs by YAP activation (30). By contrast, YAP
inhibition by a tankyrase inhibitor XAV939, which prevented the
nuclear localization of YAP and ANKRD1 in keratinocytes of low cell
density areas (Fig S11G–J), suppressed cell proliferation (Fig 6G and
H) and slightly modified pattern formation (Fig S11K and L). These
results suggest that YAP modulates the differentiation and pro-
liferation states of patterned keratinocytes.

Serum starvation contributes to epidermal stratification

Finally, we asked whether the keratinocyte patterns induced by
serum starvation impacted the stratification of the epidermis, as
cells in areas of high cell density within the pattern were predis-
posed to differentiation. Air-liquid interface culture of HaCaT cells,
which induces stratification, revealed that the epidermis was
thicker in serum-starved conditions than in serum-rich conditions,
in which pattern formation was impaired (Figs 7A and B and S12A
and B). As expected, KRT10-positive layers in serum-starved con-
ditions were thicker than those in serum-rich conditions, whereas
the thickness of KRT14-positive layers was comparable between the
two groups (Fig S12C–E). In addition, CTNNA1-KO HaCaT cells failed
to form a stratified epithelium (Fig 7C).

We further evaluated whether the serum-starved condition
could affect epidermal stratification ex vivo. We used a wound-
healing mouse model with a suction blister to observe re-

Figure 4. A mathematical model simulates a spatial density pattern using two
variables: cell density and stress caused by adhesion.
A two-dimensional cell density model predicted the emergence of spatial
patterns of cell distribution, depending on adhesion strength. The color
represents the local cell density ρ. Simulations for three different values of β
(adhesion strength) are shown, with time moments T [a.u.] = 30, 60, 90, and 120.
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stratification after wounding (31). A sample of mouse back skin with
a suction blister wound was cut out and cultured in serum-starved
and serum-rich conditions (Fig 7D). Re-epithelialization was com-
pleted on day 1, and re-stratification began. On day 4, the re-
stratified epidermis cultured in serum-starved conditions was
thicker than that cultured in serum-rich conditions (Fig 7E and F).
These data imply that appropriate serum starvation facilitates
epidermal stratification through cell–cell adhesion and the sub-
sequent patterning of the cells.

Discussion

Our study presents a novel and robust model of cell–cell adhesion-
induced patterning (CAIP). CAIP is mediated by AJs and spatially
regulates the differentiation and proliferation of epithelial cells.

During skin development, such as placode formation, the peri-
odic expression of signaling molecules is thought to arise in the
early stages of development, dictate cell behaviors, and orchestrate
follicular patterning in the skin (32, 33, 34). However, recent studies
have revealed that periodic follicle patterning is triggered by
mechanical rather than molecular events (2, 35). In this scenario,
follicular patterns can arise from mechanical instability caused by
fibroblast contraction. Then, self-organized fibroblast aggregation
through contractility-driven cellular pulling triggers the mecha-
nosensitive activation of β-catenin in neighboring keratinocytes,
activating the follicle gene expression program. These studies in-
dicate that cellular contraction mechanics in the mesenchyme
could organize epithelial patterning and subsequent cell fate
decisions in vivo. In contrast to the follicle placodes, fingerprint
ridge formation, which involves sweat gland development (1), is
facilitated by signaling molecules, including EDAR, WNT, and BMP,

Figure 5. Patterning correlates with
differentiation and proliferation markers in
keratinocytes.
(A) Immunofluorescent images of keratinocytes on
days 2 and 4. Hoechst 33342 (blue); Keratin (KRT)
14, a basal keratinocyte marker (green); KRT10, a
differentiated keratinocyte marker (magenta).
Scale bar: 200 μm. (B) The upper panels are
immunofluorescent images of a high-density
region on day 4. The lower panel is an orthogonal
YZ image of a high-density region under high
magnification. Hoechst 33342 (blue); KRT14
(green); KRT10 (magenta). Scale bar: 50 μm.
(C) Immunofluorescent images of keratinocytes
on day 4. DAPI (blue). PH3, a proliferation marker
(magenta). Scale bar: 100 μm.
(D) Immunofluorescent images of WT and
CTNNA1-KO keratinocytes on day 4. Hoechst 33342
(blue); KRT14 (green); KRT10 (magenta).
Scale bar: 300 μm. (E) KRT10-positive (KRT10+)
areas per low power field of WT and CTNNA1-KO
keratinocytes per low power field. N = 9 for WT1 and
CTNNA1-KO2. N = 8 for WT2 and CTNNA1-KO1. All
data are presented as mean values. Data for
(E) were analyzed with the Kruskal–Wallis test
followed by Dunn’s multiple comparison test.
**P < 0.01. ****P < 0.0001.
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and does not recruit mesenchymal cells. The concept of CAIP is
distinct because epithelial cell–cell adhesion is essential and
sufficient for the patterning. Research to determine whether CAIP is
involved in other in vivo epithelial patterning is warranted.

