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Abstract

Drosophila melanogaster is a popular model organism to elucidate the molecular mechanisms 

that underlie the structure and function of the eye as well as the causes of retinopathies, aging, 

light-induced damage, or dietary deficiencies. Large-scale screens have isolated genes whose 

mutation causes morphological and functional ocular defects, which led to the discovery of key 

components of the phototransduction cascade. However, the proteome of the Drosophila eye 

is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins, including the 

absolute (molar) quantities of 43 proteins in the eye of adult male Drosophila melanogaster reared 

on standard laboratory food. This work provides a generic and expandable resource for further 

genetic, pharmacological, and dietary studies.

Introduction

Drosophila melanogaster is an established model organism to elucidate the molecular 

mechanisms that underlie the structure and function of the eye and how their disruption 

causes retinopathies (Colley, 2012; Cook et al., 2011; Gaspar et al., 2019; Kumar, 2012; 

Treisman, 2013; Wang & Montell, 2007). The adult compound eye is a highly repetitive 

structure consisting of about 800 units that are called ommatidia. Each ommatidium contains 

eight photoreceptor neurons (R1-R8) that express different light-sensing Rhodopsin’s and 

phototransduction proteins in specialized light-sensing compartments (Hardie & Juusola, 

2015; Poupault et al., 2021; Rister et al., 2013). The expression of these proteins depends on 

vitamin A (Dewett, Lam-Kamath, et al., 2021; Kumar et al., 2022). The photoreceptors are 

surrounded by accessory cells that include cone, pigment, and mechanosensory bristle cells 

(Ready, 1989).
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The powerful genetic toolkit of Drosophila allows the generation of loss-of-function clones 

specifically in the eye (Newsome et al., 2000; Stowers & Schwarz, 1999; Weasner et 

al., 2017) and large-scale screens in Drosophila identified genes whose mutation causes 

morphological and functional ocular defects (Harvey et al., 2003; Karim et al., 1996; Pak, 

2010; Senturk & Bellen, 2018). This approach led to the discovery of signaling pathways 

that mediate major developmental processes and phototransduction (Yau & Hardie, 2009). 

For instance, a crucial discovery was the identification of light-activated Transient Receptor 

Potential (TRP) channels (Montell & Rubin, 1989) that founded a conserved superfamily of 

cation channels with diverse functions ranging from mediating the responses to various 

sensory stimuli (Montell, 2011) to immune responses (Khalil et al., 2018). Moreover, 

TRP channels have been implicated in various human diseases including cancer and 

neurodegenerative disorders (Minke, 2002; Yue & Xu, 2021). Lastly, the Drosophila eye 

has also been used as a model to investigate the impacts of ageing (Hall et al., 2017) and 

environmental stresses such as light-induced damage (Hall et al., 2018; Moehlman et al., 

2018; Stark & Carlson, 1984) or nutrient-deficient diets (Kumar et al., 2022; Lee et al., 

1996; Randall et al., 2015).

Despite these important discoveries, the Drosophila eye proteome remains poorly 

characterized. Several resources for gene expression in the adult eye are available, such 

as transcriptomes of whole eyes, isolated photoreceptor nuclei, or single cells (Hall et al., 

2017; Huang & Ryoo, 2021; Leader et al., 2018; Stegeman et al., 2018; Yeung et al., 2022), 

but global transcript levels often poorly correlate with protein expression levels (Bonaldi et 

al., 2008; Buccitelli & Selbach, 2020; Liu et al., 2016). Yet, there are very few resources for 

the ocular proteome or the molar abundances of proteins that are expressed in the eye (Hall 

et al., 2021; Kumar et al., 2022; Raghuraman et al., 2020).

Hall et al. (Hall et al., 2021) employed tandem mass tag (TMT) quantification for 

proteomics analysis of male Drosophila flies expressing a nuclear membrane-localized GFP 

tag (Rh1-Gal4>GFPKASH) in R1–R6 photoreceptors. In other studies, by the same group, 

this genotype has been used for transcriptome and chromatin profiling of photoreceptors 

during aging and under environmental stress conditions (Hall et al., 2018; Hall et al., 2017; 

Jauregui-Lozano et al., 2021).

