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Abstract

The surging popularity of virtual reality (VR) technology raises concerns about VR-induced

motion sickness, linked to discomfort and nausea in simulated environments. Our method

involves in-depth analysis of EEG data and user feedback to train a sophisticated deep

learning model, utilizing an enhanced GRU network for identifying motion sickness patterns.

Following comprehensive data pre-processing and feature engineering to ensure input

accuracy, a deep learning model is trained using supervised and unsupervised techniques

for classifying and predicting motion sickness severity. Rigorous training and validation pro-

cedures confirm the model’s robustness across diverse scenarios. Research results affirm

our deep learning model’s 84.9% accuracy in classifying and predicting VR-induced motion

sickness, surpassing existing models. This information is vital for improving the VR experi-

ence and advancing VR technology.

1. Introduction

1.1 Background

Virtual reality (VR) has been a presence for many years, serving various domains [1]. Across

these domains, VR video content spans applications in gaming, sports, education, travel

guides, and clinical settings [2]. Despite its wide-ranging applications, VR video content car-

ries potential adverse effects, such as Internet addiction [3], which has emerged as a primary

concern for both users and content creators. Vision-induced motion sickness (VIMS), also

known as virtual reality disease or VR disease, encompasses symptoms arising from exposure

to virtual environments.

Manifesting as sweating, yawning, dizziness, spatial disorientation, instability, fatigue, nau-

sea, and even vomiting [4, 5], virtual reality disease constitutes a form of discomfort associated

with immersive environments. Researchers have explored various avenues to elucidate this

phenomenon, investigating sensory conflicts, transmission delays, optical flow speed, back-

ground complexity, realism, and other contributing factors [6]. However, a comprehensive
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understanding of the principal neural mechanisms underlying these discomforts remains

elusive.

1.2. Detection of individual motion sickness level

Developing quantitative methods for measuring virtual reality-induced ailments holds signifi-

cant importance due to the limited availability of such methods. Presently, assessments pre-

dominantly rely on subjective measurements. The Virtual Reality Disease Susceptibility

Questionnaire (MSSQ) [7] and Simulated Disease Questionnaire (SSQ) stand as commonly

employed tools for qualitative assessment [8]. Additionally, the Fast Motion Sickness question-

naire (FMS) offers an improved means, of gathering subjective feedback through post-VR

experience surveys to gauge motion sickness levels [9]. Despite their prevalent use, these ques-

tionnaires retain subjectivity and exhibit unreliability.

Some researchers have turned to sensor-based approaches involving accelerometers, gyro-

scopes, and magnetometers to track users’ head movements, tilts, and rotations [10]. Devia-

tions or rapid movements of the head are thought to correlate with motion sickness

occurrences [11]. Leveraging the human body’s diverse signals—such as electroencephalogram

(EEG), electrocardiogram (ECG), electrogastrogram (EGG), heart rate variability (HRV), and

galvanic skin response (GSR)—offers a means for quantitative and objective evaluation of reac-

tions induced by virtual reality, including virtual reality-induced ailments [12–15]. Among

these, EEG stands out as the most extensively employed in virtual reality research [16], serving

purposes such as comparing the real and virtual world, cognitive training tasks, 2D and 3D dis-

play comparisons, virtual reality driving simulations, and more.

1.3 Application of EEG feature extraction and matching

Patients experiencing virtual reality-induced motion sickness exhibit heightened EEG activity

in the frontal, temporal, and occipital regions compared to individuals without such symptoms

[17]. Notably, augmented prefrontal cortex activity in these patients indicates a compromised

cognitive control ability [18, 19]. Furthermore, reduced connectivity between prefrontal cortex

regions in these individuals contributes to impaired information processing and compromised

cognitive control [20]. Weakened activity in the visual cortex of these patients leads to dis-

jointed visual information processing. Additionally, heightened temporal cortex activity may

stem from a mismatch between the vestibular and visual systems among those with virtual

reality-induced motion sickness [21]. The evaluation of human physiological states often lever-

ages EEG signals due to their rich information directly linked to these states.

