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Summary
High-throughput genotyping arrays have provided a cost-effective, reliable and interoperable

system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including

our 35K Wheat Breeder’s array and the Illumina 90K array were designed based on a limited

amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent

progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst

technological improvements have allowed us to fit significantly more probes onto a 384-well

format Axiom array than previously possible. Here we describe a novel Axiom genotyping array,

the ‘Triticum aestivum Next Generation’ array (TaNG), largely derived from whole genome skim

sequencing of 204 elite wheat lines and 111 wheat landraces taken from the Watkins ‘Core

Collection’. We used a novel haplotype optimization approach to select SNPs with the highest

combined varietal discrimination and a design iteration step to test and replace SNPs which failed

to convert to reliable markers. The final design with 43 372 SNPs contains a combination of

haplotype-optimized novel SNPs and legacy cross-platform markers. We show that this design

has an improved distribution of SNPs compared to previous arrays and can be used to generate

genetic maps with a significantly higher number of distinct bins than our previous array. We also

demonstrate the improved performance of TaNGv1.1 for Genome-wide association studies

(GWAS) and its utility for Copy Number Variation (CNV) analysis. The array is commercially

available with supporting marker annotations and initial genotyping results freely available.

Introduction

Single Nucleotide Polymorphism genotyping arrays (SNP arrays)

play an important role in advancing studies of genetic variation in

both animal (Chen et al., 2014a) and plant populations (Bassil

et al., 2015; Koning-Boucoiran et al., 2015; van Geest et al.,

2017). They allow the identification, and analysis of up to

hundreds of thousands of SNPs in a single assay providing a

high-throughput and cost-effective way to analyse genetic

diversity. As such, they have been widely used to generate

genetic linkage maps, study evolutionary relationships, unravel

functional genomics and support conservation efforts. They have

also proved to be highly valuable in breeding programmes, being

used for Genomic Selection (Gebremedhin et al., 2024; Kang

et al., 2023) to enable prediction and evaluation of quantitative

traits, for marker assisted selection (MAS) (Arruda et al., 2016;

Thomson, 2014), genome-wide association studies (GWAS)

(Balagu�e-Dob�on et al., 2022; McCouch et al., 2016; Negro

et al., 2019; Yu et al., 2023) and the mapping of QTL (Stadlmeir

et al., 2018; Xu et al., 2017). Their power and utility are

evidenced by the large number of arrays available for crop species

(strawberry – Verma et al., 2017; rose – Koning-Boucoiran

et al., 2015; chrysanthemum – van Geest et al., 2017; potato –
Vos et al., 2015; rice – Chen et al., 2014b; Daware et al., 2023;

Kim et al., 2022; maize – Unterseer et al., 2014).

Genotyping arrays play a critical role in the genotyping of

hexaploid bread wheat allowing researchers to rapidly screen

wheat varieties, identify genetic variants associated with impor-

tant traits and develop markers for use in breeding programmes.

For wheat, several SNP arrays have been developed (Allen et al.,

2017; Rimbert et al., 2018; Soleimani et al., 2020; Sun

et al., 2020; Wang et al., 2014; Winfield et al., 2016). These

arrays contain a large number of SNPs and have been

demonstrated to be effective tools for linkage analysis, QTL

mapping of important traits and genome-wide association

analysis (Allen et al., 2017; Bourke et al., 2018; Vukosavljev

et al., 2016).

However, previously developed genotyping arrays for wheat

suffer from uneven marker distribution and marker redundancy

due to linkage disequilibrium (LD). Uneven marker distribution
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means that regions of the genome being over- or underrepre-

sented. This can lead to bias in the results and limit the ability to

accurately detect genetic variants in certain regions of the

genome. This is particularly problematic for bread wheat, which

has a large and complex hexaploid genome with significant

structural variation. In addition to these technical limitations,

older genotyping arrays are also limited by the genetic diversity of

the populations used to develop them. Bread wheat is a highly

diverse crop with significant genetic variation both between and

within different populations. Therefore, genotyping arrays

developed using a limited set of wheat lines may not capture

the full range of genetic diversity present in the crop. As a

consequence of these limitations, scientists and breeders have

called for a new generation of wheat genotyping arrays that

overcome these technical and biological challenges, provide a

more comprehensive view of the genome and capture the full

range of genetic diversity present in bread wheat’s pangenome.

Here, we describe the development of a new SNP genotyping

array for wheat, the TaNG Array, that has been designed to

overcome several of these issues and, thus, provide a more

comprehensive coverage of the genome than previous versions.