In two previous studies, the targeted absolute (molar) quantification of selected components 

of the Drosophila phototransduction machinery was performed with the MS Western 

method in combination with full-proteome profiling by GeLC-MS/MS: Raghuraman et al. 

(Raghuraman et al., 2020) applied MS Western to study the impacts of specific crumbs 
(crb) mutations damaging the light-sensing compartments of the photoreceptors on the molar 

abundances of several photoreceptor proteins in the Drosophila eye. The values determined 

by MS Western corroborated the expected molar abundances of mutant Crb proteins and 

reflected the difference in severity of the photoreceptor defects. In another study, Kumar et 

al. (Kumar et al., 2022), used MS Western and GeLC-MS/MS to quantify the proteome-wide 

response of the Drosophila eye to vitamin A deprivation using semi-synthetic lipid-depleted 

food media. These two studies established MS Westen as a robust and reproducible absolute 

quantification method, while GeLC-MS/MS delivered good proteome coverage including a 

large number of membrane proteins. Building upon the previous two studies, the current 
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manuscript provides a complete catalogue of the total eye proteome of wild type Drosophila 
flies raised on standard lab food. The new study also provides the absolute quantities of 

selected proteins that are important for maintaining the structure and function of the normal 

eye.

Here, we used GeLC-MS/MS to quantify 3516 proteins in the adult Drosophila eye; 

approximately 30% of them are membrane-related proteins and 16% have at least one 

transmembrane domain. We also quantified the absolute (molar) abundances of a set of 

proteins that is critical for phototransduction and photoreceptor morphology. Taken together, 

we provide a quantitative and expandable resource for further genetic, pharmacological, and 

dietary studies in the Drosophila eye.

Results and Discussion

For cataloging the proteome of the Drosophila melanogaster, we followed the experimental 

workflow that is shown in Figure 1. Drosophila melanogaster was raised from the embryonic 

to the adult stage on ‘standard’ lab food (SF) under a 12h light/12h dark cycle at 25°C 

(for details, see Materials and Methods). Three to four days-old male flies were collected 

and used for all the experiments described below. Raising Drosophila melanogaster on 

nutrient-rich SF resulted in a normal morphology of the compound eye (Figure 2A) and wild 

type ommatidia with six rhabdomeres of the rod-equivalent outer rhabdomeres arranged in a 

trapezoid shape around the rhabdomeres of the cone-equivalent inner photoreceptors (Figure 

2B). We also detected a wild-type expression pattern of the major Rhodopsin Rh1 in the 

rhabdomeres of outer photoreceptors (Figure 2B), which suggests that SF supports wild type 

visual pigment formation and is vitamin A-sufficient (Dewett, Labaf, et al., 2021; Kumar et 

al., 2022).

To characterize the adult eye proteome, we analyzed protein extracts by label-free GeLC-

MS/MS proteomics. The analysis provides relative abundance of a total of 3516 proteins 

(3017 of them were identified with at least two peptides) (Figure 2C); the complete list 

of quantified proteins is provided in Supplementary Dataset S1. According to FlyBase 

(FB2022_02, released March 29, 2022), 2872 proteins had not been previously attributed 

to eye tissue (Figure 2D and Supplementary Dataset S2). Approximately 30% of all 

quantified proteins (910 from 3017) were membrane-related and 16% of them (502 from 

3017) had at least one transmembrane domain (Figure 2C). To rank the proteins by their 

abundance , we used intensity-based absolute quantification (iBAQ) (Schwanhausser et al., 

2011); based on the iBAQ value, we performed functional annotation and classification 

by Gene Ontology (GO) enrichment analysis. We obtained 34 GO terms, of which 

cellular metabolic, multicellular organismal, and biosynthetic process represented the major 

biological processes (Figure 2E). A subsequent GO enrichment analysis of the membrane 

proteins assigned them to 20 cellular components (Figure 2E).