In processing EEG signals, aside from time-frequency domain features, spatial characteris-

tics, coherence, and phase synchronization features are frequently employed. Advancements

in deep learning and neural networks have introduced methods utilizing convolutional neural

networks (CNN) and recurrent neural networks (RNN) for EEG feature extraction and classi-

fication [22–24]. Notably, wavelet transform feature decomposition has significantly pro-

gressed in EEG signal processing applications, enhancing comprehension of EEG signal

characteristics and brain functions [25].

1.4 Application of wavelet transform feature decomposition

Certainly, researchers have employed various wavelet packet transforms along with statistical

measurements to analyze EEG signals. Their findings indicate the effectiveness of wavelet

packet decomposition in extracting features relevant to epilepsy. Studies have also integrated

wavelet packet decomposition with brain network analysis to classify EEG signals [26]. These

investigations highlight that wavelet packet feature decomposition can effectively extract
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pertinent features from EEG signals, enabling the classification of different brain states and

offering support for diagnosing and monitoring brain disorders. Notably, wavelet packet fea-

ture decomposition aids in the early detection and classification of cognitive impairment when

analyzing EEG signals [27].

As a result, wavelet packet features serve as a valuable tool for identifying abnormal patterns

within EEG signals, with potential applications in predicting and assessing various early-stage

diseases. Consequently, in this paper, we opt to utilize this method to process EEG signals,

leveraging its efficacy in uncovering significant patterns and aiding in disease prediction and

assessment.

1.5 Contributions and structure of this study

This paper aims to introduce a deep learning-based model capable of distinguishing between

normal EEG states and states indicative of motion sickness. Furthermore, the model aims to

predict the severity of motion sickness in real time by analyzing EEG signals, enabling early

detection of motion sickness onset. The study’s primary contributions are outlined below:

1. Proposal of a novel approach for EEG feature extraction based on wavelet packet transform

and reconstruction. This method amplifies the original EEG signal’s vector dimensionality

and extracts signal features from individual frequency bands.

2. Introduction of a circular neural network model within the domain of deep learning. This

model integrates classification and prediction functionalities, allowing accurate classifica-

tion and prediction of motion sickness states inferred from EEG signal analysis.

3. Rigorous evaluation of the model’s performance using benchmark datasets across various

EEG data classification tasks of differing temporal extents and prediction tasks employing

diverse window sizes. This evaluation enables the identification of optimal parameters

related to temporal length and window dimensions. Comparative analysis against alterna-

tive machine learning models demonstrates a noticeable enhancement in the proposed

model’s predictive abilities.

The experimental results showcase a strong correlation between the proposed model’s met-

rics and subjective scores. Notably, the proposed method exhibits a substantial improvement

of approximately 19% in the Prediction Likelihood Correlation Coefficient (PLCC) compared

to assessments based solely on physiological signals such as heart rate and GSR.

However, it is difficult to find a study to evaluate the correlation between EEG and Virtual

Reality Disease Questionnaire (SSQ). Therefore, in this paper, we propose an alternative

method to predict the user’s motion sickness level in a virtual reality environment by using

EEG and benchmark based on subjective scores. The second section introduces our method,

including EEG feature extraction, and proposes a framework for the deep learning model. The

third section introduces data and experimental settings. The fourth section discusses the

results of experiments and performance evaluation. The fifth section is the conclusion, which

summarizes the advantages of the model and the limitations of the research.