Results

Marker testing

The SNP markers selected for inclusion on the array were from

skim sequence data from 315 wheat accessions (204 elites and

111 landraces – Data S1) and from existing genotyping arrays (see

Methods). Markers taken from the AxiomTM Wheat HD Genotyp-

ing Array (Winfield et al., 2016) – hereafter referred to as the

820K AxiomTM Wheat HD Genotyping Array – and the AxiomTM

35K Wheat Breeder’s Genotyping Array (Allen et al., 2017) –
hereafter referred to as the 35K Array – were entirely exonic,

whilst those derived from sequence were intronic, exonic and

intergenic. As a panel, the markers were evenly distributed

throughout the genome based on positions relative to IWGSC

RefSeq v1.0 (International Wheat Genome Sequencing Consor-

tium (IWGSC), 2018).

The initial array design (v1.0) was screened using a standard

collection of 182 elite cultivars and landraces (Data S4). The

sample call rate ranged from 94.5% to 98.8%. Based on their

cluster patterns, probes were classified into the following six

categories: Poly High Resolution; No Minor Homozygous;

Off-Target Variant; Call Rate Below Threshold; Monomorphic

High Resolution and Other (Figure 1; Table 1). The first three

categories are considered most useful as they generate accurate

polymorphic genotype calls. Of the 44 258 probes on the initial

array, 23 068 (52%) fell into the three useful categories (Table 1).

Approximately 28% were monomorphic; that is, they generated

a strong signal to indicate the target sequence was present, but

no polymorphism was detected. Of these monomorphic markers,

93% were derived from skim sequence data rather than sourced

from existing genotyping arrays, indicating that these SNPs failed

to convert into useful Axiom markers.

Of the accessions used for screening TaNG Array v1.0, 144

were also present in the original skim sequencing panel (Data S1)

thus allowing direct comparison to be made between genotype

calls on the two platforms. Given the sequencing-derived

genotypes for the 144 varieties, only four of the 12 490 markers

reporting monomorphisms were predicted to be monomorphic,

and only 112 of these apparently monomorphic markers were

expected to have less than 10 instances of the minor allele.

Figure 1 The percentage of probes in each probe quality category by array type. TaNG v1.1 has an increased ratio of the ‘high quality’ categories

(Polymorphic High Resolution, No Minor Homozygous Group and Off-Target Variants) and a decreased ratio of probes in the ‘low quality’ categories

(Call Rate below Threshold, Monomorphic High Resolution and Other).
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Design optimization

Due to the large number of monomorphic probes on the first

iteration of the TaNG array (version 1.0), the array was

redesigned. Monomorphic probes were replaced with probes

from the AxiomTM Wheat HD Genotyping Array proven to be

polymorphic; these replacement probes were selected by

re-running the marker optimization algorithm with monomorphic

markers excluded from the input file, whilst other markers were

retained as they had performed well in screening (Data S3).

Additional markers were integrated into the optimized design by

analysing combining genotyping data from our existing 820K

Wheat HD Genotyping Array with that derived from TaNG v1.0,

where the same samples had been run on both platforms. This

improved array, designated TaNG v1.1, was screened against an

extended collection of elite cultivars, landraces and other Triticum

accessions (Data S4). The sample call rate ranged from 84% to

99.8%. Compared to the initial implementation of the array,

TaNG v1.1 showed an increased number of markers in each of

the useful probe quality categories and a decreased number in

each of the less useful categories (Table 1). Therefore, all further

study was based on TaNG v1.1 and, thus, from this point

forward, all results and discussion refer to comparisons between

the 35K Breeders Array version v1.1 of the new array.

Marker distribution across chromosomes

The TaNG v1.1 Array has more markers in total than the 35K

Array (43 373 vs. 35 143) and, for all chromosomes except 1D

and 2D, there are more markers assigned to each chromosome

(Table 2). Furthermore, markers are more evenly distributed

between the 21 wheat chromosomes and the number of markers

per chromosome better reflects chromosome size (Data S5).

For broad scale distribution of markers, the chromosomes,

regardless of their reported lengths (Table 2) were divided into 20

equally sized bins and the number of markers in each bin totalled

and plotted (Figure 2a); markers on TaNG v1.1 are more evenly

distributed across the chromosomes than those on the 35K Array.

That is, there is neither a bias in marker number towards the

telomeres nor a relative paucity of markers across the centro-

meres. At a smaller scale, marker distribution was determined by

dividing chromosomes into 10 Mb bins and counting the number

of markers in each (Figure 2b). The number of markers in the

10 Mb bins is much less variable and there are no extreme

outliers with very low or very high numbers of markers. For

example, on the 35K Array, the region 240–290 Mb on

chromosome 4A is represented by only 6 markers; on TaNG

v1.1 the same region is represented by 125 markers (Data S5).

Indeed, on chromosomes 3A and 4A the 35K Array has no

markers assigned at all to a small number of 10 Mb bins

(Data S5).

Although there is a relatively strong relationship between

chromosome length and the number of markers assigned to that

chromosome, the density of markers is relatively higher on the

smaller chromosomes than on the larger chromosomes.

