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Transcriptional dynamics orchestrating the 
development and integration of neurons born in the 
adult hippocampus
Natalí B. Rasetto1,2†, Damiana Giacomini1,2†, Ariel A. Berardino1,3†, Tomás Vega Waichman1,3, 
Maximiliano S. Beckel1,3, Daniela J. Di Bella4, Juliana Brown4, M. Georgina Davies-Sala1,2,  
Chiara Gerhardinger4, Dieter Chichung Lie5, Paola Arlotta4*, Ariel Chernomoretz1,3,6*,  
Alejandro F. Schinder1,2*

The adult hippocampus generates new granule cells (aGCs) with functional capabilities that convey unique forms 
of plasticity to the preexisting circuits. While early differentiation of adult radial glia-like cells (RGLs) has been 
studied extensively, the molecular mechanisms guiding the maturation of postmitotic neurons remain unknown. 
Here, we used a precise birthdating strategy to study aGC differentiation using single-nuclei RNA sequencing. 
Transcriptional profiling revealed a continuous trajectory from RGLs to mature aGCs, with multiple immature 
stages bearing increasing levels of effector genes supporting growth, excitability, and synaptogenesis. Analysis of 
differential gene expression, pseudo-time trajectory, and transcription factors (TFs) revealed critical transitions 
defining four cellular states: quiescent RGLs, proliferative progenitors, immature aGCs, and mature aGCs. Becom-
ing mature aGCs involved a transcriptional switch that shuts down pathways promoting cell growth, such SoxC 
TFs, to activate programs that likely control neuronal homeostasis. aGCs overexpressing Sox4 or Sox11 remained 
immature. Our results unveil precise molecular mechanisms driving adult RGLs through the pathway of neuronal 
differentiation.

INTRODUCTION
The hippocampus is involved in processing spatial representations 
and plays multiple functions in regard to memory acquisition, stor-
age, and retrieval (1, 2). The dentate gyrus is the primary gateway for 
information coming from the entorhinal cortex to the hippocampus. 
It bears an architecture with unique dynamics due to the presence 
of radial glia-like cells (RGLs), which continuously generate new 
neurons that integrate in the preexisting networks (3–5). Adult-
born granule cells (aGCs) provide a substrate for the plasticity of 
perforant-path to granule cell (GC) synapses (dentate input) as well 
as for mossy fiber to CA3 connections (output) (6–9). Such inten-
sive circuit remodeling is crucial for the fine discrimination of simi-
lar experiences (10–12).

In the mouse brain, developing aGCs display distinct functional 
characteristics until they become mature after >8 weeks, a time 
course that is known to last several months in primates (3, 13). The 
maturation of functional properties over time involves reduction of 
membrane resistance, expression of voltage-gated channels, afferent 
and efferent synaptogenesis, and switch of γ-aminobutyric acid 
(GABA)–mediated signaling from excitation to inhibition (Fig. 1A). 
At 4 weeks, aGCs display a transient period of enhanced excitability 
and susceptibility to activity-dependent synaptic plasticity. This period 

represents a crucial contribution of neurogenesis to circuit remodeling 
and information processing in the dentate gyrus (6, 8, 9, 14–22). 
Once mature, aGCs are functionally indistinguishable to GCs born 
during perinatal development (23, 24). Each step of neuronal dif-
ferentiation is precisely shaped by the activity and physiological 
conditions of local dentate networks. Behaviors that increase the 
dentate activity such as exercise, environmental enrichment, or spa-
tial learning exert positive modulatory effects, while conditions that 
alter the adult neurogenic niche such as aging, inflammation, or neu-
rodegeneration are typically detrimental for neurogenesis (4). The 
molecular mechanisms controlling the transitions throughout aGC 
development and their modulation remain unknown.

Recent studies have exploited the power of single-cell transcrip-
tomics to provide comprehensive descriptions of the initial stages 
of adult neurogenesis, thus identifying RGLs with distinct potential 
for self-renewal and differentiation (25, 26). Additional work has 
strengthened the long-standing notion that RGLs generate interme-
diate neural progenitor cells (NPCs) with high proliferating capaci-
ty, which then transition to postmitotic neuroblasts (27). Later steps 
of neuronal differentiation have been inferred after studying dentate 
gyrus cells isolated from postnatal and adult mice (28). However, 
the progression from RGL to mature neuron in the adult hippocam-
pus has never been studied.

Here, we put forward the hypothesis that developmental transi-
tions respond to distinctive molecular programs that are sequentially 
activated in aGCs. To capture all intermediate stages through the 
pathway of aGC differentiation, we labeled defined neuronal cohorts 
at different ages in vivo (from 1- to 8-week-old cells) and performed 
single-nucleus RNA sequencing (snRNA-seq), generating two inde-
pendent datasets. The high specificity and temporal resolution of 
these datasets enabled us to reveal the profile of immature and 
mature aGCs. Unsupervised algorithms identified 10 clusters that 
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assembled into a linear developmental trajectory. This continuous 
pathway was reflected in the transcriptional dynamics of effector 
genes including pathfinding and cell-adhesion molecules, ion chan-
nels, neurotransmitter receptors, and components of the synaptic 
machinery. Analysis of differential gene expression, pseudo-time 
trajectory, and transcription factors (TFs) revealed critical transi-
tions defining four cellular states: quiescent neural stem cells, prolif-
erative progenitors, postmitotic immature aGCs, and mature aGCs. 
The passage from immature to mature aGCs involved a transcrip-
tional switch that shuts down TFs promoting cell growth and synap-
togenesis and turned on the expression of pathways limiting growth 
and controlling homeostasis. The shutdown of SoxC genes emerged 
as a crucial event to achieve maturation. Supporting this hypothesis, 
overexpression of Sox4 or Sox11 maintained developing aGCs in 
a persistent immature phenotype. Overall, our work uncovers a 
molecular continuum underlying neuronal differentiation in the 
adult hippocampus, assigning specific transcriptomic profiles to the 
individual stages, revealing master regulator TFs and the effector 
molecules that convert those programs into neuronal function.

RESULTS
Transcriptomic profiling of adult neurogenesis with high 
temporal resolution
To profile neurogenesis in the adult mouse hippocampus, we used a 
strategy to isolate developing cells derived from RGLs expressing the 
proneural gene Achaete-scute homolog 1 (Ascl1) (25, 29, 30). Young-
adult Ascl1CreERT2;CAG floxStopSun1sfGFP mice were used to induce the 
expression of Sun1-sfGFP in the nuclear membrane of RGLs and 
permanently label their progeny upon tamoxifen (TAM) adminis-
tration (Fig. 1B and fig. S1A) (31). This birthdating tag enabled a 
comprehensive analysis of the entire process encompassing neuronal 
differentiation and functional maturation. A first dataset was built 
using fluorescence-activated cell sorting (FACS)–sorted nuclei ob-
tained from dentate gyri microdissected at 1, 2, 4, and 8 weeks after 
induction (cohorts w1 through w8). High-throughput snRNA-seq 
carried out using Chromium 10x Genomics 3′ end sequencing tech-
nology rendered 14,367 profiles with a median of 2994 genes per 
nucleus belonging to all four cohorts (fig. S1, B to E). Plotting dataset 
1 using t-distributed stochastic neighbor embedding (t-SNE) revealed 
that nuclei from the distinct cohorts formed a continuous sequence 
organized by neuronal age (Fig. 1C). Considering a mutual k-nearest 
neighbor graph (mKNN; k = 40), we used an unsupervised clustering 
procedure (Louvain) to group nuclei into communities (32). This 
initial unsupervised partition was further refined and revealed 
13 clusters (Fig. 1D). Clusters #1 through #10 seemed to constitute 
a linear developmental trajectory, while clusters #11, #12, and #13 
appeared separated from each other and distant from the main 
pathway. All clusters displayed individual signatures that supported 
the definition of the unsupervised partitions (Fig. 1E and table S1). 
The identity of each cluster was determined by the expression of 
canonical markers. The majority of cells (about 88% of dataset 1) were 
distributed in partitions #3 through #10 that belonged to the neuro-
nal lineage and were identified by the expression Rbfox3 (NeuN, 
panneuronal marker), Prox1 (aGCs), and doublecortin (Dcx, immature 
neurons; Fig. 1F).