2. Dataset and methods

2.1 Dataset

In this section, we will thoroughly outline the data collection process involving 25 subjects,

delve into the preprocessing steps applied to EEG signals, and explain the dataset division for

experiments with deep learning models. The detailed exploration covers the methodologies

used to gather diverse and representative data from a subject pool.
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Post-data acquisition, we shift focus to the preprocessing of EEG signals, detailing the steps

taken to clean, filter, and enhance the data. This phase is crucial for ensuring data quality and

reliability, contributing to the robustness of subsequent analyses. Additionally, we elaborate on

the dataset division for experiments involving deep learning models, explaining the rationale

behind dividing the dataset into training, validation, and testing sets. This systematic division

is vital for training and evaluating the performance of our models in an unbiased manner. By

elucidating the collection process, preprocessing techniques, and dataset division strategies,

this chapter establishes a comprehensive foundation for understanding the data-related aspects

of our research, ensuring the integrity of data used in subsequent experiments.

2.1.1 Dataset description. The data acquisition equipment uses HTC VIVE Pro Eye, a

head-mounted display with VR technology, which users can wear to watch high-quality VR

video content. Our collected data include the electroencephalogram (EEG) data collected by

25 subjects after watching the video data composed of 20 videos and the corresponding per-

sonal subjective SSQ score. Approved by the Medical Ethics Committee of the Affiliated Hos-

pital of Xuzhou Medical University, the trial number is XFY 2022-KL 430–01. On 1 March

2023, the preliminary recruitment of subjects was started at Xuzhou Medical University, and

the recruitment was completed in about one week. After the recruitment, the subjects were

informed about some precautions and informed consent, and the collection time of each sub-

ject was arranged. Then, the start date of the experiment was 8 March 2023, and the end date

of the experiment was 30 March 2023.All subjects signed the informed consent form before

the experiment. Before the experiment, the subjects will be informed of all the precautions and

sign the written informed consent form, and arrange the collection time for each subject. Then

the experiment began on March 8, 2023 and was completed before March 30, 2023. All sub-

jects signed the informed consent form before the experiment. The subject’s vision is normal

or corrected to normal. In our experiment, before watching each content, they sit in a rotatable

chair from zero position, so as to freely watch the 360-degree content. To investigate the effect

of various motion patterns on VR sickness, they collected 360-degree video datasets with vari-

ous motion patterns from static to dynamic for these subjects. The video database contains

driving, flying, roller coaster, riding, and other scenes. We list three VR scenes in Fig 1: urban

road driving, small-town riding, and jungle cross-country.

The 16-item SSQ consists of 16 physical symptoms, which are closely related to VR sick-

ness, with a discrete four-point grading scale for each symptom (0: None, 1: Slight, 2: Moder-

ate, 3: Severe). 16 physical symptoms are used to evaluate the level of motion sickness, where x,

y and z represent the Score. Also, the indicators are assigned weights (9.54, 7.58, 13.92) respec-

tively to calculate three separate symptoms (Nausea, Oculomotor and Disorientation). The

scores of each subject after watching each video were averaged to eliminate the specificity of

individual differences in scoring.

Fig 1. The experimenter wears a head-mounted display to watch the virtual display scene. (a) Urban road driving; (b) Small town road riding; (c) Jungle

cycling.

https://doi.org/10.1371/journal.pone.0305733.g001
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The formula used to calculate the total score is expressed as:

SSQtotal ¼ 3:74�
1

9:54
SSQNausea þ

1

7:58
� SSQoculo þ

1

13:92
SSQDis

� �

: ð1Þ

In Fig 2, we evaluated the participants’ VR motion sickness in the virtual reality (VR) envi-

ronment in many dimensions, and measured the average feeling level and the change degree

of feeling degree in each evaluation dimension, and presented the research results through the

statistical indicators of average value and standard deviation. According to the statistical data,

the average uncomfortable feeling reported by participants when experiencing virtual reality is

between 1.28 and 1.96, including a series of feelings, such as general discomfort, fatigue, head-

ache, eye fatigue, difficulty in concentration and so on. The calculation results of standard

deviation show the degree of variation between these feelings, some of which have large stan-

dard deviations, indicating that participants have great individual differences in their feelings,

while some have small standard deviations, indicating that participants have relatively consis-

tent feelings for these feelings. These data provide a basis for further analysis of individual dif-

ferences in uncomfortable feelings in virtual reality experience.

