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ABSTRACT
Understanding how cells sense temperature is a fundamental question in biology and is pivotal for the 
evolution of life. In numerous organisms, temperature is not only sensed but also generated due to 
cellular processes. Consequently, the mechanisms governing temperature sensation in various organ-
isms have been experimentally elucidated. Extending upon others’ proposals and demonstration of 
protein- and nucleic acid-based thermosensors, and utilizing a colonial India ‘punkah-wallahs’ analogy, 
I present my rationale for the necessity of temperature sensing in every organelle in a cell. Finally, 
I propose temperature-sensing riboceptors (ribonucleic acid receptors) to integrate all the RNA 
molecules (mRNA, non-coding RNA, and so forth) capable of sensing temperature and triggering 
a signaling event, which I call as thermocrine signaling. This approach could enable the identification 
of riboceptors in every cell of almost every organism, not only for temperature but also for other classes 
of ligands, including gaseous solutes, and water.
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Have we identified all the temperature-sensing 
protein-based receptors?

Temperature is one of the pivotal regulators of the evolution 
of molecular machinery and life. The 600 million years of 
evolutionary conservation of temperature regulation capacity 
has been suggested to provide a survival benefit in organisms 
[1]. Temperature can affect growth rates across various cells 
and organisms [2–6]. Apart from environmental changes in 
temperature, pathogen infections and toxin exposure in 
plants and animals can also increase organismal temperatures 
[1,7–10]. The mechanisms that allow organisms to survive 
high temperatures have been attributed to heat shock pro-
teins, temperature-sensitive gene cluster architecture, differ-
ential osmotic activity, differential antioxidant defense 
mechanisms, differential sequences that allow the formation 
of a relatively higher number of protein disulfide bonds, and 
protein stabilization [11–13].

The mechanisms that allow cells to sense membranal tem-
perature include the temperature-sensing TRP channels (tran-
sient receptor potential) that are referred to as sensory 
thermoreceptors [14–16]. Such temperature-sensing TRP 
channel proteins have relatively high Q10 (temperature coeffi-
cient: the fold-increase in rate per 10°C increase) in compar-
ison to other non-temperature sensing channel proteins [17]. 
In Drosophila melanogaster, dTrpA1 in the warmth-activated 
anterior cell neurons and GR28b.d in the antennal arista are 
membranal temperature-sensing proteins [18–20]. In the 
insect triatomine (Rhodnius prolixus), TRPA5B is also 
a temperature-sensing protein that exhibit a high temperature 
coefficient (Q10 = 25) [21]. In addition to TRP channels, some 

GPCRs (G protein-coupled receptors) also exhibit tempera-
ture-sensing properties. For instance, light-sensitive rhodop-
sin in mammals and Drosophila, as well as mouse melanopsin 
(Opn4), have been identified as membranal temperature- 
sensing proteins (thermosensors) [22–24].

In addition to membranal proteins, temperature can also be 
sensed internally via other intracellular proteins (thermosen-
sors or thermometers) that are intrinsically temperature- 
sensitive. Such proteins either have temperature-sensitive 
domains or lose their dimerization capabilities at high tempera-
tures. For instance, bacterial GrpE, sigma 32, and DesK are 
temperature-sensing proteins that exhibit nucleotide exchange 
factor, transcriptional factor, and kinase activity, respectively 
[25–27]. In E. coli, the dimeric GrpE, at heat shock tempera-
tures, undergoes unfolding of the long N-terminal helix pair, 
resulting in the loss of its nucleotide exchange factor activity 
[28]. In Salmonella, the temperature-sensing activity of the 
DNA-binding autoregulator TlpA depends on the monomer- 
to-coiled-coil equilibrium [29]. At high temperatures, TlpA 
loses its DNA binding and tlpA repressor activity. Another 
example is TdcA (thermosensory diguanylate cyclase), 
a temperature-sensing protein that exhibits a 100-fold increase 
in the activity of c-di-GMP generation upon a 10°C increase 
[30]. TdcA diguanylate cyclase is inactive at 22°C and highly 
active at 37°C. TdcA and some TdcA homologs are thermo-
sensitive via a conserved temperature-sensitive PAS (Per-Arnt- 
SIM) domain. In yeast, nucleotide exchange factor Mge1, 
a GrpE homolog, was identified as a thermosensor. At heat- 
shock temperatures, it loses its dimerization, interaction with 
Hsp70, and the capability to regulate its ATPase activity 
[31,32]. Human HSF1 (heat shock factor 1) is also 
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a temperature-sensing protein [33]. HSF1 is a transcription 
factor that trimerizes at increased temperature, binds to pro-
moter sites with heat shock elements, induces gene expression, 
and confers proteostasis and stress response. In Arabidopsis, 
TWA1 (Thermo-with abscisic acid-response 1), an intrinsically 
disordered protein, is a temperature-sensing transcriptional co- 
regulator that undergoes a conformational change at high 
temperature, accumulates in the nucleus, and binds to other 
transcriptional factors that promote the expression of genes 
that confer thermotolerance [34]. Overall, similar to the gas- 
sensing gasoreceptor proteins that have diverse signaling 
domains and activity (kinase, phosphodiesterase, transcription 
factor, guanylate cyclase, adenylate cyclase, etc.), temperature- 
sensing proteins or receptors also seem to have diverse signal-
ing domains [35–37]. But are the above-listed proteins the only 
temperature-sensing proteins in cells? [38,39]