Because of their common ancestry, astrocytes and RGLs display 
similar transcriptional profiles that include Gfap, Notch2, and HopX 
(33). However, the comparison of differentially expressed genes (DEGs) 

revealed transcripts typically associated with astrocytic expression 
in cluster #1: Glul and Htra1. In addition, this analysis highlighted 
up-regulated RGL markers in cluster #2: Sox5, Thrsp, and Lpar1 
(tables S2 and S3). Moreover, the restricted expression of Grin2c, 
Aqp4, and Htra1 identified cluster #1 as astrocytes and cluster #2 as 
RGLs (Fig. 1F) (28, 34).

Clusters #11, 12, and 13 encompassed nonneuronal cells that in-
cluded pericytes expressing Tbx18 and Slc6a13 (#11), oligodendro-
cytes expressing Mag and Mog (#12), and oligodendrocyte precursor 
cells expressing Prkg2 and Cspg4 (#13). Pericytes have not been re-
ported as Ascl1 lineage, and their scarce representation in the entire 
dataset (~0.4%) suggests either a transient expression of Ascl1 in this 
population or a leaky expression of the CreERT2 recombinase. In 
contrast, oligodendrocyte progenitors were shown to activate Ascl1 
(35). Therefore, the indelible labeling used here was expected to tag 
the oligodendrocytic progeny.

Both the t-SNE and mKNN graphs indicated that aGCs follow 
a developmental continuum encompassing nine stages through 
neuronal maturation (Fig. 2A). While unsupervised clustering relied 
entirely on transcriptional profiles, nuclei followed a linear track 
ordered by neuronal age in the mKNN graphs (Fig. 2, B and C, and 
fig. S1, F and G). Clusters belonging to the neuronal lineage (Rbfox3+ 
and Prox1+) followed a developmental sequence containing NPCs, 
neuroblasts (NB1 and NB2), immature neurons (GCimm1 and 
GCimm2), young neurons (GCyoung), and mature GCs (GCmat1 
and GCmat2). NPCs were recognized by the expression of Eomes, 
Top2a, Neil3, Cdk6, Lockd, Mcm6, and Pola1, revealing cell cycle 
activity (Fig. 2D and fig. S5A). The presence of Elavl2, Igfbpl1, Sox4, 
and Sox11 indicated that neuronal determination has already oc-
curred in this early state. Neuroblasts lacked genes involved in cell 
cycle and expressed immature neuronal markers including Calb2, 
Dcx, Rgs6, Sox4, Sox11, and Tac2, constituting the first postmitotic 
stage of neuronal differentiation. Clusters that followed in the path-
way, GCimm1 and GCimm2, shut down Calb2 and Elavl2 and 
expressed Dcx, Sox11, Igfbpl1, Rgs6, Camk4, and Chd5. GCyoung 
showed diminished expression of immature neuronal markers and 
enhanced levels of Calb1, Icam5, Tenm1, and Grin2a. Last, clusters 
belonging to mature neuronal phenotypes GCmat1 and GCmat2 had 
completely shut off all immature markers and expressed Ntng1.

The cohort analysis allowed to define the time course for cluster 
onset (Fig. 2C and fig. S1G). RGLs were detected at early time points 
and declined sharply in w8, in line with a depletion of the Ascl1-
expressing stem cell pool bearing limited proliferative capacity and 
self-renewal (25, 30). The observation of a similar size of the cluster 
#1 population at distinct time points, as opposed to the gradual de-
crease of RGLs, suggests that the astrocytic partition is a rather pure 
one. NPCs were scarce, as expected, based on their fast division and 
differentiation and mostly present in w1 and w2. Neuroblasts were 
distinguished by their early onset and rapid disappearance. Imma-
ture and young aGCs appeared sequentially with distinctive tempo-
ral progression. GCimm1 primarily emerged in w1 and reached a 
maximum in w2, while GCimm2 was observed in w2 and w4. GCy-
oung was uniquely found in w4, which strongly suggests that this 
cluster corresponds to developing aGCs undergoing the critical pe-
riod of enhanced plasticity. GCmat1 was primarily observed in w8. 
Although dataset 1 was arranged in a continuous pathway with 
important changes in cluster composition from w2 to w4 and w8, 
additional transitions occurring at intermediate times might have 
been oversighted. To improve time resolution, we collected dataset 2 
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Fig. 1. Transcriptional dynamics of neuronal cohorts born in the adult dentate gyrus. (A) Scheme of new neurons development in the adult hippocampus. Phase I: Radial glia-
like cells (RGLs) generate astrocytes (Astro) or neural progenitor cells (NPCs). New granule cells (aGCs) receive depolarizing GABAergic inputs. Phase II: aGCs acquire glutamatergic 
contacts. Phase III: Period of enhanced excitation/inhibition balance. Phase IV: GABAergic inhibition matures and excitability decreases (87). Glial fibrillary acidic protein (GFAP) ex-
pression denotes astrocytic lineage. DCX and Calb1 denote neuronal lineage. (B) Experimental design. Ascl1CreERT2;CAG floxStop-Sun1/sfGFP mice received tamoxifen (TAM) injections. 
Dentate gyri were microdissected at the indicated time points. Image depicts a dentate gyrus with Sun1/sfGFP-labeled nuclei from 2-week-old aGCs. Scale bar, 100 μm. 
(C) t-Distributed stochastic neighbor embedding (t-SNE) for individual cohorts collected 1, 2, 4, and 8 weeks after labeling. (D) Mutual k-nearest neighbor (mKNN; k = 40) graph 
displaying 13 clusters. Red arrow denotes the path followed by adult neurogenesis. (E) Heatmap showing the normalized expression for 100 genes with highest variability (table S1). 
Numbers and colors correspond to clusters in (D). Maximal expression is shown on the left (Max. value). Scale on the right denotes mean expression level. (F) Dot plot exhibiting 
canonical markers. Pericyte (Peri): Tbx18 and Slc6a13; oligodendrocyte (Oligo): Mag and Mog; oligodendrocyte progenitor (OPC): Prkg2 and Cspg4; astrocyte (Astro): Grin2c, Aqp4, and 
Htra1; RGL: Gfap, Hopx, and Notch2; neurons: Dcx, Rbfox3, and Prox1. Scales on the right correspond to log2(mean gene expression) and dot size for expressing fraction of nuclei. All 
data correspond to dataset 1.
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Fig. 2. Timing and complexity of adult neurogenesis revealed by molecular profiling. (A) mKNN graph displaying cluster identity based on the expression of 
canonical genes: RGL, NPC, NB (neuroblast), GCimm (immature aGC), GCyoung (young aGC), GCmat (mature aGC), Astro, OPC, Oligo, and Peri. (B) Nuclei distribution for 
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with cohorts at 2, 3, 4, 5, and 8 weeks (w2 through w8; fig. S2, A to 
C). We used Seurat functionality to transfer cluster labels from data-
set 1 to nuclei belonging to dataset 2 (fig. S3, A and B; see Materials 
and Methods). To assess the biological reproducibility between both 
datasets, the R package Batchelor was applied, and the integration 
between datasets was analyzed in a batch-corrected expression space 
(Fig. 2E). Clusters in dataset 2 maintained overall properties includ-
ing DEGs through transitions, timing of appearance of the distinct 
clusters, and expression of canonical markers, although with a some-
what slower pace (figs. S2, D and E, and S3C). No nuclei were assigned 
as NB2, in line with the prominent w1 cohort composition of this 
cluster in dataset 1 (fig. S1G). The onset of GCimm2 was delayed 
compared to GCimm1, similarly to dataset 1. GCyoung was again 
dominant in w4, and GCmat1 was maximally expressed at w8, but it 
was also present at w5, suggesting an earlier appearance. Both data-
sets shared a high number of DEGs along transitions, supporting 
their reproducibility at the transcriptional level (fig. S2F).