As shown in Fig 3 below, we counted the SSQ scores collected in each video scene into a

box chart. From the statistical data, most experimenters had different degrees of motion sick-

ness during the collection, and recorded this state by using the supervisor questionnaire, to

map the differences of EEG signals to the scores. It can be seen that in different tasks, most

subjects have different degrees of motion sickness, and some subjects even reach more than

100, which shows that the selected task scene can meet the conditions for making the subjects

reach motion sickness. In this state, EEG signals are the key data for us to extract features. The

reason why there are outliers in the picture is that some experimental subjects watching videos

have different levels of motion sickness tolerance and the complexity and uncertainty of the

scenes they watch, which makes their SSQ scores much higher than the average, which is a

normal phenomenon. The EEG data of these experimental subjects will not be excluded from

Fig 2. The average and standard deviation of 16 individual symptoms of 25 subjects in the questionnaire.

https://doi.org/10.1371/journal.pone.0305733.g002
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being input into the model to eliminate the influence of the prediction model on individual

differences and increase the stability and performance of the model.

2.1.2 EEG signal acquisition and preprocessing. Cognionics AIM is used to collect EEG

signals at a frequency of 500hz. The EEG data in the normal state and motion sickness state

were collected for two minutes, and the EEG data contained 32 channels. According to the

conclusions of previous research literature on motion sickness, VR motion sickness occurs in

the parietal lobe, occipital lobe, frontal lobe and temporal lobe. To avoid too many channels of

EEG data and irrelevant channels reducing the effect of feature extraction, according to the

relationship between brain regions and EEG signal acquisition channels, we select the corre-

sponding EEG channels for processing, and we only select eight channels as follows: FP1, FP2,

C3, C4, P3, P4, O1 and O2 channel.

Given that the dataset under consideration is in its raw, unprocessed state, it necessitates a

series of meticulous preprocessing steps to render it amenable for subsequent analysis. The fol-

lowing methodological procedures are meticulously adhered to in this data preparation

process:

To commence, the initial step involves filtering the EEG signal, whereby a bandpass filter in

the range of 0.1-100Hz is applied, with a sampling rate of 500Hz meticulously adhered to. This

crucial stage ensures that the signal is conditioned to contain pertinent frequency components,

essential for the ensuing analysis. Subsequently, the EEG data is imported into EEGLAB ver-

sion 13.0.0, and a sophisticated band-pass filtering operation is employed. A precise band-pass

filter encompassing the range of 0.5–50 Hz is applied, refining the data for further analysis

[28]. Simultaneously, electrode localization information is imported, which facilitates the iden-

tification and removal of superfluous electrodes. In alignment with the requirements of the

classification task, electrodes that do not contribute substantively are diligently omitted. More-

over, for the purpose of segmentation, electrodes that extend beyond the stipulated classifica-

tion task length are judiciously excised, ensuring that the dataset is optimized for the

subsequent processing stages. The rectification of artifacts is another critical step in data pre-

processing. Principal Component Analysis (PCA) is employed to detect and eliminate any

unwanted artifacts, which could potentially confound the subsequent analysis. Furthermore,

the data is carefully re-referenced using the bilateral mastoid reference points [29]. This re-

Fig 3. 25 subjects watched SSQ score box chart of 20 videos.

https://doi.org/10.1371/journal.pone.0305733.g003
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referencing step is instrumental in ensuring that the EEG data is suitably configured for the

subsequent application of wavelet packet transform techniques. In Fig 4, By using EEGLAB for

analysis, we deeply studied the frequency transformation and time-frequency domain of each

brain region when motion sickness occurred. The purpose of this analysis is to reveal the

dynamic changes of EEG signals during uncomfortable experiences, to understand the neural

mechanism of motion sickness more comprehensively. Through the detailed exploration of

frequency transformation, we can identify the activity level of specific frequency bands in dif-

ferent brain regions, thus revealing the influence of motion sickness on EEG activity. Time-fre-

quency domain analysis provides a more detailed understanding of the changes of EEG signals

in time and frequency, which helps capture the time sequence characteristics of motion sick-

ness events. When motion sickness occurs, the EEG signals in the Frontal, Central, Parietal,