CAIP also imitates the periodic buckling of the human epidermis,
in which epidermal stem cells with high β1 integrin expression are
localized in the areas facing dermal protrusion and transient
amplifying cells are present in the epidermal rete ridge structures
(36, 37). Keratinocytes cultured on undulating elastomer substrates
resembling rete ridge structures display a similar stem cell dis-
tribution, in which cells with high β1 integrin expression cluster at
the tips of the topographies (38, 39). The disruption of cell–cell
adhesions by Rho kinase inhibitors impairs confluent sheet for-
mation on undulating substrates. However, the stem cell clusters
on undulating substrates strongly express E-cadherin and F-actin,
in contrast to the high E-cadherin expression in the differentiation
region of CAIP. This discrepancy might be explained by differences
in the experimental designs.

CAIP aligns with the principles of mechanobiological cell fate
decisions in epithelial sheets. In a confluent of monolayer of MDCK
cells, topological defects govern α-catenin and YAP-associated cell
death and extrusion (40, 41). Interestingly, HaCaT cell monolayers
display a distinct phenotype from MDCK monolayers; they are more
elatic (42) and have a characteristic of the multi-stratified

organization. Miroshnikova et al demonstrated that in keratino-
cytes, differentiation occurs near proliferating cells, resulting from
cell shape distortion, increased cell–cell adhesion, and decreased
cortical tension in a confluent state (43). In our CAIP model, serum
starvation induces cell gathering, which may distort cell shape and
increase cell–cell adhesion, affecting cortical tension and triggering
differentiation. Furthermore, CAIP may also be related to the
mechanosensitive ERK pathway because cell deformation couples
with ERK activation, and ERK activities regulate keratinocyte dif-
ferentiation (44, 45).

For the mechanobiological process in keratinocytes, AJs are
essential for intercellular junction formation (46) and serve as a
major hub for Hippo-YAP pathway components such as Merlin
(NF2), angiomotin (AMOT), and annexin A2 (ANXA2) (29, 47, 48, 49).
AMOT, a Hippo pathway regulator, is localized at AJs and binds to
YAP, leading to the translocation of YAP from the nucleus into the
cytoplasm (50, 51, 52). To regulate AMOT activity, tankyrases asso-
ciate with AMOT and promote AMOT degradation (53, 54). We
showed that a tankyrase inhibitor, XAV939, impairs the nuclear
localization of YAP and ANKRD1 (Fig S11G–J). These findings suggest
that pattern-dependent YAP activation may be regulated by
tankyrase-AMOT-YAP interaction. Furthermore, ANXA2 directly as-
sociates with YAP at AJs in response to increased cell density (29,
55). Treatment with PY-60 releases the ANXA2-YAP complex from the