Next, we used MS Western method, which allows the multiplexed, antibody-free and label-

free molar quantification of user-selected proteins (Kumar et al., 2017), to quantify the 

absolute (molar) abundances of proteins that play crucial roles in photoreceptor structure 

and function (Figure 2F and Supplementary Dataset S3). We found that the visual pigment 
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Rhodopsin Rh1 (NinaE) was the most abundant phototransduction-related protein (~409 

fmoles/eye). The next three most abundant proteins were all involved in the termination 

of the light response (Figure 2F): the major visual arrestin Arr2 (~350 fmoles/eye), the 

unconventional myosin NinaC (210 fmoles/eye), and the other visual arrestin Arr1 (~185 

fmoles/eye). Phototransduction proteins that are activated by Rh1 (Yau & Hardie, 2009) 

were about 10-fold less abundant than Rh1 (Figure 2F): the G protein alpha subunit 

Galphaq (~76 fmoles/eye), the phospholipase C NorpA (~45 fmoles/eye), and the major 

light-sensitive cation channel Trp (~36 fmoles/eye).

We also used MS Western to compare the molar abundances of proteins that are required for 

photoreceptor morphology and maintenance (Gurudev et al., 2014). The molar abundances 

of the structural proteins were consistent with their spatial expression pattern (broad or 

restricted) in the eye: the cell adhesion protein Chaoptin (Chp) (~212 fmoles/eye), which is 

required for the adhesion of the rhabdomeric microvilli and is broadly expressed throughout 

their perimeter (Reinke et al., 1988; Zelhof et al., 2006), was the most abundant (Figure 2F). 

Much less abundant were two structural proteins with more restricted expression patterns 

that are critical for rhabdomere separation (Nie et al., 2012), the secreted glycoprotein 

Eyes shut (~31 fmoles/eye) that is localized to the interrhabdomeral space (Eys, also called 

Spacemaker / Spam) (Zelhof et al., 2006) and the transmembrane protein Prominin (Prom) 

(~10 fmoles/eye) that is spatially restricted to the stalk membrane of the rhabdomeres as 

well as the tips of the microvilli (Zelhof et al., 2006). The transmembrane protein Crumbs 

(Crb) (~2 fmoles/eye) that is essential for rhabdomere morphology was the least abundant 

morphology related protein, which is consistent with its even more restricted expression in 

the stalk membrane (Tepass et al., 1990).

Lastly, we quantified the molar abundances of the three Actins Act5C, Act87E, and Act57B 

that are expressed in the adult eye (Raghuraman et al., 2020). Act5C was the most 

abundant actin (~573 fmoles/eye) and expressed at even higher levels than Rh1. The molar 

abundances of Act87E and Act57B were about half of those of Act5C, ~260 and ~262 

fmoles/eye, respectively (Figure 2F). Lastly, the scaffolding protein and Crumbs complex 

member Veli/Lin-7 (~4 fmoles/eye) (Bachmann et al., 2008) and the actin depolymerization 

factor Twinstar (a homolog of Cofilin/ADF) (~73 fmoles/eye), showed significantly lower 

absolute abundances (Figure 2F).

Conclusion

Our study provides a comprehensive catalogue of the proteome of the adult Drosophila 
melanogaster eye. We envision that these data will be a useful resource for the scientific 

community that uses the Drosophila eye as a model to study visual signaling or the genetic 

and environmental stresses that cause various retinopathies.

Material and Methods

Drosophila stock keeping

The Drosophila melanogaster wild-type strain Oregon R was reared under a 12h light/12h 

dark cycle at 25°C. The flies were raised on ‘standard’ lab food (SF), which contained per 
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liter: 8g agar, 18g brewer’s yeast, 10g soybean, 22g molasses, 80g cornmeal, 80g malt, 

6.3ml propionic acid, and 1.5g Nipagin.