The mean number of markers per 1 Mb on the A, B and D

genome is 3.0, 2.9 and 3.4, respectively, highlighting the efforts

made to improve D genome marker coverage compared to

previous array designs.

Source of SNP variation

The older 35K Array SNPs were derived from exome-capture

sequencing, based on a set of genes de novo assembled genes

from cDNA sequencing of Chines Spring (Winfield et al., 2012).

Unsurprisingly, a variant effect prediction analysis annotated over

86% of these SNPs to be within or immediately adjacent to

coding regions (Data S5). In contrast, more than 27% of the SNPs

on the new TaNG1.1 array were annotated as having an

intergenic origin (Data S5).

Replicate testing for reproducibility

As a measure of reproducibility between technical replicates, the

accessions ‘Paragon’ and ‘Cadenza’ were genotyped as four

Table 1 Marker quality categories as designated by Axiom Analysis

Suite for TaNG v1.0 and TaNG v1.1

Category

TaNG v1.0 TaNG v1.1

Count Percentage Count Percentage

Poly high resolution 5075 11.5 9117 21.0

No minor homozygous 15 746 35.6 20 580 47.4

Off-target variant 2247 5.1 4300 9.9

Call rate below threshold 573 1.3 459 1.1

Monomorphic high resolution 12 490 28.2 1827 4.2

Other 8127 18.4 7090 16.3

Sum 44 258 43 373

The categories considered ‘high quality’ are: ‘Polymorphic High Resolution’, ‘No

Minor Homozygous’ and ‘Off-Target Variant’. The remaining categories: ‘Call

Rate Below Threshold’, ‘Monomorphic High Resolution’ and ‘Other’ are

considered to be a lower quality genotype call.

Table 2 Chromosome lengths in variety Chinese Spring (based on

IWGSC v1.0 assembly) versus number of markers present on the 35K

Wheat Breeders and TaNG v 1.1 Arrays

Chromosome Length (bp)

Number of markers

35K Array TaNG Array v1.1

1A 594 102 056 1566 2087

2A 780 798 557 1718 2295

3A 750 843 639 1486 2054

4A 744 588 157 1130 2223

5A 709 773 743 1604 2016

6A 618 079 260 1196 1897

7A 736 706 236 1678 2302

1B 689 851 870 2178 2343

2B 801 256 715 2132 2425

3B 830 829 764 1751 2429

4B 673 617 499 1135 1883

5B 713 149 757 1804 2230

6B 720 988 478 1706 2027

7B 750 620 385 1652 1890

1D 495 453 186 2045 2025

2D 651 852 609 2278 2238

3D 615 552 423 1796 2004

4D 509 857 067 872 1540

5D 566 080 677 1621 1857

6D 473 592 718 1222 1593

7D 638 686 055 1607 2015

Sum 14 066 280 851 34 177 43 373
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aliquots from the same DNA extraction (Data S4). The genotype

correlation was extremely high with 99.86% and 99.49%

correlation for ‘Paragon’ and ‘Cadenza’, respectively. This

represents a less that 1% technical error rate. The genotyping

errors were predominantly a mis-call between the homozygous

(AA, BB) and heterozygous (AB) states with only two and four

probes presenting a change in homozygous call (‘hom-hom

mis-call’) in ‘Paragon’ and ‘Cadenza’, respectively. Only six

markers presented a genotyping error between both accessions,

each on a different chromosome suggesting that the 1% error

rate was random in nature (Data S4).

Genetic map construction

The genetic location of markers and performance of the

haplotype optimization marker selection method was tested by

generating genetic maps using three mapping populations. These

were the Avalon 9 Cadenza (AxC) and Oakley 9 Gatsby (OxG)

double haploid populations, and Apogee 9 Paragon (AxP)

produced by single seed descent to the F5 generation. For the

three maps, AxC, OxG and AxP, 10 113, 7734 and 4673 markers

were assigned to linkage groups, respectively (Data S6).

The AxC and AxP populations had previously been genotyped

using the AxiomTM Wheat Breeder’s Genotyping Array, making it

possible to compare the position of markers on the arrays. The

TaNG AxC genetic map consisted of 10 113 markers with 1652

unique locations, whilst the Wheat Breeder’s AxC genetic map

consisted of 7237 markers with 1082 unique locations (Figure 3,

Data S6). The TaNG AxP genetic map consisted of 4673 markers

with 1984 unique locations, whilst the Wheat Breeder’s AxC

genetic map consisted of only 2997 markers with 1519 unique

locations. The TaNG array both increased the number of markers

and the number of unique positions for both the AxC and AxP

genetic maps. For all chromosomes the number of SNPs and the

chromosome length (cM) was greater using the TaNG v1.1 array

than the maps previously constructed using data from the

AxiomTM Wheat Breeder’s Genotyping Array. Although restricted

by the limits of recombination of the population, the new array

gives a greater number of more evenly spaced markers for all

three populations.