This transcriptomic analysis describes the continuous trajectory 
of a unique neuronal type, the aGC, through distinct stages from 
RGL to GCmat. These multiple successive clusters denote higher 
complexity than the predicted from functional studies and establish 
the molecular basis for the morphological and physiological chang-
es occurring during aGC differentiation.

Distinct cellular states in the trajectory from neural stem cell 
to mature neuron
The sequential pathway from RGL to NPC and then NB1 involved 
profound cell biological transitions, from a quiescent to a proliferat-
ing state and then to a postmitotic neuroblast. In both datasets 1 and 
2, these transitions displayed the highest numbers of DEGs, particu-
larly in terms of transcript shutdown. Unexpectedly, a high number 
of DEGs with marked gene down-regulation were also observed in 
the passage from GCimm2 to GCyoung (Fig. 3A and fig. S4A).

To better understand the dynamics of the developmental pathway, 
we assigned pseudo-time values to all nuclei along the continuous 
trajectory from RGL to GCmat1 (see Materials and Methods) and 
organized the datasets to obtain one density plot for each cohort 
(Fig. 3B and fig. S4B). Pseudo-time density plots displayed four peaks 
separated by clear valleys: one peak containing RGLs, another peak 
containing NPCs, a longer window encompassing all immature 
neurons (NB1 through GCimm2), and a last peak including GCyoung 
and GCmat1. The valleys were precisely coincident with the largest 
transitions resulting from the DEG analysis. The topography of these 
density plots seems to define four putative states along the pathway 
of neuronal differentiation.

To unveil the biological significance underlying these states, we 
analyzed the profile of TF expression. Aligning TFs in accordance to 
their expression onset or shutoff also revealed four distinct segments 
that were readily observed in the resulting heatmaps and corresponded 
to the peaks described above (Fig. 3C and fig. S4C). TF expression 
displayed different patterns, with a majority restricted to the RGL 
cluster (such as Etv4, Etv5, Hes5, and Gli1), others remaining in 
NPCs (Ascl1, Sox6, Sox9, and Fezf2), and multiple TFs covering the 
trajectory from NB to GCimm2 (Sox4, Sox11, Tbr1, and Klf12). Oth-
er TFs remained silent through development and became expressed 
in GCyoung (Atf6, Runx2, Mkx, and Foxk1). A subset of TFs ex-
pressed in RGLs shuts down in NPCs and was up-regulated again in 
GCyoung and GCmat1 (Foxo1, Glis3, Bcl6, and Hlf). Within each 
segment, cell clusters displayed little modifications in TFs.

The switches in TF expression, the critical transitions delimited 
by DEGs, and the valleys separating the peaks in the pseudo-time 
plots were all coincident within the same three transitions, revealing 
four crucial states that establish the developmental trajectory. Four 
distinct cellular states are thus defined: one corresponding to RGLs, 
another containing NPCs, a third state enclosing immature neurons 
from NB1 to GCimm2, and a fourth one encompassing GCyoung 
and GCmat1.

Building neuronal function through effector molecules
The transition from the first (RGL) to the second (NPC) cellular 
state switched off about 200 genes that remained silenced thereafter, 
reflecting a transformation from a multipotent program toward active 
proliferation (Fig. 4, A and B). NPC was the only mitotic state, ex-
pressing multiple cell-cycle genes and displaying an early neuronal 
commitment revealed by the expression of Eomes, Sox4, Sox11, and 
Igfbpl1 (Fig. 2D and fig. S5A). The end of cell division delimits the 
exit from the second state toward postmitotic differentiation, start-
ing with two types of neuroblasts, NB1 and NB2, expressing maxi-
mal levels of Dcx and Igfbpl1 (Fig. 4C). This transition to the third 
state up-regulated transcripts controlling neuronal differentiation 
and morphogenesis, cell-cell interaction, development and guid-
ance of neuronal projections, and synaptic organization (Fig. 4D).

The third state comprises several immature neuronal clusters, 
from NB1 to GCimm2, that share the expression of canonical markers 
of early development: Dcx, Sox4, Sox11, Igfbpl1, and Rgs6 (Fig. 2D 
and fig.  S3C). Transitions among clusters in this state primarily 
involved up-regulated gene expression with few down-regulated 
transcripts, suggesting that aGCs continued to incorporate molecules 
that expanded their structural and functional capabilities (Fig. 3A 
and fig. S4A). In general, effector genes that showed an onset of 
expression in NB1 increased steadily and were maintained until 
maturation (Fig. 4C). This was the case for genes related to synaptic 
transmission such as Cacna1e, Camk4, Cdh8, Fgf14, Gabrb1, Gabrg3, 
Grin2a, Grm5, Grm7, Kcnma1, and Syt1 (Fig. 5, A to D).

NB2 constituted a parallel pathway diverging from NB1 toward 
GCimm1. In the progression from w1 to w2, the NB2 population 
dropped twice as fast as NB1, suggesting a shorter half-life (Fig. 2C 
and fig. S1G). The NB2 population expressed the canonical markers 
for the neuroblast stage Calb2, Tac2, and Rgs6 (Fig. 2D). Compared 
to NB1, NB2 displayed about 50 additional transcripts with almost 
no reduction in gene expression (figs. S4A and S5B). Several tran-
scripts continued to increase in GCimm1 and GCimm2, suggesting 
that NB2 might represent a more advanced developmental stage. 
Some of these up-regulated genes are related to the assembly of glu-
tamate receptors (Grin2a, Grid1, and Grip1), axon guidance (Robo2, 
Sema3c, and Unc5d), and cell-cell interaction (Ephb1, Cdh4, Pcdh7, 
and Nrxn3) (Fig. 5D and fig. S5C).

The transition from NB1 to GCimm1 displayed a marked increase 
in GABA and glutamate receptor subunits (Gabrb1, Grm5, Grm7, 
Gabbr2, Gabrg3, and Grin2a), voltage-gated ion channels (Kcnma1, 
Kcnd2, and Cacna1e), and axon guidance (Robo1, Nrp1, Epha7, 
Dscam, Ncam2, Epha6, Slit3, and Ptpro), critical for the establish-
ment of membrane excitability, neuronal growth, and synaptic 
transmission (Fig. 5, B and D).