Occipital and Temporal areas will change, such as the frequency activities in the Frontal and

Temporal areas will increase, the Alpha in Central and Occipital areas will decrease, and the

Beta and Gamma band activities will increase. Except for the Beta band activities, the Parietal

area is the same as the Central and Occipital areas.

These intricate preprocessing measures are imperative in preparing the raw EEG data for

the forthcoming wavelet packet transform analysis, ensuring that the dataset is optimized for

precise and meaningful insights in our research endeavor.

2.1.3 Classification and prediction training set. To achieve the best performance in

motion sickness feature recognition for the classification task, careful consideration of window

width is paramount. A balance between overloaded information and inadequate feature

extraction within EEG signals is crucial. This study adopts fixed window widths—5, 10, and 12

seconds—aligning with prior research suggesting 3–12 seconds as an optimal interval for emo-

tional state identification using EEG signals [30, 31]. Consequently, three distinct sets of EEG

Fig 4. The time-frequency domain analysis of topographic maps of five brain regions is carried out by EEGLAB v13.0. Part (a) is the topographic map of

brain area, and part (b) is the time-frequency domain drawn by short-time Fourier transform when motion sickness occurs.

https://doi.org/10.1371/journal.pone.0305733.g004
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samples were obtained, totaling 4800, 2400, and 2000 samples, respectively, corresponding to

the designated window widths. The classifier’s effectiveness in categorizing these samples

guides the selection of the optimal window width, ensuring precise and meaningful analysis.

In contrast, the predictor, tasked with regression using extended EEG segments, circumvents

data segmentation. Instead, it harnesses the entirety of questionnaire data and unaltered contin-

uous EEG signals for input. This holistic approach empowers the predictor to learn motion

sickness characteristics through comprehensive time series network-based feature extraction

and recognition, enabling real-time prediction of motion sickness levels with precision.

The experimental evaluation was conducted in a controlled academic laboratory environ-

ment using a widely recognized benchmark database. A computational setup comprising an

Intel Core i5-11400H processor, 16 gigabytes of memory, and an NVIDIA RTX 3050 TI graph-

ics card facilitated model implementation using the Keras framework.

For model pre-training, original EEG data from KAIST IVY LAB were selected and pro-

cessed [32]. The learner underwent 50 epochs of pre-training using the ADAM optimizer [33]

with a batch size of 4, setting the initial learning rate at 0.00005 and incorporating β1 and β2

values of 0.9 and 0.999, respectively. A weight decay of {10}^{−8} was applied in each iteration.

Notably, both the classifier and predictor underwent training under identical optimizer set-

tings, ensuring fairness and consistency in evaluating their performances. This uniformity in

training conditions is critical for unbiased assessment.

2.2 Methods

This chapter details the methodology for classifying and real-time predicting motion sickness

states within a VR environment by leveraging EEG signal characteristics through a deep learn-

ing model. The schematic representation in Fig 5 delineates the construction process of this

method.

These fundamental processes—data collection and processing, model training, and test

data evaluation—drive the proposed model’s ability to decipher EEG signal intricacies and

comprehend cognitive states. Ultimately, the model can discern information differences

between normal and motion sickness states, facilitating real-time prediction of motion sick-

ness levels within unfamiliar EEG signals.

2.2.1 Wavelet packet decomposition and reconstruction. It is mentioned in the intro-

duction that the methods of feature extraction of EEG signals are different in various fields,

and the effect of feature extraction needs to be determined according to the situation. Because

we try to predict EEG signals, we need to analyze them in the time and frequency domain. The

wavelet packet transform has many advantages in this respect, which will be mentioned later,

so we use this method to extract the features of EEG.