The genetic map positions of markers from all three genetic

maps were compared to the physical assignment based upon

alignment of sequences to the Chinese Spring, IWGSC v1.0

reference assembly: physical assignment based on alignment to

IWGSC assembly v1.0; Avalon 9 Cadenza map; Apogee 9

Paragon map; Oakley 9 Gatsby map. A marker was assigned a

consensus chromosome only when at least two of the

assignments were the same. In total, 12 981 markers were

assigned a consensus chromosome (Data S3).

The comparison showed that the physical assignment based on

skim sequence data was close to 100% accurate whilst that

derived from previous platforms was less reliable, especially for D

genome markers (Figure 4). There was good correlation between

physical position of the markers and the cM position of the bin to

which they were assigned. However, physical assignment for

markers taken from previous platforms (820K Array, 35K Array

and DArT marker) were more variable with an average

concordance of 85% for A and B genome markers but as low

as only 40% for D genome markers.

CNV analysis

Copy number events were observed across each chromosome

with the exception of 4D, 5A and 5D (Figure 5; Data S7). The

Figure 2 The physical distribution of chromosome 1 markers on the TaNG v1.1 (green) and 35K Wheat Breeder’s Arrays (purple). (a) Number of markers in

each of 20 bins spanning the chromosome. (b) Box and whisker plots of the number of markers per 10 Mb bin across the chromosome. There is a greater

number of markers on the TaNG v1.1 Array (green boxes) and these are more evenly distributed than on the 35K Array (purple boxes). See Data S5 for plots

of all chromosomes.
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Figure 3 Comparison of Avalon 9 Cadenza genetic maps for chromosome 1A using (a) 35K Array map data and (b) TaNG v1.1 map data, showing the

distribution and density of markers.
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number of CNV varied per accession, some reported

none whilst 12 were detected in the T. aestivum accession

‘Captor’ and 23 in the wild relative ‘T. kiharae’. The length

of detected CNV regions ranged from 8.7 to 780 Mb with

more reduced CNV losses than gains. Multiple regions are

present with common variations across the screened

accessions. Large regions of variance are present on 2A (Loss:

479 492 – 24 414 560 in 50 accessions; Gain: 202 646 955 –
358 094 640 in 36 accessions), 5B (Gain: 149 551 898 – 249

788 187 in 32 accessions; Loss: 490 000 000 – 520 000 000

in 50 accessions) and 1B (Gain and Loss: 1 203 929 –
123 969 113) (Figure 5; Data S7).

Figure 4 Comparison of chromosome location for markers based on physical and consensus assignment. Only markers with a consensus chromosome

assignment are shown. Markers with physical positions derived from previous genotyping platforms (820K Array, 35K Array and DArT markers) are

represented by bars. Markers derived from skim sequence data are represented by a line plot.

Figure 5 Copy Number Variance (CNV) frequency histogram for all samples genotyped with the TaNG v1.1 array in the initial screening (Data S4) across all

chromosomes. Regions of copy number gain are displayed in the top track (blue) and regions of copy number loss are displayed on the bottom track (red)

for each chromosome. Start and stop positions of each event are listed in Data S7.
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Diverse material screening

As the initial array screening was performed with a mostly

European collection of elite cultivars and landraces (Data S4),

additional genotyping was also performed using different sources

of material. A collection of USA material grouped by geographic

origin was genotyped as the initial screening panel (Data S4). The

marker call rate was consistently high with 42 476 markers (98%)

generating a call in 90% of samples. The performance category

of markers was also high with only 3746 probes (8.6%) found to

be monomorphic across the dataset. The genotype data clearly

distinguished the USA material by region (Figure 6) with a clear

separation of North region and East region germplasm.

A collection of 81 wheat wild relatives including Aegilops,

Amblyopyrum, Secale, Thinopyrum and other Triticum species

were also genotyped alongside 50 Durum (T. turgidum ssp.

durum) landrace accessions (Data S4) to examine the suitability of

the array for genotyping pre-breeding wild relative material

alongside T. aestivum. Whilst not all samples could hybridize,

34 588 markers (80%) generated a genotype call across at least

90% of the samples. The majority of markers clustered unclearly

with the ‘Other’ performance category (18 784; 43%) but very

few markers were monomorphic (4008; 9.2%).

GWAS analysis

As a test of performance for the optimized SNP selection, three

traits were selected for GWAS analysis: Heading Date; Response

to Leaf Rust; Response to Stem Rust. Whilst the previous 35k

Breeders array was unable to identify a significant QTL for any of

these traits, the 43K TaNG v1.1 array was able to identify QTL

that favourably compared to the entire 10 million SNP panel

generated from whole genome sequencing (Figure 7).