GCimm1 and GCimm2 shared specific markers that were previ-
ously described for immature GCs (fig. S6, A and B) (28). Besides 
these general similarities, GCimm2 displayed a distinct profile indi-
cating a more advanced developmental stage, including genes related 
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to synapse formation and plasticity, such as Camk2a and multiple 
glutamate receptor subunits: Grm1, Grid1, Gria3, Grin2a, Grm5, 
and Grm7 (Fig. 5, C and D) (36–38). These findings suggest that 
GCimm2 initiates a program for glutamatergic synaptogenesis, 
which, in electrophysiological studies, was shown to begin in 
2-week-old aGCs.

The early clusters described above—RGL, NPC, and neuroblasts—
reflect different cellular states that bring neural stem cells toward 
postmitotic neuronal differentiation. In the transitions occurring 
within the third state (NB to GCimm1 and then to GCimm2), devel-
oping aGCs incorporate molecules that expand their functional ca-
pabilities, with little transcript shutdown.

Molecular blueprint of neurotransmission and activity
The passage from GCimm2 to GCyoung revealed a major switch 
that marked the end of the immature period and the beginning of 
the fourth state (Figs. 3 and 6, A and B, and fig. S4). This transition 
exhibited a large number of DEGs, highlighting the complexity re-
quired to reach neuronal maturation. Multiple transcripts that had 
reached maximal expression during early development shut down 
in GCyoung: Adamts18, Dcx, Hcn1, Igbpl1, Robo1, Rgs6, Sema3c, 
Sema3e, Sox4, and Sox11. To better understand the functional 
changes involved in this transition, we performed enrichment anal-
ysis of Gene Ontology (GO) terms (fig. S7). Genes related to axonal 
growth and development shut down, while those orchestrating post-
synaptic organization, transmission, and plasticity appeared during 
this period. Kirrel3, a synaptic adhesion molecule required for the 
formation of mossy fiber contacts onto GABAergic interneurons, 
providing feed-forward inhibition onto CA3 pyramidal cells, is 
up-regulated during this transition (Fig.  6B) (39). Furthermore, 
GCyoung showed plateau levels in typical effector genes related to 
excitability and neurotransmission (Fig. 5D). These transcripts in-
cluded the vesicular glutamate transporter VGLUT1 (Slc17a7), 
the K+/Cl− cotransporter KCC2 responsible for the GABA switch 
(Slc12a5), and Camk2a and Grin2a, crucial for synaptic plasticity 
(Fig. 6B). These features are entirely consistent with prior electro-
physiological characterizations of hyperexcitable 4-week-old aGCs 
(14–16, 18, 20).

The GCyoung and GCmat1 clusters, corresponding to the fourth 
state, were observed at the w4 and w8 time points, respectively, which 
is coincident with the interval at which aGCs become functionally 
mature (3). This transition was characterized by a few DEGs with 
subtle changes in their expression level (fig. S8, A and B). A small 
group of the DEGs constituted markers of GCmat1: Car10, Chst9, 
Inpp4b, Ntng1, and Rapgef5 (Fig. 6C). Other genes were specifically 
down-regulated in GCmat1: Lin7a, Meg3, Pcdh15, Plppr1, and 
Slc8a1. Although 4- and 8-week-old aGCs are known to be func-
tionally distinct, GCyoung and GCmat1 clusters displayed similar 
expression profiles. This observation indicates that physiological 
maturation is influenced by additional factors other than their tran-
scriptomic signature.

GCmat2 was a small but sharply defined cluster that contained 
cells belonging to cohorts w4 onward in both datasets and exhibited 
a high number of DEGs when compared to GCmat1 (Fig. 3A and 
fig.  S4A). GCmat2 displayed a set of well-defined markers whose 
expression has been linked to activity of dentate GCs: Acvr1c, 
Sorcs3, Nrxn3, and Kcnip3, among others (Fig. 6D) (40). Bdnf, a 
neurotrophin whose synthesis and secretion depend on neuronal 
activity, was only expressed in this cluster (41, 42). Moreover, Rgs6 

(a marker for immature neurons) has been reported to increase in 
aGCs after running, and it is up-regulated in GCmat2 (43). Cdh13, a 
negative regulator of inhibitory synaptogenesis in the hippocampus, 
was also found to be expressed in GCmat2 (Fig. 6B) (44, 45). To 
confirm this activity-dependent signature, mice were exposed to an 
enriched environment for 1 hour, a condition that enhances neuro-
nal activity in the GC layer (46). This stimulus resulted in a marked 
increase in the expression of the Acvr1c receptor monitored by im-
munofluorescent in situ hybridization (Fig. 6, E and F). Therefore, 
GCmat2 was classified as a cluster containing neurons belonging to 
the w4 to w8 time points that were likely to be electrically active 
before isolation.

Last, some of the markers were validated by fluorescence in situ 
hybridization (Fig.  7). Slc1a3, Sema3c, Nell1, Igfbpl1, Elavl2, and 
Eomes are markers for state 1, 2, or 3, and their expression was 
confined to the inner GC layer, where early aGC stages are typically 
found (47–49). Cpne4, Slc17a7, Ptchd4, Bcl11b, and Plxna4 are 
markers for the fourth state and were expressed by most mature GCs 
in the entire GC layer, including aGCs (Fig.  7, A and B). Marker 
specificity was further tested by their combined expression, showing 
restricted labeling patterns of cell states or clusters with distinct spa-
tial localization (Fig. 7, C to H).

A transcriptional switch underlying neuronal maturation
To identify master transcriptional regulators for the developmental 
trajectory, we evaluated the expression of TFs and their target genes 
(regulons), corresponding to the transitions between cellular states. 
This analysis was performed using SCENIC (see Materials and 
Methods). In particular, we considered regulon specificity scores 
(RSSs) to analyze changes in regulon activity between consecutive 
states (50). The transition from peaks 1 to 2 and from peaks 2 to 3 
revealed genes involved in biological programs that enabled switch-
ing from quiescent (Sox6, Pax6, Sox5, and Sox9) to proliferative 
(Eomes, E2f1, E2f3, E2f6, and E2f7) and then postmitotic states 
(Neurod2, Sox4, and Sox11) (fig. S9A).

The comparison between the third and the fourth states (imma-
ture to mature aGCs) revealed >20 regulons displaying selective 
expression in the third state, with high levels for the SoxC family 
genes Sox4 and Sox11 (Fig. 8A and fig. S9B). Regulons present in the 
fourth state included Bcl6, Foxo1, Anxa11, Tef, and Hlf (fig. S9C). All 
of these TFs have been shown to control signaling pathways regulat-
ing neuronal homeostasis (51–54). Sox4 and Sox11 have been shown 
to play a critical role in early differentiation and neuronal growth, 
both during perinatal development and in adult neurogenesis (55, 56). 
However, their participation during late neuronal maturation remains 
unknown. The shutdown of these SoxC TFs in the last neuronal state 
suggested two possibilities: (i) they are not needed for the final tran-
sition and their down-regulation results as a secondary effect of a 
global transcriptional program and (ii) their absence might be re-
quired for developing neurons to transition to the mature state.