Figure 6. Yes-associated protein (YAP) modulates the differentiation and proliferation states of patterned keratinocytes.
(A) Immunofluorescent images of keratinocytes on day 4. Hoechst 33342 (blue). YAP, a cell density-sensitive molecule (green). The red and yellow squares indicate a
dense area and a sparse area, respectively. Scale bar: 50 μm. (B) Comparison of the nuclear YAP intensity between keratinocytes in low and high cell density areas. The
nuclear YAP intensity was quantified using the nuclear and cytosol intensity ratio. N = 6 for each group. (C) Immunofluorescent images of patterned keratinocytes in a high-
or a low-density area. Hoechst 33342 (blue). ANKRD1, a YAP downstream molecule (green). Scale bar: 50 μm. (D) Comparison of the nuclear ANKRD1 intensity between
keratinocytes in high and low cell density areas. The nuclear ANKRD1 intensity was quantified using the nuclear and cytosol intensity ratio. N = 6 for each group.
(E) Immunofluorescent images of keratinocytes with or without PY-60, a YAP activator. Hoechst 33342 (blue); KRT14 (green); KRT10 (magenta). Scale bar: 300 μm. (F) KRT10+
areas per low power field of immunofluorescent images for keratinocytes with or without PY-60. N = 6 for each group. (G) Immunofluorescent images of keratinocytes
with or without XAV939, a tankyrase inhibitor. Hoechst 33342 (blue); PH3 (green). Scale bar: 300 μm. (H) Numbers of PH3-positive (PH3+) cells with or without XAV939. N = 8
for each group. All data are presented as mean values. Data for (B, D, F, H) were analyzed with two-tailed Mann–Whitney U tests. ns, not significant. *P < 0.05. **P < 0.01.
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cell membrane, activating YAP-driven transcription (29). In CAIP, PY-
60 treatment induced nuclear localization of YAP and ANKRD1 in
keratinocytes of high cell density areas (Fig S11A–D), indicating that
ANXA2 binds to YAP and inhibits its transcriptional activities. Of
note, XAV939 and PY-60 also altered the keratinocyte patterning
itself (Fig S11E, F, K, and L), which may be explained by the fact that
AJ-associated Hippo-YAP pathway components such as NF2 and
ANXA2 are required for the formation of AJs (55, 56). As the Hippo-
YAP pathway is a key regulator for epidermal stratification (23, 57,
58), our CAIP model may deepen our understanding of the Hippo-
YAP pathway in epidermal stratification.

Serum starvation induces quiescence in vitro (59) and has been
used for cultured keratinocytes (60, 61, 62), fibroblasts (63, 64), and
other cell types (65, 66, 67). By contrast, serum stimulation

enhances keratinocyte migration (60, 68, 69). Hence, CAIP in serum-
starved conditions might reflect the resting state of the epidermis.
However, in our study, CAIP and serum starvation also supported
epithelial stratification, which could simulate epidermal morpho-
genesis or the final stage of wound healing in the epidermis. These
data indicate that CAIP modulation might help finalize wound
closure by enhancing epidermal stratification once the wound gap
is filled with one layer of epithelial cells. In line with this, evidence
indicates that hyperhydration or excessive extracellular fluid de-
lays wound closure in clinical settings (70, 71). Theoretically, the
serum-starved culture, which reduces the MC frequency, could be
beneficial to other epidermis or skin organoid cultures to obtain
thicker epidermal sheets efficiently and economically. Our findings
may also have applications in regenerative medicine, such as the
preparation of epidermal grafts.

As the mathematical modeling indicated patterning without the
need for stratification steps, it is possible that CAIP is not a direct
consequence of keratinocyte stratification. However, our experi-
mental approach did not distinguish whether CAIP occurred before,
or concurrently with, cell stratification, which represents a limi-
tation of our study. The model’s failure to incorporate cell strati-
fication adds another limitation. Moreover, our study was not able
to identify what molecules in the serum were responsible for
suppressing CAIP because the serum is a complex mixture of
biomolecules, including hormones, growth factors, vitamins, and
other nutrients. Further research is required to address these
issues.

In conclusion, our study uncovered the pivotal role of cell–cell
adhesion in modulating epithelial cell patterning. Our CAIP
model deepens our mechanistic insight into cellular organiza-
tion and its consequences for cell fate decisions and epithelial
stratification.