Discussion

Array justification

The existing 35K AxiomTM wheat breeder’s genotyping array

designed in 2011 has been widely used by academics and

breeding companies with 288 citations in research areas recently

spanning pathogen resistance (Grover et al., 2022; Nannuru

et al., 2022), yield (Sheoran et al., 2022), grain nutrient quality

(Rathan et al., 2022) and grain architecture (Kumari et al., 2023).

Whilst a valuable tool, improvements to technology and our

understanding has made it possible to improve upon the design in

several ways. The most noticeable difference is the source of

SNPs. In the 820K AxiomTM Wheat HD Genotyping Array (Winfield

et al., 2016), the 35K AxiomTM wheat breeder’s genotyping array

(Allen et al., 2017) and the 90k wheat iSelect array (Wang

et al., 2014) used exome-capture sequences as the source of

putative SNPs. This resulted in all SNPs being within or very close

to genes, resulting in uneven chromosomal distribution, the

potential exclusion of rare alleles and a strong ascertainment bias

(You et al., 2018). Recent large scale skim sequencing (Cheng

et al., 2023) of a highly diverse set of globally significant breeding

and landrace accessions made available a new source of SNPs free

of ascertainment bias and suitable for global users.

Figure 6 Principle Component Analysis plot based on the USA material collections coloured by region of origin. Variation in PC1 and PC1 is 5.05 and 3.93,

respectively. Samples used in breeding but of non-USA origin were omitted from figure. Genotype data is available in Data S4.
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Prior the release of the IWGSC Chinese Spring reference

(IWGSC, 2018), genetic maps were used to obtain marker

location information. In the 35k Array this led to significant

ascertainment bias due to prioritizing SNPs that could be placed

on the Avalon 9 Cadenza or Rialto 9 Savanna maps (Allen

et al., 2017). For SNPs without polymorphisms between these

parents, the locations (physical or genetic) were initially unknown.

After the release of the CS reference, the distribution was found

to be variable, chromosomes had markers clustered together in

some regions with large gaps in between with no marker

coverage. In the areas of marker clusters, many would be in

linkage disequilibrium (LD) meaning that the SNPs would be

inherited together more often than expected by chance. LD

represent a duplication of effort, as additional markers are no

more informative. With a gold standard genome sequence now

available and the physical positions of all SNPs now known, more

careful consideration can be made with regards to the marker

distribution.

Two-Step design process for improved performance

The original draft TaNG v1.0 array design showed promising

performance for many of the markers but with 12 490 (28.2%)

markers that were found to be monomorphic. Whilst the ‘Call

Rate Below Threshold’ and ‘Other’ categories may be considered

less useful categories, the designation of these categories

depends on the samples used. Probes with an ‘Other’ category

in one sample set may have a clear genotype clustering in another

sample set. However, as probes were designed to be polymorphic

within the test set, monomorphic calls were an indication of

marker design failure. This high-level of marker failure is not

unexpected when converting sequence-derived SNPs to markers

in a polyploid and was observed with our first high wheat axiom

array (Winfield et al., 2016) Because consistently monomorphic or

failed probes are of no value, a two-step approach of screening

followed by redesign was used. The final design (TaNG v1.1) was

produced by combining genotyping results from our original

820K AxiomTM Wheat HD Genotyping Array (Winfield et al., 2016)

with those from TaNG v1.0. The SNP optimization algorithm used

in the initial design was re-applied to this combined dataset for

marker selection to ensure that the replacement markers were

fully integrated with the new design. The resulting TaNG v1.1

array had a decreased ratio of probes in all of the ‘low quality’

categories (Figure 1) and an improvement in D genome coverage

(Data S5).

The use of a two-step design method has been employed in the

design of other genotyping arrays such as maize (Unterseer

et al., 2014) and pear (Montanari et al., 2019) to produce a high

quality and reproducible array design. The number of monomor-

phic probes on the initial testing of the TaNG v1.1 array was

4.2%, lower than other commercial Axiom arrays such as Pine

(10.1%; Perry et al., 2020), Groundnut (23.7% monomorphic;

Pandey et al., 2017), Chickpea Array (45.7%; Roorkiwal

et al., 2018) and the original 35K Array (4.5%; Allen

et al., 2017). As not all of the accessions used for marker

generation were used in the array testing (Data S1 and S4), this

value may be lower when additional diverse lines are used.