To discriminate between these possibilities, we investigated the 
effect of the sustained expression of Sox4 or Sox11 on aGC differen-
tiation. RV-Sox4-GFP or RV-Sox11-GFP was delivered to the den-
tate gyrus of adult mice to infect mitotic NPCs, coincident with the 
onset of endogenous expression of Sox4 and Sox11 (Fig. 8B). The 
impact of TF overexpression in the neuronal progeny was studied 
after 5 weeks, at which time new aGCs become mature. As revealed 
by immunofluorescence imaging, the immature neuronal marker 
DCX was absent in control aGCs, but it was observed in 60 to 80% 
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Fig. 6. Molecular blueprint of mature aGCs. (A) Schematic mKNN graph depicting the analyzed transitions (red lines). (B) Violin plots showing example genes critical for 
aGC function. (C) Dot plot exhibiting genes selectively up- and down-regulated in GCmat1. Scales on the right correspond to mean expression levels (color) and to the 
fraction of nuclei expressing at least one transcript count in the cluster (dot size). (D) Violin plots depicting the expression of transcripts that are known to be induced by 
activity (40). All data in the figure correspond to dataset 1. (E) In situ hybridization reveals the expression of the activity-induced gene Acvr1c in the granule cell layer (GCL). 
Mice were exposed to an enriched environment for 1 hour (EE) or remained in a home cage (control), and hippocampi were frozen 5 hours later. Representative images 
depict Acvr1c (pink) expression [4′,6-diamidino-2-phenylindole (DAPI), blue]. Scale bars, 50 μm. Dashed box areas shown on the right panels depict areas of the GCL ex-
pressing Acvr1c, which exclude the subgranular zone. (F) GCL area occupied by Acvr1c fluorescence in control and EE mice. n = 10 sections per three mice (control) and 
n = 9 sections per three mice (EE). Asterisk (*) denotes P < 0.05 after Mann-Whitney test. Data depicts means ± SEM.
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of neurons overexpressing Sox4 or Sox11, suggesting that cells failed 
to down-regulate DCX upon Sox4/11 overexpression (Fig. 8, C and D). 
In addition, mature aGCs overexpressing Sox11 [the SoxC member 
with highest transactivation potential; (57)] revealed immature 
properties such as high membrane resistance and excitability, as well 
as impaired capacity to fire repetitive action potentials in acute hip-
pocampal slices (Fig. 8, E to I). Together, these results indicate that 
aGCs with sustained expression of Sox4 or Sox11 maintain imma-
ture features (58, 59). We therefore conclude that shutdown of SoxC 
TFs is a necessary condition for developing aGCs to become mature. 
The transition from the immature to the mature state constitutes a 
critical transformation driven by a strong and unique transcription-
al switch that shuts down molecular cascades promoting cell growth 
and activates a final state that seems to be dominated by neuronal 
homeostasis.

DISCUSSION
The molecular basis underlying the differentiation and functional 
integration of aGCs has remained largely unknown. Previous work 
has captured aspects of adult neurogenesis by means of transcrip-
tomic profiling with a focus on the early molecular cascades that 
distinguish quiescent from active RGLs and NPCs (26, 60). Subse-
quent research has conveyed the notion of a linear trajectory reach-
ing the early neuroblast stages (27). More recently, a study reported 
that immature GCs obtained from the perinatal, postnatal, and adult 
hippocampus display similar transcriptional profiles (28). In this 
work, we performed a comprehensive study encompassing differen-
tiation and functional maturation of aGCs. The strategy involved 
the analysis of cohorts of aGCs at six time points that allowed us to 
assign precise time stamps to the developmental trajectory. In gen-
eral, the dynamics of gene expression profiles matched very closely 
with previous descriptions of developing aGCs obtained using 
immunohistochemical, morphological, and electrophysiological ap-
proaches. These datasets now provide a thorough description of dis-
tinctive molecular states underlying neuronal differentiation in the 
adult hippocampus, assigning specific profiles to the intermediate 
stages, revealing TFs controlling the process, and the effector genes 
that convert those programs into neuronal function.

The different phases of adult neurogenesis were previously char-
acterized by the expression of stage-specific markers defined by 
immunolabeling. RGLs gave rise to NPCs and, subsequently, to neuro-
blasts that were thought to keep limited proliferative capacity (61, 
62). Instead, our results reveal that NPCs are the only mitotic cluster 
in aGC differentiation, and neuroblasts are committed postmitotic 
cells (28). Two types of neuroblasts were observed: NB1 arising from 
NPCs, and NB2 shedding from NB1, forming a parallel pathway 
reaching GCimm1. GCimm1 and GCimm2 were composed mostly 
of 2- to 4-week-old aGCs and expressed immature neuronal markers. 
The transition to GCimm2 up-regulated >100 genes, including 
those related to glutamatergic transmission, which is known to 
begin by the second developmental week (47, 63–65). This finding 
indicates that GCimm2 may be the molecular transition that accom-
panies the onset of glutamatergic synaptogenesis.

Approaching the GCyoung stage involved substantial profile 
changes (250 to 350 DEGs in both datasets) that were only compa-
rable in magnitude to the transitions from RGL to NPC and from 
NPC to NB1. Multiple effector genes reached plateau levels at GCyoung, 
including those required for neurotransmission and plasticity, from 

the presynaptic vesicular glutamate transporter Slc17a7 and vesicu-
lar release Syt7 to postsynaptic glutamate and GABA receptors. Be-
cause GCyoung contained predominantly w4 cells, we propose that 
aGCs in this cluster correspond to 4-week-old aGCs with enhanced 
excitability and synaptic plasticity, described extensively in the literature 
(14–16, 18, 20, 64). Despite containing the fundamental building 
blocks required for neuronal function, 4-week-old GCs are not yet 
mature. Mature aGCs (>8 weeks) exhibit maximal glutamatergic 
synaptic strength, mature GABAergic inhibition, and reduced excit-
ability (18, 58, 66, 67). Few transcripts were found to be selectively 
changed in the transition from GCyoung to GCmat1, suggesting 
that the GCyoung cluster is the early phase in a final step of matura-
tion that becomes consolidated over time.

Analysis of DEGs, pseudo-time trajectory, and TF expression 
revealed three critical transitions defining four cellular states: RGL, 
NPC, immature neurons (NB1 to GCimm2), and a mature state 
(GCyoung and GCmat; Fig. 9). Regulon analysis revealed that Sox4 
and Sox11 regulons played critical roles as organizers of the imma-
ture state. These TFs were known to be involved in the early steps of 
differentiation during perinatal and adult neurogenesis (55, 56). We 
now demonstrate that shutdown of SoxC TFs is a critical mechanism 
required for achieving terminal differentiation.

TFs and regulons dominating the fourth state included Bcl6, 
Foxo1, Klf9, Hlf, Tef, Anxa11, and Atf6. The known functions of 
these TFs suggest that they might coordinate a fine homeostatic 
regulation. For instance, deletion of Foxo family TFs has been shown 
to impair autophagy, leading to aberrant dendritic growth and in-
creased spine density in aGCs (51). Bcl6 acts, in part, through Foxo1 
to control neuron survival (54). Klf9 knockout resulted in increased 
spine density and impaired functional maturation in aGCs (68). 
Moreover, genetic ablation of Hlf and Tef in cultured neurons trig-
gered a disproportionate up-regulation of input excitation when de-
prived of activity (52). This evidence points to a central role of these 
TFs in the homeostatic regulation of excitatory neuronal connectiv-
ity. Anxa11 and Atf6 have been associated with calcium homeostasis 
(53, 69, 70). Foxo1, Tef, Atf6, and Mkx share a common downstream 
TF, Hivep2 (Schnurri-2), whose knockout provoked global alterations 
in the morphology of dentate gyrus GCs (71). Last, Glis3, a TF that 
was selectively expressed in RGLs and then up-regulated in GCmat1, 
has been associated with autophagy and with the regulation of neu-
ronal growth and complexity (72). Together, the regulatory roles of 
these TFs and their late expression support a hypothesis whereby 
neuronal maturation is orchestrated by shutting down molecular 
cascades promoting differentiation and by awaking signaling path-
ways controlling cellular homeostasis. The data presented here opens 
a new scenario to unravel the temporal dynamics involving master 
transcriptional regulators that control neuronal maturation in the 
healthy adult brain and will serve as the basis to identify mecha-
nisms contributing to aberrant circuit remodeling in brain disorders.