Materials and Methods

Cells

HaCaT cells (14) were originally obtained from Dr. Norbert Fusse-
nig’s lab (German Cancer Research Center), and the cell identity was
confirmed with the Cell Culture STR profile (Biologica). Single-cell-
cloned HaCaT cells with stable Cas9 expression were established
previously (15). Briefly, HaCaT cells were transfected with pLenti-
EF1a-Cas9-Puro lentiviral particles (Applied Biological Materials)
and selected with 1 μg/ml puromycin (Thermo Fisher Scientific).
Thereafter, 50 cells were seeded into a 10 cm dish, and the single-
cell clone was obtained with Scienceware cloning discs (Sigma-
Aldrich) dipped in trypsin (Wako). To establish CTNNA1 HaCaT cells,
crRNA was acquired from predesigned Alt-R CRISPR-Cas9 guide RNA
(Integrated DNA Technologies); the crRNA contained the TGAAGC-
GAGGCAACATGGTT sequence with the CGG PAM sequence targeting
exon 4 of the CTNNA1 genomic sequence (NG_047029.1). For
transfection, HaCaT cells stably expressing Cas9 were seeded onto a
24-well plate with a concentration of 300 × 105 cells/well. 1 d after
seeding, HaCaT cells were transfected with a 10 nM duplex of crRNA
and Alt-R CRISPR-Cas9 tracrRNA tagged with ATTO 550 (Integrated
DNA Technologies) using Lipofectamine RNAiMAX Transfection

Figure 7. Air-liquid interface in vitro and ex vivo cultures under serum-starved
and serum-rich conditions.
(A) Hematoxylin and eosin (H&E) staining of air-liquid interface HaCaT
keratinocyte cultures in serum-starved and serum-rich conditions. Scale bar:
60 μm. (B) Quantification of epidermal thickness in the air-liquid interface
cultures under serum-starved and serum-rich conditions. N = 11 for each group.
(C) H&E staining of WT and CTNNA1-KO air-liquid interface cultures. Scale bar:
100 μm. (D) Schematic diagram of ex vivo culture experiment using P1 neonate
back skin with suction blister wound under serum-starved and serum-rich
conditions. (E) H&E staining of ex vivo cultured tissue. Scale bar: 60 μm.
(F) Quantified re-stratified epidermal thickness in the ex vivo culture. N = 6 for
each group. All data are presented as mean values and were analyzed with two-
tailed Mann–Whitney U tests. *P < 0.05.
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Reagent (Thermo Fisher Scientific) according to the manufacturer’s
instructions. Thereafter, the single-cell clone was obtained by
seeding onto a 96-well plate. The truncations on the CTNNA1 gene
caused by CRISPR/Cas9 were confirmed by Sanger sequencing, and
the knockout of the CTNNA1 gene was examined by Western blot. All
cell stocks were routinely tested for mycoplasma contamination,
and all tests were negative.

Cell culture

HaCaT cells were maintained in DMEM with 4.5 g/liter glucose and
L-glutamine (Nacalai Tesque) supplemented with 10% FBS
(HyClone) and 1× antibiotic–antimycotic mixed stock solution
(Nacalai Tesque) at 37°C in humidified air with 5% CO2. For the live
imaging with confocal microscopy, 4.5 g/liter glucose DMEMwithout
phenol red (Nacalai Tesque) supplemented with L-glutamine, 10%
FBS, and 1x antibiotic–antimycotic mixed stock solution was used
for cell culture. Low-calcium-condition experiments used calcium-
free 4.5 g/liter glucose DMEM with or without phenol red (Nacalai
Tesque) supplemented with L-glutamine, 10% calcium-free FBS,
and 1× antibiotic-antimycotic mixed stock solution. To prepare
calcium-free FBS, 5 g Chelex 100 (Bio-Rad) was added to 100 ml FBS
with shaking for 1 h at RT, followed by filtration with a 0.22 μm
Stericup-GP Express Plus PES (Millipore).

Pattern formation of cultured keratinocytes

HaCaT cells were seeded at 5.0 × 105 cells/ml onto μ-Slide 8 Well
Chambers (ibidi) using 250 μl of suspension per well or onto
a μ-Dish 35 mm dish (ibidi) using 2 ml of suspension per dish. The
culture medium was replenished every 2 d with equivalent volumes
unless otherwise specified. The keratinocyte pattern was observed
4 d after seeding.

Inhibitor treatments

HaCaT cells were treated with PY-60 (Axon Medchem) at a con-
centration of 10 μM when the culture medium was replenished
2 d after seeding. The cells were observed 2 d after treatment.
E-cadherin-blocking antibody (SHE78-7; Takara), blebbistatin
(Cayman Chemical), or XAV939 (Fujifilm) were used at a concen-
tration of 30 μg/ml, 12.5, or 3 μM, respectively, 3 d after seeding. The
cells were evaluated 4 d after seeding.