Haplotype optimization to combine new and existing
probe designs

The bias towards SNPs in genic regions in the previous 820K HD

Array and 35K Array resulted in markers being negatively

correlated with chromosome length; that is, relative to length

there were more markers on the shorter chromosomes than on

the longer ones (Allen et al., 2017; Winfield et al., 2016). On the

TaNG v 1.1 Array there is a strong positive correlation which in

addition to physical distribution, has been optimized for

haplotype grouping. We employed a novel selection algorithm

to select the optimal combination of SNPs in each 1.5 Mb bin of

Figure 7 Genome-wide association study using the previous 35K Breeders Array, the new TaNG v1.1 array and the 10 million SNPs detected in sequenced

data for three traits. (a) Heading date, (b) Leaf rust, (c) Stem rust. Identified QTL are highlighted in red.
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each wheat chromosome. Rather than allocating the same

number of SNPs to each bin, the SNPs within a bin are minimally

correlated with each other to avoid effective duplication. In this

way, each SNP has considerably more diagnostic power than

those identified at random. The result was a more even physical

distribution than the 35K Array and greater diagnostic power

even when fewer markers are present per bin (Figure 2). The

power of this method was illustrated in use of the array in GWAS

(Figure 7). Previously, genotyping arrays have been limited for

GWAS applications due to the limited marker density. Even in

regions that appear to have good coverage, SNPs in LD provide

redundant information about the same genetic variation and bias

kinship estimations.

To compliment the sequence-derived SNPs, markers selected

from existing arrays by haplotype optimization or public

nomination were included. The incorporation of a subset of

markers from existing genotyping arrays can maintain continuity

and consistency when comparing genetic data across different

studies and populations. Combined datasets can enhance

statistical power and increase the ability to detect genetic

associations without the regeneration of data. In the case of

wheat breeding, multi-year studies are not unusual and benefit

from the use of consistent marker sets even as genotyping

technologies evolve. This approach is already established in

medical genotyping arrays such as the Transplant array (Li

et al., 2015), Axiom Asia Precision Medicine Research Array and

the Axiom Human Genotyping SARs-COV-2 Array (Thermo Fisher

Scientific, Santa Clara, CA, USA) which all contain cross-platform

markers. More recently, agricultural genotyping arrays such as the

Axiom 50K 4Tree array, Axiom 44K Rice and Infinium Apple

arrays (Guilbaud et al., 2020; Affymetrix Datasheet P/N

GGNO05960 Rev. 1; Howard et al., 2021) have been designed

to include markers compatible with previous edition genotyping

arrays.

As the previous 35K Array used exome-capture derived

sequences for SNP discovery, there were far fewer intergenic

SNPs included than has been possible with the TaNG v1.1 array

(Data S5). For SNPs contained within genes it has been possible to

use existing information to identify 157 which are associated with

important traits (Data S3).

Array features

The TaNG v1.1 array has a stable 1% technical variation which is

in line with other Axiom arrays (GenomeWide 6.0 Human array;

Hong et al., 2012) and genotyping technologies such as the 1%

variation reported using SNP DArTSeq (Alam et al., 2018;

Nantongo et al., 2022), 0.5% reported using SeqSNP (Harper

et al., 2020) and the 0%–1% variation reported using Infinium

(Cai et al., 2017; Pavy et al., 2016; Senthilvel et al., 2019). The

nature of the genotyping errors between technical replicates

were predominantly hom-het mis-calls. This may be due to the

probe partially binding to a secondary homoeologous site, sample

contamination or due to difficulties in the genotype calling

software in identifying a clear cluster. As all assays have been

test-screened with a diverse set of accessions (Data S4) any

probes which presented difficulties in genotype calling have been

assigned SNP specific priors as described in the methods to ensure

consistent calling by the software (Data S3) making the calling of

SNPs on the array as accurate as possible.

Genetic maps were constructed using the TaNG v1.1 array and

compared to the 35K Array. On average markers were more

evenly distributed across the chromosome with a higher number

of unique locations represented and less markers clustered

together at the same location (Figure 3, Data S6). Although

limited by recombination in the populations this represents a

significant improvement in the resolution of the maps and utility

of the markers for accurately mapping QTLs and marker assisted

selection. In addition, a comparison of genetic map position and

physical position on the Chinese Spring v1.0 reference sequence

allowed an analysis of the accuracy of the physical position

assignment. This revealed that the physical assignment based on

skim sequence data is close to 100% accurate. However, the

physical assignment of markers derived from existing platforms

still require information from mapping populations to help

identify the correct homeolog (Shorinola et al., 2022). To aid

correct placement of markers, the mapping locations are included

in Data S3.

The ability of a genotyping array to perform Copy Number

evaluations is limited compared to sequencing methods, but the

ease of use and the high-throughput nature allows for insight

into sample panels and populations. We used copy number

variation (CNV) analysis to characterize the accessions screened.

Several common regions of increased (CNV gain) or reduced

(CNV loss) signal were observed which could potentially

represent deletions, introgressions or repeat regions. Some of

these regions are already well documented such as the 1RS

introgression from rye on 1BS which is reported to result in

variable copy number (Xiong et al., 2023) and the Ae. ventricosa

introgression on 2A (Gao et al., 2021) which is commonly found

in wheat due to the addition of the Lr27 resistance gene.

Deletions were also clearly represented by a copy number loss in

the genotyping data such as the ph1 deletion on 5B

(Figure 5: 5B).