MATERIALS AND METHODS
Animals
Male and female C57Bl/6J wild-type and genetically modified mice 
(6 to 8 weeks of age) were housed at four to five mice per cage in 
standard conditions. For adult neurogenesis snRNA-seq experiments, 
Ascl1CreERT2 [Ascl1tm1(Cre/ERT2)Jejo/J)] mice were crossed to CAG floxStop-

Sun1/sfGFP [B6.129-Gt(ROSA)26Sortm5.1(CAG-Sun1/sfGFP)Nat/MmbeJ] condi-
tional reporter line to generate Ascl1CreERT2;CAGf loxStop-Sun1/sfGFP mice, 
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which were used to reliably target adult-born GC nuclei (30, 31, 73). 
TAM induction (120 μg/g, four injections in two consecutive days) 
resulted in the expression of Sun1-sfGFP in the nuclear envelope of 
Ascl1+ cell progeny. Mice were anesthetized (150 μg of ketamine/15 μg 
of xylazine in 10 μl of saline per gram) and euthanized at the indi-
cated times after TAM induction: 1, 2, 4, and 8 weeks for dataset 1 
and 2, 3, 4, 5, and 8 weeks for dataset 2. Mice were maintained 
in C57BL/6J background. Experimental protocols were approved by 
the Institutional Animal Care and Use Committee of the Leloir In-
stitute (CICUAL-FIL 85), according to the Principles for Biomedical 
Research involving animals of the Council for International Organi-
zations for Medical Sciences and provisions stated in the Guide for 
the Care and Use of Laboratory Animals. Leloir Institute is approved 
as a foreign facility by the Office of Laboratory Animal Welfare of 
the US National Institutes of Health (F18-00411).

Tissue dissection
Mice were deeply anesthetized (ketamine/xylazine, as described 
above), and brains were carefully removed and placed into ice cold 
Earl’s balanced salt solution (117 mM NaCl, 5.4 mM KCl, 1 mM 
NaH2PO4, 26 mM NaHCO3, 5.6 mM glucose, 1.8 mM CaCl2·2H2O, 
and 0.8 mM MgSO4) with trehalose (5% v/v) and kynurenic acid 
(0.8 mM_ (74). Dissection solution was equilibrated in 95% O2/5% 
CO2 before use. The brain was cut along the longitudinal fissure, and 

the regions posterior to lambda were cut off. Under a dissection mi-
croscope and upon removal of the diencephalon, the medial side of 
the hippocampus was exposed. The dentate gyrus was isolated by 
inserting a sharp-needle tip and sliding it superficially along the 
septotemporal axis of the hippocampus. The dissected tissue was 
placed in a 0.5-ml microcentrifuge tube with a minimal amount of 
medium, flash-frozen on dry ice, and stored at −80°C until use.

Nuclei isolation and FACS sorting
Nuclei were isolated as previously described with several modifications 
(75). Dounce tissue grinder and pestles were sequentially washed with 
100% EtOH, ribonuclease (RNAse) Zap (Sigma-Aldrich, catalog no. 
R2020), and two to three rounds with RNAse-free water and lastly 
rinsed with EZ Lysis Buffer (Sigma-Aldrich, catalog no. NUC-101). 
All material and buffers were chilled on ice. The tissue was trans-
ferred to a chilled dounce prefilled with 2 ml of ice-cold EZ Lysis 
Buffer and homogenized slowly with 20 to 25 strokes of pestle A, 
followed by 20 strokes with pestle B. Suspension was transferred to 
a chilled tube and incubated on ice 5 min. Then, the suspension was 
centrifuged at 500g for 5 min at 4°C, and the supernatant was re-
moved. The pellet was resuspended in 4 ml of ice-cold EZ Lysis Buf-
fer, and, after a second round of ice incubation and centrifugation, 
the isolated nuclei were resuspended in 4 ml of ice-cold Nuclei Sus-
pension Buffer (NSB) [1× RNase-free molecular biology–grade 
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phosphate-buffered saline, 0.1% molecular biology–grade bovine 
serum albumin (BSA; 100 μg/ml), and RNase inhibitor (0.2 U/μl)]. 
Last, nuclei were centrifuged at 500g for 5 min at 4°C and, after re-
moving the supernatant, were resuspended in 1 ml of NSB-Ruby 
(final Ruby concentration, 1:500) and filtered twice through a 35-μm 
cell strainer to remove as many debris as possible. Nuclei were kept 
on ice until sorting (Harvard University, Bauer Core Facility, BD 
FACSAria II) into 96-well plates, pre-coated with BSA to reduce ad-
herence and improve recovery, containing with ~10 to 20 μl of rich 
NSB [with final RNase inhibitor (2 U/μl) and 1% BSA]. The final 
nuclei concentration was determined using a C-chip Neubauer 
counting chamber and Trypan Blue (1:2 final dilution). Nuclei were 
immediately loaded for single-cell GEM formation (10x Genomics, 
single-cell RNA sequencing 3′, Chromium v3.1).

10x Genomics Chromium
Dataset sampling for snRNA-seq experiments was carried out within 
a minimal time interval, processing two time points in a single ex-
periment each day to minimize batch effects. For each time point, 
four dentate gyri (left hemispheres) from male and female mice 
were pooled. If needed to increase nuclei number, then dentate gyri 
from the right hemisphere were also processed (dataset 2). For 
snRNA-seq, nuclei were loaded in the 10x Genomics chips aiming 
to recover 2000 to 10,000 nuclei. cDNA amplification and library 
construction were done following 10x Genomics protocols. For 
both dataset 1 and dataset 2, libraries were generated using Chro-
mium v3.1, quantified in BioAnalyzer, and sequenced on an Illu-
mina HiSeq or NovaSeq. Samples were sequenced to a depth of 40 to 
70,000 reads per cell.

RNA in situ hybridization
For validation of cluster markers, mice were anesthetized, and the 
brains were removed and placed into the ice-cold dissection solu-
tion (described above). Hippocampi were dissected under a micro-
scope and immediately embedded in OCT on dry ice and stored at 
−80°C. Sections of 14 μm covering the anterior-posterior axis of the 
dentate gyrus were collected in a cryostat. Sections were placed for 
1 hour at −20°C and stored at −80°C until use. Fluorescent multi-
plex RNA in situ hybridization was performed using the RNAscope 
Fluorescent Multiplex Reagent Kit (Advanced Cell Diagnostics), ac-
cording to the manufacturer’s instructions. Briefly, thawed sections 
were fixed in 4% paraformaldehyde and dehydrated in sequential 
incubations with ethanol, followed by 30 min of protease IV treat-
ment. Mice were exposed to the enriched environment for 48 hours 
(Fig. 6E) before tissue sample preparation as described above. Ap-
propriate hybridization probes [Advanced Cell Diagnostics, catalog 
nos. 429291-C1 (Acvr1c), 807961-C2 (Nell1), 441441-C1 (Sema3c), 
430781-C3 (Slc1a3), 488851-C2 (Igfbpl1), 491961-C2 (Elavl2), 
429641-C1 (Eomes), 474721-C1 (Cpne4), 501101-C2 (Slc17a7), 
463451-C1 (Ptchd4), 413271-C1 (Bcl11b), and 515491-C2 (Plxna4)] 
were incubated for 2 hours at 40°C, followed by amplification steps 
(according to protocol) and 4′,6-diamidino-2-phenylindole (DAPI) 
counterstaining, and tissue was mounted with gerbatol to prevent 
bleaching.