Air-liquid interface epidermal culture

ThinCert 12-well cell culture inserts with 0.4 μm pores (Greiner Bio-
One) were placed on Falcon 12-well cell culture plates (Corning)
and precoated with CTS CELLStart Substrate (Thermo Fisher Sci-
entific) in a 1:50 dilution of Dulbecco’s phosphate-buffered saline
(PBS) with MgCl2 and CaCl2 (Sigma-Aldrich) overnight. Subsequently,
1 ml of culture media was added into the well, and 1ml of HaCaT cell
suspension at a concentration of 2.5 × 105 cells/ml was seeded onto
the inserts. In the serum-starved condition, the culture medium for
the insert and the well was replenished 2 d after seeding. In the
serum-rich condition, the medium was replenished every day. For

placing the inserts under an air-liquid interface culture, Extra Thick
Blot Filter Paper (Bio-Rad) was cut to 2.8 cm × 2.8 cm with two 12 mm
holes. The filter paper was placed into a well of Falcon six-well deep
well plates (Corning), which was filled with 11.5 ml of the cell culture
medium. 4 d after seeding, the culture medium within the insert was
removed in both conditions, and the inserts were placed on the filter
papers. The culture medium in the well was replenished every 3 d for
the serum-starved condition and every day for the serum-rich con-
dition for 14 d after seeding. Samples were collected by excising the
membranes from the inserts and were fixed with formalin.

Ex vivo skin culture

Suction blisters were generated on neonatal C57BL/6murine dorsal
skin (P1) using a syringe and connector tubes (31). The back skin
with the suction blister was excised and cultured with DMEM with
4.5 g/liter glucose and L-glutamine supplemented with 10% FBS
and 1x antibiotic–antimycotic mixed stock solution. In the serum-
starved condition, the culture medium was changed on the 2nd d of
cultivation. In the serum-rich condition, the medium was replen-
ished every day. Samples were fixed with formalin on the 4th d of
cultivation.

Live cell imaging

HaCaT cells at a concentration of 5.0 × 105 cells/ml were seeded
onto μ-Slide eight well chambers (250 μl per well) and 3.5 cm plastic
dishes (2 ml per dish). HaCaT cells were cultured as indicated in the
figures, and live cell imaging was carried out with a BZ-9000 or BZ-
X800 microscope (Keyence) equipped with an incubation chamber
maintained at 37°C and 5% CO2.

Autoperfusion system

HaCaT cells with a concentration of 5.0 × 105 cells/ml were seeded
onto 3.5 cm plastic dishes (2 ml per dish). 2 d after seeding, the
culture medium was replenished, and culture dishes were con-
nected to the autoperfusion system. The autoperfusion system
consisted of a micro tube pump system (iCOMES Lab) and 50 ml
conical tubes that supplied the fresh culture medium and dis-
carded the used culture medium. The perfusion rates were
2 ml/2 d for the low perfusion group and 6 ml/2 d for the high
perfusion group, simulating serum-starved and serum-rich condi-
tions, respectively. Samples were fixed with 4% PFA at RT for 10 min.

Mathematical model

Consider a two-dimensional continuous model with cell density
ρ(x,y,t) and negative pressure σ(x,y,t) (the diagonal component of
the stress tensor) created by the accumulation of AJ complexes. The
time evolution of these variables is governed by:

∂ρ
∂t = D1=

2ρ −= ⋅ J + η

∂σ
∂t = D2=

2σ −ασ + βρ
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where J = λρ
�
1 − ρ