Temperature differences exist internally across different 
regions and cellular organelles. For instance, the nucleus is 
marginally hotter than the cytoplasm [40]. In neuron-like cells 
in vitro, cell body temperature is higher than in neurite-like 
structures [41]. Temperatures in highly energy-active orga-
nelles such as mitochondria is around 50°C, and ATP synth-
esis perturbations in mitochondria can also cause temperature 
differences [42–44]. Therefore, temperature-sensing must 
occur in almost all organelles and regions within the cell.

To illustrate the need for region/organelle-specific tem-
perature-sensing mechanisms, I draw an analogy to colonial 
India. The British, struggling to acclimate to the Indian heat 
while maintaining their aristocratic attire, employed ‘punkah 
wallahs’ – servants or slaves who manually operated ceiling 
fans called punkahs. These fans, mounted on rectangular 
wooden frames with cloth, were pulled via a pulley system 
by the punkah wallahs, cooling the British as they moved 
between rooms [4546,46. In some cases, the punkah wallahs 
were completely isolated from the room, as a small hole in the 
room allowed the rope to be pulled via the pulley. Similar to 
the punkah wallahs adjusting the cooling in each room, tem-
perature-sensing mechanisms must exist in each cellular orga-
nelle and region. The primary function of these mechanisms 
must be to ensure that the temperature in the cellular micro-
environment is tightly regulated probably also by acting along 
with aquareceptors [47].

Despite the advent of electricity and air conditioners, 
which require temperature sensors to sense room tempera-
ture, cells similarly need internal temperature sensors. 
Hence, we must identify all temperature-sensing receptors 
through a systematic approach, akin to research that identi-
fies specific receptors for ligands or transcription factor 
targets. Although enzyme activity generally decreases at 
increased temperatures (16-fold per 25°C), proteins with 
extreme temperature-dependent activity variations are likely 
candidates for either heat or cold-sensing receptors [48]. 
Systemically identifying temperature-sensing receptors with 
unusually high temperature-coefficient will allow us to iden-
tify all temperature-sensing receptors. I propose the term 
‘agnireceptors’ (‘Agni’ in Sanskrit for ‘God of fire’) for all 
temperature-sensing proteins (thermoreceptors, thermosen-
sors, and cold-sensing proteins), regardless of their localiza-
tion and signaling domains and ‘thermocrine signaling’ for 

all temperature-dependent signaling events that are sensed 
and triggered via temperature-sensing receptors [14,49–51]. 
A unified terminology may facilitate the systemic study of 
temperature-sensing proteins’ functions, especially with 
advanced deep-learning algorithms that aim to replace ani-
mal models in drug discovery [49].

Have we identified all the temperature-sensing 
nucleic acid-based receptors?

During evolution, temperature sensing was likely crucial for 
proto-organisms that lacked proteins or with limited protein- 
based cellular machinery [52,53]. To understand how tem-
perature sensing might have occurred in such organisms, we 
can study RNA-based temperature-sensing mechanisms 
observed in microorganisms. These mechanisms often rely 
on stem-loop-based secondary structures [54,55]. For 
instance, certain mRNAs contain temperature-sensing ele-
ments that regulate the translation of downstream genes, 
permitting translation only at higher temperatures when ribo-
some-binding sites are accessible [56–59]. An example is the 
temperature-sensitive 5’ mRNA coding sequence of the bac-
terial rpoH gene, which codes for the heat shock transcription 
factor sigma 32 [60]. The stability of mRNA secondary struc-
tures is temperature-dependent, destabilizing under condi-
tions like heat shock (shift from 30°C to 42°C). Another 
example is found in Yersinia pestis where the lcrF Shine- 
Dalgarno sequence is sequestered in a temperature-sensitive 
stem-loop. This structure allows ribosome access and initiates 
translation only after temperature-induced conformational 
changes [61,62]. Similarly, cold temperature-induced ncRNA 
(non-coding RNA) COOLAIR, COLDWRAP, and COLDAIR 
in plants have also been reported but whether these are 
intrinsically temperature-sensitive is unclear [63,64]. In my 
view, ‘RNA thermometers’ or ‘RNA thermosensors’ can be 
considered as RNA-based temperature-sensing receptors or 
proto-receptors. A discussion is warranted on when to cate-
gorize these structures as receptors. Riboswitches, for 
instance, have been proposed as receptors for metabolites 
and hormones, and temperature-sensing riboswitches have 
been identified as well [65–67]. The determination of when 
an RNA thermometer or thermosensor qualifies as a receptor 
depends on the extent of downstream signaling events it 
triggers. Analogous to ‘ribozymes’ for RNA-based enzymes, 
it would be beneficial to adopt a unifying term for RNA-based 
receptors [68].