Drosophila compound eye images

Adult male Drosophila melanogaster was immobilized with CO2 and embedded in a liquid 

agarose gel as previously described (Kumar et al., 2022). After solidification of the gel, the 

petri dish was placed under a Stemi 508 Trinoc microscope (Zeiss model #4350649030), 

and the fly head was adjusted with a forcep such that one compound eye faced the lens of 

the microscope. Imaging was performed with an Axiocam 208 HD/4k color camera (Zeiss 

model #4265709000) that was set to auto exposure and auto white balance. Pictures were 

processed with Fiji, Adobe Photoshop 2020, and Adobe Illustrator 2020 software.

Confocal microscopy and immunohistochemistry of Drosophila photoreceptors

We dissected retinas of four days old male flies as previously described (Hsiao et al., 

2012). Briefly, we fixed the retinas in 3.8% formaldehyde solution before removing brain 

tissue and head cuticle. Retinas were incubated overnight in the primary antibody (mouse 

anti-Rh1 4C5, from Developmental Studies Hybridoma Bank, University of Iowa) diluted 

1:10 in PBST (PBS with added 0.3% Triton-X, Sigma) and then washed three times 

with PBST. Retinas were then incubated overnight in secondary antibody diluted 1:800 

in PBST (Alexa Fluor 647-conjugated raised in donkey, Invitrogen) and Alexa Fluor 488-

conjugated Phalloidin (1:100, Invitrogen) and then washed three times with PBST. Retinas 

were mounted on a bridge slide using SlowFade (Molecular Probes) and imaged with a 

Zeiss LSM 8 confocal microscope. Raw images were processed with Fiji (https://imagej.net/

software/fiji/) and then further processed with Adobe Photoshop and Adobe Illustrator 

software.

Protein extraction and GeLC-MS/MS analysis

The compound eyes (n=40) were dissected (including the lamina neuropil) from three to 

four days old male flies raised on SF and placed in lysis buffer containing 150 mM NaCl, 1 

mM EDTA, 50 mM Tris-HCl (pH7.5), 1 tablet Roche protease inhibitors, 0.2% w/v CHAPS, 

0.1% w/v OGP (Octyl β --D-glucopyranoside), 0.7% v/v triton X-100, 0.25 μg/mL DNase, 

and RNase. The samples were immediately snap frozen using liquid nitrogen and stored at 

−80°C or further processed. The eyes were homogenized and to the supernatant an equal 

volume of 2x SDS Laemmli sample buffer (SERVA Electrophoresis GmbH, Heidelberg, 

Germany) was added. The samples were heated at 80°C for 15 minutes and loaded on 

4-20% gradient one dimensional SDS polyacrylamide gel. The gel slab was stained with 

Coomassie Brilliant Blue. Each gel lane was cut into six gel slices, and to enable the 

quantification by MS Western, each gel slice was co-digested with heavy isotope labeled 

chimeric protein standard (CP) and gel band containing 1pmol of Bovine Serum Albumin 

(BSA) standard. The MS Western method was used as described previously (Kumar et al., 

2017). Briefly, the sequence of 265 kDa chimeric protein (CP) standard was designed in-
silico by concatenating sequences of 197 unique peptides from 43 fly proteins together with 

reference peptides from glycogen phosphorylase and from BSA. The corresponding DNA 

sequence was synthetized, cloned into the expression vector, and expressed in a ΔLysΔArg-

dual auxotrophic strain of E. coli in media supplemented with 15N7, 13C6-Arginine, and 
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13C6 –Lysine. An aliquot of E. coli extract was subjected to 1D SDS PAGE and the protein 

band corresponding to the full molecular weight of the CP was excised and co-digested 

with gels slabs containing the targeted Drosophila proteins. The list of target proteins and 

the corresponding peptides contained in the CP are provided in Supplementary Table 1. 