ρ*
�
=σ represents the active cell flow because of

force balance, which vanishes when the local cell density reaches
the carrying capacity ρ*. We set ρ* = 3, allowing local squeezing and
overlapping of cells of up to 300%. The variable η accounts for the
random motion of cells. To perform simulations, the two-
dimensional space of size [0, L] × [0, L] was discretized into a
200 × 200 grid. To preserve the total cell volume, the random force at
grid (i,j) was chosen as η(xi,yj,t) =N(ξ i+1,j+ξ i-1,j+ξ i,j+1+ξ i,j-1-4ξ i,j), whereN
is the noise strength and ξ i,j is a Gaussian random variable with
zero mean and unit variance. In this continuous model, the vari-
ation of the cell density ρ corresponds to the cell shape
change, where cells in low-ρ regions are flattened and those in
high-ρ regions are compressed. Our model focuses solely on the
patterning of cell density in the basal layer and does not
consider stratification. The equation for stress (σ) is a natural
extension of a one-dimensional model derived by reference 72, in
which the off-diagonal component of the stress tensor is neglected.
The stress σ is assumed to be proportional to the concentration of
AJs, which accumulates with the rate β as the cell density in-
creases, consistent with the observation that regions of high cell
density form AJs in response to intercellular forces. It also
decays at the rate α. In a spatially homogeneous steady state
(=2σ = 0 and ∂σ/∂t = 0), the second equation reduces to
σ=(β/α)ρ: the stress proportional to the cell density. The time
derivative of σ, which is absent in reference 72, was introduced so
that the system relaxes to this steady state. The resulting model is
a variant of the Keller–Segel system (73). A saturation term in the
active flow in our model ensures that the density remains finite, as
it diverges in the original Keller–Segel system. Although in the
Keller–Segel system the variable σ is interpreted as the con-
centration of a chemoattractant, whose production is propor-
tional to the density ρ, our model was derived without assuming
the existence of chemoattractants, where σ is interpreted as
stress.

For simulations, β was chosen as a control parameter, and the
other parameters were set as follows: L = 200; D1 = 0:5; D2 = 5:0;
α = 1:0; λ = 1:0; and N = 0.5 (for Fig 3) or N2{0.1, 0.5, 1.0} (for Fig S10).
For all simulations, a spatially uniform initial condition ρ(x,y,t) = 1
and σ(x,y,t) = 0 was chosen (which means that cells are confluent in
the system and no AJs are expressed) with the flux-free boundary
condition.

Animals

C57BL/6 mice were purchased from Clea Japan. The Institutional
Review Board of the Hokkaido University Faculty of Medicine and
Graduate School of Medicine approved all animal experiments in
this study.

Histology

For the epidermal thickness analysis, membrane samples from
inserts or ex vivo cultured back skins were fixed with formalin and
embedded in paraffin after dehydration. Thereafter, sectioned
paraffin samples were deparaffinized and stained with hematoxylin
and eosin (H&E). Images were taken with a BZ-9000 microscope,
and the thickness of the epidermis was analyzed by ImageJ/Fiji (74).

Immunofluorescent staining

The cells were cultured on μ-Slide eight well chambers or μ-Dish
35 mm dishes (ibidi). The cells were washed with PBS (Nacalai
Tesque) and fixed with 4% PFA at RT for 10 min. Cells were per-
meabilized with 0.1% or 0.5% Triton X-100 in PBS for 20 min at RT,
followed by blocking with 3% bovine serum albumin in PBS for
30 min. Subsequently, cells were incubated for 1–2 h at RT with the
following primary antibodies: anti-E-cadherin antibody (Cat# 3195,
RRID:AB_2291471, 1:100 dilution; Cell Signaling Technology), anti-α18
antibody (17), anti-PH3 antibody (Cat# 07-554, RRID:AB_11210699, 1:250
dilution; Millipore), anti-α-catenin antibody (Cat# 71-1200, RRID:
AB_2533974, 1:100 dilution; Thermo Fisher Scientific), anti-K14 anti-
body (Cat# MA5-11599, RRID:AB_10982092, 1:100 dilution; Thermo
Fisher Scientific), anti-K10 antibody (Cat# 905404, RRID:AB_2616955, 1:
250 dilution; BioLegend), anti-YAP antibody (Cat# 14710, RRID:
AB_2798583, 1:100 dilution; Cell Signaling Technology), and anti-
ANKRD1 antibody (Cat# 67775-1g, AB_2918540, 1:500 dilution; Pro-
teintech Group). Secondary antibodies, namely goat anti-mouse IgG
Alexa Fluor 546 (Cat# A11003, RRID:AB_2534071, 1:1,000 dilution;
Thermo Fisher Scientific) and goat anti-rabbit IgG Alexa Fluor 488
(A21206, RRID:AB_2535792, 1:1,000 dilution; Thermo Fisher Scientific),
were incubated for 1 h at RT. Cells were washed in PBS 3 times for
5 min. Nuclei were stained with DAPI (Thermo Fisher Scientific),
Hoechst 33342 (Dojindo), or propidium iodide (PI) (Dojindo) at a
concentration of 0.5, 5, or 2 μg/ml, respectively, for 1 h at RT. Photo
images were captured using BZ-9000 (Keyence), FV-1000 (Olympus),
or LSM 710 (Zeiss) imaging systems. Phalloidin-iFluor 555 Reagent
(Cat# ab176756, 1:500 dilution; Abcam) or wheat germagglutinin (WGA)
(Cat# W11263, 1:200 dilution; Thermo Fisher Scientific) were used for
actin staining or membrane staining, respectively, at the time of
primary antibody incubation. After washing with PBS, cells were
observed with an LSM 710 microscope. In the autoperfusion exper-
iment, cells were washed with PBS and stained with 0.5 μg/ml
Hoechst 33342 at RT for 20 min. After PBS washes, images were
taken using a BZ-9000 microscope. To observe the pattern of the 3D
epidermis culture, the fixed membranes were washed with PBS and
stained with 0.5 μg/ml Hoechst 33342 at RT for 1 h. Thereafter, inserts
were washed with PBS and mounted in Fluoromount-G (Thermo
Fisher Scientific). Images were obtained with an LSM 710 microscope.