Production of viral vectors
A replication-deficient retroviral vector based on the Moloney mu-
rine leukemia virus was used to specifically transduce aGCs as done 
previously (18, 46). Retroviral particles were assembled using three 

separate plasmids containing the capside (CMV-vsvg), viral pro-
teins (CMV-gag/pol), and the transgenes: CAG-GFP, CAG-EGFP-
IRES-Sox11, and CAG-EGFP-IRES-Sox4. Plasmids were transfected 
onto human embryonic kidney (HEK) 293T cells using deacylated 
polyethylenimine. HEK 293T cells were cultured in Dulbecco’s modified 
Eagle’s medium with high glucose, supplemented with 10% fetal calf 
serum and 2 mM glutamine. Virus-containing supernatant was har-
vested 48 hours after transfection and concentrated by two rounds of 
ultracentrifugation. Virus titer was typically ~105 particles per microliter.

Stereotaxic surgery for retroviral delivery
Running wheel housing was only available 2 to 3 days before surgery 
to maximize the number of retrovirally transduced neurons. The 
wheel was removed 1 day after surgery. For the stereotaxic proce-
dure, mice were anesthetized, and retroviral particles were infused 
into the dorsal region of the right dentate gyrus (1 to 1.5 μl at 0.15 μl/
min) using sterile-calibrated microcapillary pipettes through stereo-
taxic references. Coordinates from bregma: −2 mm anteroposterior, 
−1.5 mm lateral, and −1.9 mm ventral. A single injection site was 
sufficient to label an abundant number of neural precursor cells. 
Brain sections were prepared 5 weeks after infection for immuno-
fluorescence or electrophysiological recordings.

Immunofluorescence
Immunostaining was performed in 60-μm-thick free-floating coronal 
sections throughout the septal fraction of the hippocampus from 
Ascl1CreERT2;CAGfloxStop-Sun1/sfGFP or retrovirally injected mice. Anti-
bodies were applied in tris-buffered saline with 3% donkey serum 
and 0.25% Triton X-100. Immunofluorescence was performed using 
the following primary antibodies: DCX (rabbit polyclonal; 1:1500; 
Abcam) and green fluorescent protein (GFP; chicken immunoglob-
ulin Y fraction; 1:500; Aves Labs Inc.). The following corresponding 
secondary antibodies were used: donkey anti-chicken Cy2 or Cy3 
and donkey anti-rabbit Cy5 1:250 (Jackson ImmunoResearch Labo-
ratories). Incubation with DAPI (10 min) for nuclear counterstain 
was performed. Slices were mounted and covered with gerbatol to 
prevent bleaching.

Confocal microscopy
Sections from the septal hippocampus according to the mouse brain 
atlas (antero-posterior, −0.94 to −2.46 mm from bregma) were 
included (76). Images were acquired using an 880 LSM Airyscan 
microscope (Carl Zeiss, Jena, Germany). Analysis of antibody ex-
pression was restricted to cells with fluorescence intensity levels that 
enabled clear identification of their soma. For Sox/GFP experi-
ments, images were acquired (40×; numerical aperture, 1.2) from 
60-μm-thick sections, and colocalization was assessed using single 
optical planes (airy unit = 1). For RNAscope experiments (Fig. 6), 
images were acquired from 14-μm-thick hippocampal slices. Dot 
area quantification was performed in ImageJ/Fiji applying the Otsu 
threshold as suggested by the manufacturer (Advanced Cell Diag-
nostics). All experiments were done with control versus treatment 
conditions blind to the operator. For experiments shown in Fig. 7, 
images were acquired using deconvolution software (Zeiss Zen 
blue 3.3).

Electrophysiology
Five weeks after retroviral injection, mice were anesthetized and 
brains were removed into a chilled solution containing: 110 mM 
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choline-Cl−, 2.5 mM KCl, 2.0 mM NaH2PO4, 25 mM NaHCO3, 
0.5 mM CaCl2, 7 mM MgCl2, 20 mM dextrose, 1.3 mM Na+-
ascorbate, 0.6 mM Na+-pyruvate, and 4 mM kynurenic acid. Slices 
(400-μm thick) were cut in a vibratome (Leica VT1200S) and trans-
ferred into a chamber containing artificial cerebrospinal fluid: 125 mM 
NaCl, 2.5 mM KCl, 2.3 mM NaH2PO4, 25 mM NaHCO3, 2 mM 
CaCl2, 1.3 mM MgCl2, 1.3 mM Na+-ascorbate, 3.1 mM Na+-
pyruvate, and 10 mM dextrose (315 mosmol). Slices were main-
tained with 95% O2/5% CO2 at 30°C for >1 hour before experiments 
started. Whole-cell recordings were performed at 23 ± 2°C using 
microelectrodes (3 to 5 megohms) pulled from borosilicate glass 
(KG-33; King Precision Glass) and filled with 120 mM K-gluconate, 
20 mM KCl, 5 mM NaCl, 4 mM MgCl2, 0.1 mM EGTA, 10 Hepes, 
4  mM tris–adenosine 5′-triphosphate, 0.3  mM tris–guanosine 
5′-triphosphate, 10 mM phosphocreatine, Alexa Fluor 488 or 594 
(10 μg/ml; Invitrogen), pH 7.3, and 290 mosmol. Recordings were 
obtained using an Axopatch 200B amplifier (Molecular Devices), 
digitized (Digidata 1322A), and acquired at 10 kHz into a personal 
computer using the pClamp 9 software (Molecular Devices). Recorded 
neurons were visually identified in the GC layer by fluorescence 
(fluorescein isothiocyanate fluorescence optics; DMLFS, Leica) and 
infrared differential interference contrast videomicroscopy. In-
put resistance was obtained from current traces evoked by a hyper-
polarizing step of 10 mV. In current-clamp recordings, the resting 
membrane potential was kept at −70 mV by passing a holding cur-
rent. Criteria to include cells in the analysis were visual confirma-
tion of GFP in the pipette tip and absolute leak current <50 pA at 
−60 mV. Series resistance was typically <25 megohms, and experi-
ments were discarded if >45 megohms. In all experiments, control 
or Sox11 overexpression treatments were blind to the operator.

snRNA-seq processing
We used STARsolo 2.7 to align the snRNA-seq reads to the GRCm38 
mouse genome. Multi-mapped reads were excluded, and both ex-
onic and intronic counts were considered. We used default param-
eters to count unique molecular identifier and filter high-quality 
cells to generate gene-by-cell count matrices. Quality control (QC) 
and downstream data processing were performed using scran and 
scDblFinder bioconductor libraries (77, 78). All scripts used to per-
form the present analysis were included in the companion website 
https://github.com/chernolabs/NeuronalSwitch.