Wavelet analysis and wavelet packet analysis are suitable for non-stationary signal analysis.

Compared with wavelet analysis, wavelet packet analysis can be used to analyze the signal

more carefully, and wavelet packet analysis can divide the time-frequency plane more carefully

[35, 36], and the resolution of the high-frequency part of the signal is better than that of wave-

let analysis. According to the characteristics of the signal, the best wavelet basis function can

be adaptively selected to analyze the signal better, so wavelet packet analysis is more widely

used [37].

To input the signal characteristics of EEG signals in each frequency domain as feature vec-

tors, we use the db4 wavelet base to decompose EEG signals into 8 layers of wavelet packets

and reconstruct the frequency bands we need. Firstly, the original EEG data of 500hz are pro-

cessed by wavelet tools in the MATLAB toolkit. A Wavelet packet is decomposed by a wavelet

toolkit to form a wavelet packet tree.
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A Packet represents approximate components and contains low-frequency information

about the signal, while D packet represents detailed components and contains high-frequency

information or details of signals. Discrete filters and down-sampling operations are commonly

used [38]. hk\left(\right) and gk\left(\right) respectively represent the low-pass filter and the

high-pass farer corresponding to the orthogonal scale function in the wavelet packet trans-

form. The wavelet packet transforms coefficients of the original signal fleft(t\right) at the i−th\

node on the decomposition level j are as follows:

d2i
j ðtÞ ¼

Xþ1

k¼� 1

hðkÞdi
j� 1
ð2t � kÞ; ð2Þ

d2iþ1

j ðtÞ ¼
Xþ1

k¼� 1

gðkÞdi
j� 1
ð2t � kÞ; ð3Þ

Where k is the translation parameter.

When we reach the last layer of the wavelet packet tree, we get the decomposed signal of

each frequency band, and then use the same wavelet packet basis function and decomposition

level to reconstruct the required frequency band through inverse wavelet packet

Fig 5. Overall process of the proposed model framework. (a) Data Collection and Processing: Primarily, meticulous acquisition and processing of EEG

signals and questionnaire data lay the foundation for this method. Raw data undergoes a transformational journey to become structured feature vectors

conducive to computational analysis. Preprocessing involves the application of the wavelet packet transform [34] to EEG data, stratifying it into δ, θ, α, and β
frequency components. This nuanced stratification aids in comprehending evolving EEG features over time, enhancing the model’s predictive accuracy. (b)

Model Training: The training phase involves feeding preprocessed EEG signals and questionnaire data into the model’s architecture. A Recurrent Neural

Network (RNN) takes charge, extracting distinct features characterizing different states. These features, essential for subsequent modeling, are then mapped to

questionnaire responses, enabling the model to discern motion sickness states. (c) Test Data Evaluation: The final step involves rigorous evaluation using a

classifier and predictor to assess the model’s performance on test data. This phase offers insights into the model’s generalization ability and predictive accuracy.

https://doi.org/10.1371/journal.pone.0305733.g005
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decomposition. This process is the inverse operation of decomposition, which is used to

recombine details and approximate coefficients into signals.

Wavelet packet transform has the characteristic of equal frequency band decomposition,

and different nodes correspond to different EEG signal frequency bands. It should be noted

that the order of wavelet packet nodes and the distribution order of frequency bands obtained

by wavelet packet decomposition of EEG signals are staggered [39]. To reconstruct the fre-

quency band, we need to get the input signals of δ, θ, α and β bands, which are used as the

input of the model together with the original signals, forming the feature vector of the model

extraction features.