In-gel digestion was carried out as previously described (Shevchenko et al., 2006). Briefly, 

upon electrophoresis the gel was rinsed with water, stained with Coomassie Brilliant Blue 

R-250 for 10 minutes at RT, and then destained with destaining solution (Water: Methanol: 

Acetic acid, 50:40:10 v/v/v). The gel slices were further cut into small pieces (~1 mm size) 

and transferred into 1.5 ml LoBind Eppendorf tubes. They were destained by acetonitrile 

(ACN) / water, and proteins reduced with 10 mM dithiothreitol at 56°C for 45 min and 

alkylated with 55mM Iodoacetamide for 30 minutes in dark at room temperature. The 

reduced and alkylated gel pieces were washed with water / ACN and finally shrunk with 

ACN, ice-cold trypsin (10ng/μl) was added to cover the shrunk gel pieces and after 1hr of 

incubation on ice, excess trypsin (if any) was discarded. The gel pieces were then covered 

with 10mM NH4HCO3 and incubated overnight at 37°C. The tryptic peptides were extracted 

using water/ACN/ formic acid (FA), dried in a vacuum centrifuge, and stored at −20°C until 

use. The tryptic peptides were recovered in 5% aqueous FA and 5 μl were injected using an 

autosampler into a Dionex Ultimate 3000 nano-HPLC system, equipped with a 300 μm i.d. × 

5 mm trap column and a 75 μm × 15 cm Acclaim PepMap100 C18 separation column. 0.1% 

FA in water and ACN were used as solvent A and B, respectively. The samples were loaded 

on the trap column for 5 min with solvent A at a flow of 20 μL/min. The trap column was 

then switched online to the separation column, and the flow rate was set to 200nL/min. The 

peptides were fractionated using 180 min elution program: a linear gradient of 0% to 30% 

B delivered in 145 min and then B% was increased to 100% within 10 min and maintained 

for another 5 min, dropped to 0% in 10 min, and maintained for another 10 min. Mass 

spectra were acquired using a Q Exactive HF mass spectrometer (Thermo Fisher Scientific, 

Bremen, Germany). The Data Dependent Acquisition (DDA) settings used for are provided 

in Supplementary Table S2.

Data processing for protein identification and quantification

Mascot v2.2.04 (Matrix Science, London, UK) was used for peptide identifications against 

the custom-made database containing the sequence of the target protein, to which sequences 

of human keratins and porcine trypsin were added. For eye proteome analysis, the 

Drosophila reference proteome database from UniProt was used. The database searches were 

performed with the following mascot settings: precursor mass tolerance of 5 ppm; fragment 

mass tolerance 0.03 Da; fixed modification: carbamidomethyl (C); variable modifications: 

acetyl (protein N-terminus), oxidation (M); Label: 13C (6) (K), Label: 13C (6) 15N (4) (R), 

2 missed cleavages were allowed. Progenesis LC-MS v4.1 (Nonlinear dynamics, UK) was 

used for the peptide feature extraction and the raw abundance of identified peptide was used 

for absolute quantification. MaxQuant v1.5.5.1 and Perseus v1.5.5.3 were used for label-free 

quantification and subsequent statistical analysis. MaxQuant analysis was done with default 

settings.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Experimental workflow for cataloging the proteome of the Drosophila melanogaster 
compound eye.
Schematics were created with BioRender.
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Figure 2: Eye structure and proteome of wild-type Drosophila melanogaster.
(A) Side view of the compound eye of a male wild-type fly that was raised on ‘standard’ 

lab food (SF). Scale bar, 10 μm. (B) Adult retina confocal cross-sections of male wild 

type fly raised on SF. Seven F actin rich (Phalloidin, green) rhabdomeres are visible in 

each unit eye; Rh1 (blue inset) is expressed in the rhabdomeres of ‘outer’ photoreceptors 

and Rh6 (red) in the rhabdomeres of ‘inner’ photoreceptors. Scale bars, 10 μm (insets, 

5 μm). (C) Features of eye proteome composition. (D) Protein-coding genes identified in 

this study (blue) compared with previously annotated ‘eye’-related genes in FlyBase (red; 
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from www.flybase.org). (E) GO enrichment analysis of ocular proteins. (F) MS Western 

quantification of the absolute (molar) abundances of proteins that play a major role in 

photoreceptor morphology and phototransduction.
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