For dataset 1, we removed 80 nuclei with <1000 detected features 
and 636 nuclei identified as doublets by scDblFinder out of the 
17,046 nuclei that passed the STARsolo quality filter. We also elimi-
nated 839 low-quality nuclei identified by either (i) a multivariate 
outlier detection procedure (adjOutlyingness function of robust-
base R library) based on low library sizes, low number of detected 
features, and large mitochondrial (Mt) content, or (ii) presenting 
more than 1% of Mt counts. Features with >20 molecules and de-
tected in >1 and < 80% of filtered nuclei were retained. In addition, 
we removed specific genes (Ehd2, Espl1, Jarid1d, Pnpla4, Rps4y1, 
Xist, Tsix, Eif2s3y, Ddx3y, Uty, Kdm5d, Rpl26, Gstp1, Rpl35a, Erh, 
Slc25a5, Pgk1, Eno1, Tubb2a, Emc4, and Scg5) to mitigate possible 
sex and stress effects on downstream analysis (28). The data were 
normalized using the scran library in accordance with the OSCA 
pipeline (79). We executed a quick clustering for each time point 
independently, normalized nuclei in each cluster separately, and 
rescaled the size factors to be comparable across clusters. Last, we 
computed the log2 of the data and considered a pseudo-count value 

of 1 to generate a normalized expression matrix. After scaling and 
log-normalizing gene expression values, we used the scran model-
GeneVar function to identify the 3000 most variable genes in their 
log-expression profiles.

For dataset 2, 32,621 nuclei successfully passed the STARsolo 
quality filter. Subsequently, we identified and discarded 1015 dou-
blets and 4808 low-quality nuclei using the QC protocol applied to 
dataset 1. The entire curation process yielded a high-quality dataset 
comprising 26,798 nuclei and 14,220 informative features. We 
considered inter-nucleus similarities using the Pearson correlation 
measure within the subspace spanned by the top 20 principal com-
ponents. We lastly retained for further analysis 26,716 nuclei that 
were part of graph components larger than 30 nodes. We then used 
the batchelor Bioconductor package to investigate the biological 
reproducibility between datasets 1 and 2. Some dataset 1 nuclei 
occupied a region in reduced dimensionality spaces [principal com-
ponents analysis (PCA), t-SNE, and uniform manifold approxima-
tion and projection (UMAP)] not represented in dataset 2. Using a 
k = 20 mKNN graph estimated from the largest 20 PCA compo-
nents (similarities obtained from Pearson correlation values), we 
verified that these nuclei formed two Louvain clusters composed of 
1071 nuclei from 4-week-old samples. Noticeably, we found that 
85% of nuclei in these clusters exhibited higher expression of male-
associated genes (Ddx3y, Uty, and Eif2s3y) than female-associated 
genes (Xist and Tsix), suggesting that they could belong to a single 
male mouse, potentially a biological outlier. Therefore, we repro-
cessed de novo dataset 1, excluding these nuclei that resulted in 
14,441 high-quality nuclei and 13,353 features. To get a proxy of the 
biologically relevant manifold, we constructed an mKNN graph 
(k = 40) considering the Pearson correlation similarity measure es-
timated from the 20 largest PCA components. As we did with data-
set 2, we discarded nuclei that were found in small components 
(<30 elements) of this mKNN graph. The remaining 14,367 nuclei 
were grouped into communities considering the Louvain algorithm. 
This initial graph-based clustering was further refined to produce 
13 communities for which specific markers were identified (see Results). 
We used Seurat’s label transfer functionality to impute cluster labels 
for dataset 2. Only seven nuclei were identified as NB2, probably due 
to the fact that dataset 2 did not include a time point at 1 week. 
These nuclei were disregarded for subsequent analysis. We determined 
DEGs between nuclei groups using the FindMarkers function from 
the scran library (pairwise t test). Cluster marker genes were identified 
as highly ranked DEGs between the query group and all other clusters.

Pseudo-time determination
The slingshot 2.4.0 R package was used to fit developmental trajectories 
to nuclei of the following clusters: RGL, NPC, NB1, NB2, GCimm1, 
GCimm2, GCyoung, and GCmat1 (80). We excluded from this analy-
sis GCmat2 nuclei and 383 GCmat1 nuclei with strong expression 
signal of ventral genes (81, 82). We considered the UMAP (three-
dimensional) low-dimensional coordinates to fit principal curves and 
produce pseudo-time estimations (PCA-3dim and PCA-20dim pro-
duced similar density profiles along the corresponding pseudo-time 
coordinates). A similar procedure was used for dataset 2. For the sake 
of the pseudo-time analysis, a cluster refinement of the Seurat label 
transferred partition was considered to correct visible misclassifica-
tions observed in UMAP space. This issue affected <3% of nuclei 
(mainly involving astrocytes, pericytes, RGL, and NPC nuclei; see 
05_DS2_SeuratLT.R in the web companion site).

https://github.com/chernolabs/NeuronalSwitch
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TF expression cascades
We considered 703 mouse TFs listed in the dorothea 1.8.0 R package 
that passed the QC feature filtering step (83). We tested whether these 
genes were significantly expressed along the pseudo-time coordinate 
using the difftest function of the TSCAN 1.34 R package. Likelihood 
ratio tests were performed to compare a generalized additive model 
with a constant fit to get the P values, with 201 TFs showing false 
discovery rate (FDR)–adjusted q value < 0.05. A custom script 
(09_cascades_Tfs.R in the web companion site) was used to identify 
TFs that were shutdown (112) or turned on (69) at specific clusters 
in this dataset (Fig. 3C and fig. S4C).

Gene Ontology analysis
GO enrichment analyses was performed using ShinyGO 0.77 
(http://bioinformatics.sdstate.edu/go/) (84).

SCENIC regulons
SCENIC 1.3.1 R package was used on dataset 2 to uncover relevant 
TFs and their targets [regulons; (85)] along the developmental path 
(Fig. 3B and fig. S4B). RSSs (50) were used to analyze changes in 
regulon activity between consecutive states. Groups of nuclei were 
defined using a pseudo-time window of 5 U centered around local 
maximums (peaks) of the pseudo-time density distribution. This 
procedure resulted in 3840, 799, 7270, and 4119 nuclei assigned to 
the first, second, third, and fourth peaks, respectively.

Visualization and graphical reports
We used Force Atlas 2 layout algorithm, implemented in Gephi to 
produce 2-dim visualization of mKNN graphs (86). Heatmaps, volcano 
plots, violin plots, dot plots, and spike plots were produced using the 
scX R package (https://chernolabs.github.io/scX/) (88).

Statistical analysis
All data were presented as means  ±  SEM, and analyses were 
performed blind to the operator. Electrophysiological data were 
analyzed using Clampfit, immunofluorescence colocalization was 
verified using Zen blue 3.2, and RNAscope images were quantified 
using ImageJ software. Analyses were performed using GraphPad 
Prism 10 (GraphPad Software, CA, USA). Two-group comparisons 
were conducted with unpaired Student’s t test after data passed 
three normality tests (D’Agostino and Pearson, Shapiro-Wilk, and 
Kolmogorov-smirnov) or Mann-Whitney U test for nonparametric 
data. Comparisons across multiple groups were done using Kruskal-
Wallis test, and data shown in Fig. 7G was compared using two-way 
analysis of variance (ANOVA).

Note added in proof: After acceptance, the authors became aware 
of a recently published paper: T. V. Waichman, M. L. Vercesi, A. A. 
Berardino, M. S. Beckel, D. Giacomini, N. B. Rasetto, M. Herrero, 
D. J. Di Bella, P. Arlotta, A. F. Schinder, A. Chernomoretz, scX: a 
user-friendly tool for scRNAseq exploration. Bioinform. Adv. 4, 
vbae062 (2024). This added reference describes the routines that 
have been used to interrogate the dataset and make figures.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Legends for tables S1 to S5

Other Supplementary Material for this manuscript includes the following:
Tables S1 to S5
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