Western blot

WT or CTNNA1-KO HaCaT cells at a concentration of 1.0 × 106 cells/well
were seededonto six-well plastic plates. 2 d after seeding, we collected
cell lysates using a lysis buffer containing 1% Nonidet P-40 (Nacalai
Tesque), 25 mM Tris–HCl (pH 7.4), 100 mM NaCl, 10 mM ethyl-
enediaminetetraacetic acid, and a 1:100 dilution protease inhibitor
cocktail (P8340; Sigma-Aldrich) on ice for 30 min with shaking. The
whole cell lysates were centrifuged at 15,300g at 4°C for 20 min. Cell
lysate supernatants were denatured with a 5× loading buffer (0.25 M
Tris–HCl; 8% sodiumdodecyl sulfate; 30% glycerol; 0.02%bromophenol
blue; 0.3 M β-mercaptoethanol; pH 6.8). Samples were subjected to
SDS–PAGE using NuPAGE 4 to 12%, Bis-Tris, 1.0–1.5 mm, Mini Protein
Gels (Thermo Fisher Scientific). Proteins separated by SDS–PAGE were
electrophoretically transferred onto PVDF transfer membranes (Bio-
Rad). The membranes were blocked with 2% skim milk and incubated
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with rabbit ant-α-catenin antibodies (Cat# 71-1200, RRID:AB_2533974, 1:
200 dilution; Thermo Fisher Scientific) or rabbit anti-β-tubulin anti-
bodies (Cat# ab6046, RRID:AB_2210370, 1:5,000 dilution; Abcam) in 2%
skim milk at RT for 1 h. After washing with Tris-buffered saline, the
membranes were incubated with a dilution of 1:5,000 peroxidase-
conjugated anti-rabbit IgG antibody (AB_10015282; Jackson Immuno-
Research) in 2% skim milk at RT for 1 h. Signals were visualized by
Clarity Western ECL Substrate (Bio-Rad) and detected with an
ImageQuant LAS 4000 mini camera system (Fujifilm).