Supporting genotype and marker data

The bread wheat genome already contains significant genetic

variation, and much work is being done to enhance the

germplasm with novel alleles from wide crosses. The previous

35k Breeders array had previously been used with wheat wild

relative material in a pre-breeding context (Horsnell et al., 2023;

Kumar et al., 2020; Wright et al., 2023) and for elite durum

wheat cultivars (Ganugi et al., 2021; Kabbaj et al., 2017; Shewry

et al., 2023). The genotype calls generated on the TaNG v1.1

array across a diverse set of wheat relative material here (Data S4)

illustrate that secondary and tertiary gene pool material may also

be genotyped alongside T. aestivum accessions. As the primary

purpose of the array was the genotyping of T. aestivum, we

suggest a DQC cut-off of 0.6 to be used for wheat relative

material to account for the absence of some reference sequences

used to generate the DQC metric. The grouping of diploid,

tetraploid and hexaploid material with a wide range of ancestral

genomes created a valuable insight the relatives for which the

TaNG array may successfully hybridize but for more accurate

genotyping study, we suggest that samples be grouped by project

before genotype calling.

To support cross-platform projects and better support data

sharing, the TaNG array has incorporated SNP probes from other

public arrays such as the CIMMYT Wheat 3.9K DArTAG array and

the previous 820K HD Wheat array and 35k Breeders array.

Further to this, other commercial genotyping platforms have

included our probes in the same way. We have compiled these

including the 90k iSelect array (Wang et al., 2014) and 660k array

(Cui et al., 2017) synonyms with full sequences and known trait

associations from literature (Data S3). We believe that together
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with the TaNG array, this will be valuable resource for all

researchers working across genotyping platforms.

In essence, SNP genotyping arrays have revolutionized the way

researchers and breeders study plant genetics and manipulate

traits. They provide a high-throughput and cost-effective way to

analyse the genetic makeup of plant populations, enabling more

targeted and efficient research and breeding efforts. As

technology continues to advance, SNP genotyping arrays will

continue to be a cornerstone of plant science, contributing to

sustainable agriculture, crop security and our understanding of

plant biology.

Experimental procedures

Marker selection: Skim sequence sourced probes

The SNP calls generated from skim sequence data from 315

wheat accessions (204 elite wheat lines and 111 wheat landraces

taken from the Watkins ‘Core Collection’ – Data S1) were used as

the source of SNPs for haplotype optimization (Cheng et al.,

2023). Varieties with ≥1% heterozygous loci were excluded. SNPs

were initially filtered to have a maximum of 0.5% heterozygous

calls among all varieties, a minimum minor allele frequency of

0.01, a minimum call rate of 0.95 and a minimum mapping

quality score of 5000. SNPs with a flanking sequence mapping to

more than one genome location in the IWGSC v1.0 Chinese

Spring genome assembly using the BWA version 0.7.12-r1039

were removed. Additionally, SNPs were checked by BLAST (blastn

v2.6.0+) against the IWGSC v1.0 Chinese Spring genome

assembly and those matching multiple locations were excluded.

Each chromosome was then divided into 1.5 Mb intervals and up

to six SNPs representing the highest combined discriminatory

power were selected for each interval (Winfield et al., 2020). The

haplotype optimization pipeline is available at https://github.

com/pr0kary0te/GenomeWideSNP-development.

Existing marker designs

For cross compatibility, SNPs for which there are existing markers

from various platforms were also included in the design. That is,

2528 markers selected for trait association or physical locations

were taken from the CIMMYT Wheat 3.9K DArTAG array

(https://excellenceinbreeding.org/toolbox/services/mid-density-

genotyping-service) as were 4220 of the best performing markers

from the existing AxiomTM Wheat Breeder’s Genotyping Array

(Allen et al., 2017). In addition, a public call was made to

researchers and wheat breeders to nominate markers from

existing arrays which they would like to see included on the TaNG

array; this call resulted in 1223 marker nominations (Data S3). The

final design also has 936 cross-platform probes with the now

discontinued Illumina 90k iSelect array (Wang et al., 2014) and

8232 cross-platform probes with the Wheat 660k Axiom array

(Sun et al., 2020).

On an initial screening of an early version of the array

(designated TaNG v1.0; Data S2) against a diverse set of 119

elite and 60 landrace accessions, 16 507 SNPs failed to convert to

polymorphic SNP assays. These markers were replaced with

14 774 selected from the AxiomTM Wheat HD Genotyping Array

(Winfield et al., 2016), to maximize the differentiation of varieties

described above. This final, optimized array design, designated

TaNG v1.1 (Thermo Fisher catalogue number 551498), contains

43 373 markers (Table 1; Data S3) Some markers may be present

on multiple arrays under different names, when this is the case,

pseudonyms are given in each column.

