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ABSTRACT
Understanding how cells sense gases or gaseous solutes is a fundamental question in biology and is 
pivotal for the evolution of molecular and organismal life. In numerous organisms, gases can diffuse into 
cells, be transported, generated, and sensed. Controlling gases in the cellular environment is essential to 
prevent cellular and molecular damage due to interactions with gas-dependent free radicals. 
Consequently, the mechanisms governing acute gas sensing are evolutionarily conserved and have 
been experimentally elucidated in various organisms. However, the scientific literature on direct gas 
sensing is largely based on hemoprotein-based gasoreceptors (or sensors). As RNA-based G-quadruplex 
(G4) structures can also bind to heme, I propose that some ribozymes can act as gas-sensing riboceptors 
(ribonucleic acid receptors). Additionally, I present a few other ideas for non-heme metal ion- or metal 
cluster-based gas-sensing riboceptors. Studying riboceptors can help understand the evolutionary 
origins of cellular and gasocrine signaling.
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If there are protein-based gasoreceptors, are there 
nucleic acid-based gasoreceptors?

Gases are among the evolutionarily oldest molecules, likely pre-
ceding the RNA world and potentially contributing to the forma-
tion of complex polymeric structures [1–6]. As RNA-based 
organisms evolved, gaseous solute (gas) sensing must have been 
one of the earliest mechanisms to develop, playing a pivotal role 
not only in organism evolution but also in the evolution of mole-
cular machinery. Table 1 I have recently proposed gasocrine 
signaling to unify all the gasoreceptor-based cellular signaling 
events and to relax the gasotransmitter criteria to include oxygen 
(O2) as an essential gasotransmitter [7,8]. Currently, several pro-
tein-based acute gas-sensing sensors or gasoreceptors with diverse 
signaling domains and activity have been identified across various 
genera (Table 1). However, the identity of O2-sensing gasorecep-
tors in vertebrates and plants is largely unknown.

Similar to proteins, RNA (riboswitches) can also sense and 
trigger a cellular signaling event. For instance, bacterial nhaA-I 
and nhaA-II RNA motif riboswitches can sense Li+, while the 
glmS ribozyme/catalytic riboswitch can sense molecules such as 
GlcN6P (glucosamine-6-phosphate) and glucose-6-phosphate 
[9–12]. However, whether gas-sensing riboswitches exist is 
unknown [13]. Recently, the lncRNA HIPLS (hypoxia-induced 
lncRNA for polo-like kinase 1 stabilization) was identified as 
essential for O2 sensing, acting downstream of HIF1α, one of the 
hypoxia-inducible factor subunits [14]. To the best of my knowl-
edge, there are no scientific literature on RNA-based structures 
(ribozyme, riboswitch, RNA-based gas sensor, or receptor, etc.) 
that can directly sense gases. Does this mean that during evolu-
tion, the only ‘sensory’ functions of ribozymes or riboswitches 

were for amino acids, metal ions, metabolites and temperature 
but not gases? [15]. Or are such gas-sensing ribozymes yet to 
be experimentally demonstrated, or have they not been 
described in the literature with a unifying term similar 
to the parable of the blind men and the elephant? [16,17]

Heme-based protein gasoreceptors

Even before we could debate about the existence of gas-sensing 
ribozymes or catalytic riboswitches, a question arises: how 
common are heme (iron protoporphyrin IX)-based gasorecep-
tors or sensors other than the well-known NO (nitric oxide)- 
sensing soluble guanylate cyclase? [18] Theoretical arguments 
for the presence of heme-based gas-sensing proteins have been 
proposed by others, even for O2 [19,20]. My arguments for 
mammalian protein-based gasoreceptors are based on the evo-
lutionary conservation of gas-sensing hemoproteins and gas- 
binding metalloproteins [21–23]. Heme-based gasoreceptors 
include DosP (Direct sensor of O2), FixL, CooA in bacteria, 
E75/Eip75 (ecdysone-induced protein 75) in flies, soluble ade-
nylate cyclase in Leishmania, and soluble guanylate cyclase in 
worms, mice and human (Table 1) [7,24–30]. Circadian reg-
ulators CLOCK (Clock Circadian Regulator), NPAS2 
(Neuronal PAS domain protein 2), and nuclear hormone 
receptor family protein REV-ERB/NR1D1 are also heme- 
based gasoreceptors [31–34]. The activity of all these proteins 
has been experimentally demonstrated to be affected by the 
binding state of either O2, CO, NO, or CO2. The heme in the 
pentacoordinate (and even in hexacoordinate in the case of 
CooA) geometry allows binding of these gases, which is 
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usually further stabilized by additional interactions such as 
hydrogen bond formation with the distal histidine [30]. 
Overall, heme-based gasoreceptors or sensors exist at the 
protein level with diverse signaling domains and activity 
that include phosphodiesterase, hexokinase, adenylate 
cyclase, guanylate cyclase, DNA-binding transcription factor 
activity (Table 1). However, to the best of my knowledge, the 
identity of O2-, H2S-, C2H4-, CH4-, NH3-, and N2-, sensing 
gasoreceptors in vertebrates is largely unknown [35–39]. 
Moreover, it is not clear if heme is the sole co-factor in 
gasoreceptors, as proteins can bind gases such as O2, CO, H2 

S, and N2 either via metal ions or metal clusters [22,40–42]. 
Finally, it is worth noting that not all the hemoproteins may 
have a gas-sensing role (at least without additional binding 
partners). For example, O2-binding hemoprotein cytoglobin 
exhibits nitrite reductase activity and has been proposed as 
a redox sensor [43,44].