As can be seen in Fig 6, the fluctuation of EEG signals in the normal state and motion sick-

ness state is different in each frequency band, and it has rhythm. The purpose of feature extrac-

tion can be achieved by inputting this electric amplitude and rhythm into the circulatory

neural network and learning different features of the two States. The left side of the figure

shows the signal characteristics of a normal EEG signal with a length of 10s after wavelet packet

transformation and reconstruction in the frequency band we need. On the right side of the fig-

ure are the signal characteristics of the same length EEG signal after the same processing in the

motion sickness state. It can be seen that when motion sickness occurs, the δ, θ, α and β
rhythms of EEG signals will fluctuate greatly, which is consistent with the conclusions

obtained in previous studies. The result is that we extract the time-frequency domain features

of EEG and input them into the model as amplified data, which greatly improves the accuracy

and dimension of EEG feature recognition.

2.2.2 Feature extraction model of EEG signal based on GRU. The selection of the Gated

Recurrent Unit (GRU) network as the intermediary layer for characterizing EEG signals is

underpinned by a host of compelling reasons, which collectively underscore its suitability for

the task at hand.

To commence, it is imperative to recognize that GRU stands as a variant of the Recurrent

Neural Network (RNN) architecture, renowned for its formidable prowess in sequence

Fig 6. Characteristics of EEG in normal and motion sickness states.

https://doi.org/10.1371/journal.pone.0305733.g006
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modeling. Given that electroencephalogram (EEG) signals inherently manifest as time series

data, the imperative lies in capturing the nuanced temporal relationships that underpin these

signals. GRU excels in this domain, adeptly unraveling the intricate time-dependent character-

istics embedded within EEG signals.

Furthermore, the differentiating factor that sets GRU apart from its conventional RNN

counterpart is the introduction of a gating mechanism [40]. This pivotal innovation empowers

GRU to effectively address the conundrum of long-term dependence, a salient challenge in

EEG signal analysis. As EEG signals may exhibit information propagation and evolution across

protracted time spans, GRU’s capacity to mitigate this issue holds substantial relevance. Addi-

tionally, GRU distinguishes itself by its parsimonious parameterization, endowing it with an

inherent efficiency in parameter learning. This not only expedites the model’s training process

but also assumes added significance when dealing with voluminous EEG datasets.

Fig 7 shows the internal structure of the GRU model, including the update gate and reset

gate. But it is an improvement of LSTM. It combines the forgetting gate and the input gate

into an update gate, and at the same time, it combines the memory cell and the hidden layer

into a reset gate, which further simplifies the operation of the whole structure and enhances its

performance.

Update and control the hidden state at different time steps. GRU usually performs well in

practice because it has fewer parameters and can handle long sequences of information. The

model parameter transfer formula is as follows:

zt ¼ sðWz � ½ht� 1; xt�Þ; ð4Þ

rt ¼ sðWr � ½ht� 1; xt�Þ; ð5Þ

~ht ¼ tanhðW � ½rt∗ht� 1; xt�Þ; ð6Þ

ht ¼ ð1 � ztÞ∗ht� 1 þ zt∗~ht; ð7Þ

Fig 7. Structure of Gated Recurrent Unit.

https://doi.org/10.1371/journal.pone.0305733.g007
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The network includes an update gate, and a reset gate, and the new hidden state calculated

in time step t in the forward transmission process is controlled by the update gate z_t. If z_t is

close to 1, most of the information of the old hidden state h_{t−1} will be preserved; if it is

close to 0, the candidate hidden state h_t will be adopted.

The reset gate determines how to consider the past internal state. It controls which informa-

tion should be forgotten or reset. The output of the reset gate is also in the range of (0, 1), with

a value close to 0 indicating to forget the past internal state and a value close to 1 indicating to

remember the past internal state. Then the output information at time t is h_t = {\acute{h}}_{t
−1}+{\widetilde{h}}_t.

Input includes signal data in the time window and signal characteristics of each frequency

spectrum. Using the data of the training set, the GRU model is trained by the backpropagation

algorithm and Adam optimizer. During the training period, the model will try to learn the pat-

tern of input EEG signal characteristics and the signal correlation relationship in the next time

window. By minimizing the loss, this model is used to learn the characteristics of EEG signals

with time series characteristics into the parameters of the model.