RNA-seq

HaCaT cells were seeded into 6 cm plastic dishes at a concentration
of 2.5 × 105/ml or 7.5 × 105/ml. After overnight incubation at 37°C in
humidified 5% CO2, RNA was extracted using the FastGene RNA
Premium Kit (Nippon Genetics) according to the manufacturer’s
instructions. Library preparation and sequencing were performed
by Novogene. Briefly, mRNAwas enriched using oligo(dT) beads. The
mRNA was fragmented randomly by adding a fragmentation buffer,
then the cDNA was synthesized using an mRNA template and a
random hexamer primer, after which a custom second-strand
synthesis buffer (Illumina), dNTPs, Rnase H, and DNA polymerase
I were added to initiate second-strand synthesis. After a series of
terminal repair, A-tailing, and sequencing adaptor ligation, the
double-stranded cDNA library was completed through size selec-
tion and PCR enrichment. After the quality control of the libraries,
the libraries were sequenced by the NovaSeq 6000 system in PE150
mode. Reads were then mapped to hg38 using STAR (v.2.7.3) (75).
Gene expression levels were quantified using RSEM (v.1.3.1) (76).
Read counts were analyzed through integrated differential ex-
pression and pathway analysis (iDEP9.51) (77). Genes with low-level
expression (less than 0.5 counts per million in all samples) were
removed from the analysis. Genes that were differentially
expressed between low-density and high-density conditions were
identified with DESeq2 using a threshold of false discovery rate
of <0.1 and a fold-change of >2 (16). The up-regulated and down-
regulated genes were subjected to enrichment analysis.

Fluorescent intensity analysis

Intensity ratios of YAP and ANRKD1 were calculated using the inten-
sities of the nucleus regions and regions adjacent to the nucleus using
Fiji (74). Each image included three to sixmeasurement spots, and each
plot represents the mean calculated from two to four images. The
intensities of E-cadherin andα-catenin at cell–cell adhesion siteswere
quantified by the line plot function of Fiji (74). Initially, cell–cell ad-
hesion sites were identified using WGA staining. Subsequently, vertical
line profiles were drawn at these sites, and the distance of 0 μm was
set at the peak of each fluorescence intensity plot. The intensities of
α18 were plotted using the same line profile of α-catenin with dis-
tances calibrated according to α-catenin. Ten line profiles per image
were analyzed, and the mean intensity at each distance was calcu-
lated. Representative intensity profiles were depicted as mean ± SEM,
based on data from four images. For comparative analysis of intensity
ratios between high- and low-density areas, mean ratios were cal-
culated as relative values to the intensities in low-density areas,
derived from six independent experiments.

Calculation of pattern index

Grayscale versions for immunofluorescent images of keratinocytes, in
which the nuclei were labeled with Hoechst 33342, were used to
evaluate the inhomogeneity of cell density. The image was binarized
with the threshold value determined from its brightness value his-
togram (i.e., the threshold valuewas defined as the brightness that had
the maximum count and was greater than 0.6 times the average
brightness of the total image). Subsequently, the binarized image was
blurred using a linear filter within a circle with a radius R. Here, R was
set to four pixels, corresponding to ~10 μm, which was nearly the same
as the distance between neighboring cells. It should be noted that the
blurred image was almost uniform if the cells were uniformly dis-
tributed, but it had different values if the cell density changed. Thus,
the standard of the blurred images was calculated and adopted as the
pattern index, in which a greater value indicates a more spatially
inhomogeneous distribution of cells.

Evaluation of characteristic length of the pattern

Grayscale versions for immunofluorescent images of keratinocytes,
in which the nuclei were labeled with Hoechst 33342, were used to
evaluate the characteristic length of the spatial pattern. First, the
images were processed with a band-pass filter with the range of 5 to
200 pixels (~26.5–1,060 μm) so that the large-scale gradient of
brightness because of the inhomogeneous illumination and small-
scale structure below the size of cells would not affect the eval-
uation results. Then, the radial autocorrelation function G(r) was
calculated as

GðrÞ = 1
2π

R 2π

0
gðrcosθ; rsinθÞdθ

where

gðx; yÞ = 1
A
RR ff (x9; y9) −fgff (x + x9; y + y9) − fgdx dy

Here, f(x,y) is the brightness of the processed image at the co-
ordinates (x,y), f is its averaged brightness, and A is its area. The
value of r at the first peak of G(r) in r > 0 corresponds to the
characteristic length of the pattern; that is, the distance between
the neighboring regions with high cell densities.

Statistical analysis

Statistical analyses were performed with GraphPad Prism 9
(GraphPad Software). P-values were determined with two-tailed
Mann–Whitney U tests, Kruskal–Wallis tests followed by Dunn’s
multiple comparison test, or Wilcoxon matched-pairs signed rank
test. P-values of < 0.05 were considered statistically significant.

Data Availability

The datasets produced in this study are available in the following
databases: RNA-Seq data: Gene Expression Omnibus GSE247733.
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