Can heme-binding G4-based ribozymes act as 
RNA-based gasoreceptors?

RNA G4 (G-quadruplex) structures have been described not 
only in mRNA but also in small and long ncRNAs (non- 
coding RNAs), TERRA (telomeric repeat-containing RNA), 
and even in mitochondria RNA [45–48]. RNA G4 structures 
are widespread and enriched in the 5’ UTR of ribosomal 
protein-coding mRNAs, regulating ribosomal protein transla-
tion [49,50]. RNA G4 has been shown to exhibit ribozyme 
activity, catalysing oxygen transfer reactions and acting as 
peroxidases and/or peroxygenases both in vitro and in vivo 
[51–54]. Such RNA G4-based ribozymes have also been 
demonstrated in the C9orf72 (chromosome 9 open reading 

frame 72) gene, implicated in neurodegenerative diseases such 
as ALS (Amyotrophic lateral sclerosis) [55–58].

RNA-based G4 structures, characterized by stacked 
G-tetrads, have the capability to scavenge heme, which in its 
freeform is cytotoxic [51,52,59–62]. Even human rRNA and 
ribosomes have been shown to bind heme in vivo [63]. 
Functional RNA G4 heme-based ribozymes (e.g. rPS2.M/ 
heme holoenzyme) has been reported to catalyze chlorination 
of organic substrates [64]. However, the question arises 
whether all or some RNA G4 associated with heme (heme 
B) can also bind gas in vivo under physiological conditions. In 
my opinion, if soluble guanylate cyclase can be activated by 
NO binding to its heme and this binding affects its structure 
and enzymatic activity, then why not consider that at least 
some RNA G4 structures with bound heme could similarly 
respond to gas binding? [65] If gas binding to the heme of 
RNA G4 triggers a change in the activity of G4-containing or 
G4-associated ribozymes, then these ribozymes could be con-
sidered RNA-based gas-sensing receptors (Figure 1).

Overall, heme-binding RNA G4 structures found within or 
associated with RNA-based signaling components (such as 
ribozymes, riboswitches, RNA-based transcription factors), 
besides their role as heme scavenging, may also function as 
gas-sensing riboceptors (ribonucleic acid receptors) [63,66]. 
I propose ‘riboceptors’ as a unifying term to encompass all 
classes of RNA molecules capable of sensing not only for gas, 
ions, metal ions, and metabolites, but also temperature and 
water.

How to identify heme-based gas-sensing 
riboceptors?

To identify putative gas-sensing riboceptors, we first need to 
systemically identify all RNA structures with catalytic (or 

Table 1. List of gasoreceptors in diverse organisms.

Gas/solute sensed Organism
Gasoreceptor 

protein
Gasoreceptor 

activity Riboceptor

O2 Escherichia coli DosP Phosphodiesterase ?
Rhizobium meliloti FixL* Histidine kinase ?
Leishmania major HemAc-Lm Soluble adenylate cyclase ?
Caenorhabditis elegans GCY-35 Soluble guanylate cyclase ?

CO2 Caenorhabditis elegans GCY-9
CO Rhodospirillum rubrum CooA Transcription factor ?

Burkholderia xenovorans RcoM
Mus musculus NPAS2

CO, NO Drosophila melanogaster E75
Homo sapiens REV-ERBβ

C2H4 Synechocystis sp. PCC 6803 Light-sensing SynEtr1 Histidine kinase ?
Arabidopsis thaliana ETR1, 

ETR2, ERS1, 
ERS2, EIN4

Histidine kinase 
Serine/Threonine kinase

?

NO Mus musculus, 
Homo sapiens

GUCY1A3 
GUCY1B3

Soluble guanylate cyclase ?

? Danio rerio NO gasoreceptor candidate 
Gucy1a

? Mus musculus, Homo sapiens NO-, CO-binding gasoreceptor candidate 
DGCR8/DROSHA

RNase III enzyme ?

? O2-binding gasoreceptor candidate 
ADGB

Protease ?