Modification of priors

For consistency, the same Dish-QC probes were used as the 35K

AxiomTM wheat breeder’s genotyping array for generation of the

non-genotype producing DQC sample quality metrics. For probe

quality, of the markers on TaNG v1.1, 299 generated clusters that

were not correctly identified during allele calling using Applied

Biosystems’ (Waltham, MA, USA) software package AxiomTM

Analysis Suite v5.2.0.65. To ensure the correct genotype call for

these alleles, the analysis file was modified with sequence specific

priors for the affected markers (‘SSP’ in Data S3). The modified

analysis file designated ‘Axiom_TaNG1_1.r4’ is available from the

Thermo Fisher website.

Genotyping

Genomic DNA from wheat leaf tissue 14 days after germination

was prepared as described in Burridge et al. (2017) for samples

listed in Data S4. Genotyping was performed using 11 lL of

25 ng/lL DNA in water. Array processing was performed using

the GeneTitan system according to the procedure outlined in

AxiomTM 2.0 Assay 384HT Array Format Automated Workflow

User Guide (Applied Biosystems). Allele calling was performed

using Applied Biosystems’ software package AxiomTM Analysis

Suite v5.2.0.65 using prior file Axiom_TaNG_SNP.r1 for the first

array design (v1.0) and Axiom_TaNG1_1.r4 for the final array

design (v1.1). In all cases a Dish QC of 0.8 for T. aestivum (Initial

Testing, USA Material) datasets and 0.6 for the wild relative

genotyping. A sample QC call rate of 80% and 75% was used for

T. aestivum and wild relative sets, respectively. The SNP QC cut-

off for ‘Call Rate Below Threshold’ was 95%. Comparisons of

technical replication was made using markers across all probe

quality categories with ‘No-call’ genotypes omitted from com-

parison. The TaNG v1.1 Array is available from Thermo Fisher

Scientific with catalogue number 551498.

Copy number variation (CNV)

The CNV analysis and Manhattan plots were generated for all

accessions screened on TaNG v1.1 using AxiomTM Analysis Suite

v5.2.0.65, with prior file Axiom_TaNG1_1.r4 and the annotation

file Axiom_TaNG1_1.r4.annot.db. No samples were excluded from

reference creation. The recommended minimum base lengths and

probe numbers for each CNV state were followed from AxiomTM

Copy Number Data Analysis Guide (r3 May 2022, MAN0026736).

SNP effect predictions

SNP effect predictions were made using the Variant Effect

Predictor (VEP) hosted on the EnsemblPlants website http://plants.

ensembl.org/Triticum_aestivum/Tools/VEP Release 110 (Martin

et al., 2023). The genome selected was that of Triticum aestivum.

Variant call format (vcf) files were uploaded to the website and

the web tool run using default settings.

Genetic map construction

For the three mapping populations, markers with more than 10%

missing data were removed. The remaining markers were tested

for significant segregation distortion using a chi-square test. The

software program MapDisto v. 1.7 (Lorieux, 2012) was used to

assemble the loci into linkage groups using likelihood odds (LOD)

ratios with a LOD threshold of 6.0 and a maximum recombination

frequency threshold of 0.4. Linkage groups were ordered using

the likelihoods of different locus-order possibilities and the

iterative error removal function (maximum threshold for error
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probability 0.05) in MapDisto. The Kosambi mapping function

(Kosambi, 1944) was used to calculate map distances (cM) from

recombination frequency. Maps were drawn in MapDisto with

bins represented by a single marker.

Consensus chromosome assignment

Where possible, markers were assigned to a chromosome based

on consensus of calls from four different data sets: (i) physical

position from BLASTing sequence to IWGSC assembly v1.0; (ii)

Avalon 9 Cadenza genetic map (10 113 markers); (iii) Apogee 9

Paragon map (4673 markers); (iv) Oakley 9 Gatsby map (7733

markers). To be assigned a consensus chromosome, the calls from

at least two of the data sets had to agree; if a marker had only a

physical position or only conflicting calls, it was not assigned

a consensus. A comparison was made between the consensus

calls and initial physical call to estimate agreement (Data S3); this

analysis was performed taking into account the origin of the

markers, skim sequence-derived versus acquired from earlier

genotyping platforms (820K Array, 35K Array, DArT).

Genome-wide association study

The GWAS analysis was performed using the Watkins collection

accessions and associated phenotype data as described in (Cheng

et al., 2023) to compare the core 10M SNPs from the sequenced

dataset (Cheng et al., 2023); SNPs from the AxiomTM Wheat

Breeder’s Genotyping Array (CerealsDB) and those of the TaNG

Array v1.1. Extreme outlier values of phenotypic data were

removed. Kinship matrix was calculated as the covariate using

GEMMA-kin. Based on these,GWASwas performed usingGEMMA

(v0.98.1) with parameters (gemma-0.98.1-linux-static -miss 0.9 –
gk kinship.txt and gemma-0.98.1-linux-static -miss 0.9 -lmm -k

kinship.txt). In-house R scripts were used to visualize the results.
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