To encompass all RNA molecules (mRNA, non-coding 
RNA, etc.) capable of directly sensing various stimuli within 
a cell – such as temperature, gravity, gaseous solutes, water, 
metal ions, metal clusters, amino acids, pH, and other biologi-
cal molecules – and triggering a signal, I propose the term 
‘riboceptors’ (ribonucleic acid receptors). Examples of ribocep-
tors also include RNA-based evolutionarily old proto-receptors, 
such as the riboswitches sensing lithium, sodium, thiamine, 
lysine, magnesium, manganese, nickel, cobalt, and others [69– 
73]. For temperature-sensing riboceptors, temperature per se 
serves as the ligand, with hot and cold temperatures acting as 
agonists and antagonists, or vice versa (Figure 1).
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How to identify temperature-sensing riboceptors?

To identify temperature-sensing riboceptors, we first need to 
systematically identify all RNA structures with catalytic (or 
even transcription factor) activity in vivo. In such functional 
RNA molecules, we need to identify which contain or are 
flanked with highly temperature-sensitive sequences and struc-
tures (Figure 1(A,B)). Several computational tools have been 
developed and applied to identify such temperature-sensitive 
structures. However, the predictions made by these tools do not 
always align closely with in vivo temperature sensitivity. This 
discrepancy is not surprising, as even the binding of ribosomes 
to specific temperature-sensitive structures can promote RNA 
unwinding/melting at high temperatures [74–80]. Next, we 
should determine which ribozymes exhibit an unusually high 
temperature coefficient (Q10) in vivo. Such highly temperature- 
sensitive ribozymes are likely to be temperature-sensing ribo-
ceptors. Mutational studies disrupting temperature-sensitive 
regions and structural stability should confirm the loss of 
temperature-sensing activity and modulation of ribozyme 

activity. We must also debate how distant the temperature- 
sensitive flanking sequence can be from the ribozyme to still 
be considered a temperature-sensing riboceptor (Figure 1(A)). 
Another possibility is that a ribozyme lacking temperature- 
sensitive regions may interact with a temperature-sensitive 
nucleic acid, and the resulting complex may act as 
a temperature-sensing riboceptor (Figure 1(C)).

Is it temperature sensing per se, or is it loss of  
binding partners?

One potential caveat when identifying temperature-sensing ribo-
ceptors is determining whether the changes in temperature affect 
only the nucleic acid structure or also impact the binding of 
other components necessary for catalytic or signalling activity. 
However, the question arises: are there any proteins or nucleic 
acids that function entirely independently without interacting 
with other molecules? Even the temperature-sensing TRPV1 
channel can bind to various classes of endogenous and 

Figure 1. Model of putative temperature-sensing riboceptors.
(A) A ribozyme or deoxyribozyme flanked by sequences that contain temperature-sensitive structures, where temperature-dependent structural changes modulate 
catalytic activity. (B) A ribozyme or deoxyribozyme containing temperature-sensitive structures, where temperature-dependent structural changes modulate catalytic 
activity. (C) A ribozyme or deoxyribozyme binding with other nucleic acid sequences that contain temperature-sensitive structures, temperature-dependent structural 
changes modulate catalytic activity.
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exogenous molecules [81–83]. Both TRPV1 and TRPV3 chan-
nels seem to require lipid binding or ejection for temperature 
sensitivity [84,85]. Yet, they are still considered temperature- 
sensing receptors and not lipid-sensing receptors. Similarly, an 
adenine-sensing riboswitch was identified as temperature- 
sensitive due to its 35-nucleotide temperature-sensitive module 
and has been proposed as a riboswitch-thermostat [67,86,87]. In 
the case of the RNA thermometer MiniROSE (Repression Of 
heat Shock gene Expression) RNA and agsA mRNA-based ther-
mometer, the temperature-based ‘melting’ of RNA is facilitated 
by ribosome binding [55,59,80]. Overall, temperature-sensing 
riboceptor activity could be modulated by its binding factors, 
similar to the above-mentioned examples of temperature-sensing 
proteins and RNA. Additionally, besides RNA, DNA also con-
tains temperature-sensitive structures, and DNA structures 
(deoxyribozymes or DNAzyme) can also exhibit catalytic activity 
[88–94]. Therefore, it is theoretically plausible that temperature- 
sensing deoxyriboceptors may exist as well.

Overall, until all the putative temperature-sensitive nucleic 
acid structures have been systemically characterized for their 
ability to sense temperature in vivo, it remains challenging to 
dismiss the possibility of temperature-sensing riboceptors. 
Identifying temperature-sensing agnireceptor proteins and 
riboceptors may help us better understand processes such as 
RNA editing and the cross-talk with gas-sensing gasorecep-
tors, water-sensing aquareceptors, and organism physiology 
[30,35,95–97]. It may also help us understand the evolution-
ary origins of receptors and cellular signaling. With tempera-
ture and gases likely preceding RNA and protein world, 
thermocrine and gasocrine signaling via riboceptors are likely 
one of the earliest cellular signaling mechanisms during the 
evolution of life [98].
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