H2S ?
CH4
NH3
N2
?
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transcription factor) activity that contain or are associated 
with heme-binding G4-forming sequences and structures. 
Next, we should determine which heme-based ribozymes 
can bind to gases such as CO, CO2, NO, or O2 and exhibit 
a change in ribozyme activity upon binding. The binding of 
the gases may be stabilized through additional interactions 
with the RNA, such as hydrogen bonding via guanine or 
cytosine, similar to distal histidine-based hydrogen bonding 
seen in O2-binding hemoproteins. If binding of the gas does 
not alter ribozyme activity, then heme-binding could serve 
a catalytic, scavenging, or transport role for the gas. However, 
if binding of the gas alters ribozyme structure and activity 
in vivo, then these ribozymes function as heme-based gas- 
sensing riboceptors. Mutational studies disrupting heme- 
binding (or additional interactions with the gas) should con-
firm loss of gas-binding activity and modulation of ribozyme 
activity.

Binding partner, co-riboceptor, or riboceptor 
activity-modifying RNA?

Formation of protein-protein or protein-lipid-based func-
tional homodimers, heterodimers, and heteromultimers/oli-
gomers can alter or enhance the protein activity [67–71]. 
For example, the Wnt/β-catenin pathway requires interaction 
of the Wnt ligand with the receptor Frizzled, as well as the co- 
receptor LRP5/6 (lipoprotein receptor-related protein 5 or 6) 
[72]. Similarly, ligand-selectivity can be regulated depending 
on the identity of RAMPs (receptor activity-modifying 

proteins) and their interaction with receptors [73,74]. In 
another extreme example, gas-sensing bacterial protein 
CooA, CO-binding is important for CooA homodimerization 
and its transcriptional activity [75]. Finally, the RNA- 
binding protein DGCR8 (DiGeorge Critical Region 8), 
which interacts with DROSHA to form a pri-miRNA (pri-
mary miRNA) processing complex, is also a gas-binding 
hemoprotein [76–80]. We should consider whether 
DGCR8 or the pri-miRNA processing factor can be classi-
fied as gasoreceptor, given that CO and NO has been 
shown to inhibit pri-miRNA activity. This suggests that 
CO and NO act as antagonists of the pri-miRNA proces-
sing factor. Debating about it may allow us to consider 
riboceptors based on dimerization of ribozymes with other 
gas-sensing modules (Figure1). Overall, drawing parallels 
with protein-based signaling and gas-sensing mechanisms, 
it remains unknown whether RNA-based gas sensing also 
requires dimerization of ribozymes or other RNA struc-
tures, co-riboceptors, or riboceptor activity-modifying 
RNAs (RAMRs).

Non-heme-based gas-sensing riboceptors

In proteins, gas-binding occurs not only via heme, but also 
via metal ions and even metal clusters. For instance, arthro-
pod hemocyanin bind O2 and CO via Cu2+ ions, while 
hemoglobin in vestimentiferan tubeworms can bind H2 
S via Zn2+ ions [41,42,81]. Ethylene-sensing gasoreceptors 
in Arabidopsis and cyanobacteria require Cu2+ ions [82,83] 
Metal cluster-based gas binding occurs via FeS (Iron- 
sulphur), FeMoco (Iron molybdenum cofactor), etc 
[40,84]., In bacteria, FeS cluster-containing transcription 
factors FNR and NsrR has been proposed as O2- and NO- 
sensing proteins, respectively [84–87]. However, apart from 
proteins, nucleic acids can also interact with metal ions 
[88–92]. Whether metal ion-binding ribozymes or other 
RNA structures act as gas-sensing riboceptors is currently 
unknown (Figure1). Theoretically, FeS clusters can interact 
with RNA via coordination bonds, but their stability and 
role in gas sensing require experimental verification.

Additionally, besides RNA, G-rich DNA can also form 
G4 structures that bind heme, and DNA (deoxyribozymes 
or DNAzyme) can exhibit catalytic activity [93–96]. 
Therefore, it is theoretically plausible that heme- or non- 
heme-based gas-sensing deoxyriboceptors may exist. 
Overall, until all putative heme- and non-heme-based 
nucleic acids have been systemically characterized for their 
ability to bind and sense gases, it remains challenging to 
dismiss the possibility of gas-sensing riboceptors. If gas- 
sensing riboceptors don’t exist, it suggests that the origin 
of gasocrine signaling is only via protein-based gasorecep-
tors, which I think is very unlikely if the RNA world theory 
is true, since gases preceded the RNA world. Finally, as I 
recently proposed that some of the heme-based gasorecep-
tors may also function as water-sensing aquareceptors, it 
remains to be determined whether gas-sensing riboceptors 
may also have a dual role as water-sensing riboceptors [97].

Figure 1. Model of putative gas-sensing riboceptors. (A) a riboceptor can consist 
of a ribozyme or deoxyribozyme associated with sequences capable of binding 
diverse gas-binding cofactors. (B) a riboceptor can consist of a ribozyme or 
deoxyribozyme containing sequences capable of binding diverse gas-binding 
cofactors. The gas-binding must modulate the ribozyme activity.
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