The feature extraction model will be combined with the classifier and predictor respectively

to realize corresponding functions and the specific process will be introduced in the following

sections.

In summary, the adoption of the GRU network as the intermediary layer within our model

is judiciously grounded in its superlative aptitude for sequence modeling, adept handling of

long-term dependence intricacies, efficient parameter learning, stable gradient propagation,

and versatile applicability across diverse analytical tasks. The amalgamation of these attributes

renders GRU a robust and adaptable tool for the precise characterization and comprehension

of EEG signals, furthering the scope and sophistication of our research endeavors.

The comprehensive process of constructing and training the entire model is meticulously

illustrated in Fig 8, which encapsulates the essence of our methodology. The following subsec-

tions elucidate the intricacies of this procedure: (a) In the initial stage, the preprocessed EEG

feature vectors are introduced into the Gated Recurrent Unit (GRU) model. This step serves as

the foundation for learning and extracting the salient features embedded within the EEG fea-

ture vectors. (b) Subsequently, the cyclic neural network, as represented by the GRU model,

actively engages in the process of feature acquisition. Each parameter of the network is sub-

jected to a back-propagation mechanism, iteratively optimizing the model’s performance.

Through the iterative minimization of loss, the parameters evolve, eventually converging to

their final values, which constitute the learned model. (c) In the final phase, aligning with the

specific task requirements, the test dataset is introduced into the model. This model includes

classifiers and predictors meticulously trained to execute the tasks of EEG signal classification

and prediction, catering to the specific objectives at hand.

2.2.3 Classifier based on EEG characteristics. The classifier designed for discerning

motion sickness-related features within EEG signals is pivotal in determining the presence of

motion sickness states. Table 1 offers an in-depth view of the deep learning model’s architec-

ture tailored specifically for this classification task.

The classifier comprises two discrete hidden layers, strategically structured to progressively

extract and refine features. The initial hidden layer consists of 16 nodes, adept at intricate fea-

ture extraction, followed by a subsequent refinement to 8 nodes in the final hidden layer, con-

solidating the assimilated information.

The input layer is thoughtfully designed to accommodate a diverse array of nodes, encom-

passing representations of the original EEG data and brainwave frequency vectors (α, β, δ, and

θ frequencies). This comprehensive input layer ensures the model can leverage a wide spec-

trum of pertinent information encoded within the EEG signals.
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At the apex of this architecture lies the output layer, featuring a single node pivotal in deter-

mining the binary outcome: identifying the presence ("sickness") or absence ("normal") of

motion sickness states. For binary classification tasks, the binary cross-entropy loss function

[41] is paramount. Its selection is rooted in the model’s proficiency in handling binary classifi-

cation problems, ensuring precise discrimination between desired outcomes.

Its loss function formula is:

Lclaðy; pÞ ¼ �
1

n

XN

i¼1

yilogðpðyiÞÞ þ ð1 � yiÞlogð1 � pðyiÞÞ; ð8Þ

y is the actual binary label (0 or 1), the normal state is 0 and the motion sickness state is 1.

In the initial phase of our methodology, the classified EEG data undergoes a rigorous train-

ing process, which is instrumental in discerning the nuances that characterize different states.

This process hinges on the acquisition of different features, which subsequently serve as the

input for the training classifier.

The crux of this training regimen revolves around the adept manipulation of the parameters

embedded within the hidden layers. These parameters play a pivotal role in affecting the

Fig 8. The framework of GRU-based learning classification and prediction model for learning EEG features is proposed.

https://doi.org/10.1371/journal.pone.0305733.g008

Table 1. The architecture of classifier.

Layer Type Nodes Activision function

Input Layer Dense 40 Relu

GRU Layer GRU 32 Tanh

Dense Layer1 Dense 16 Relu

Dense Layer2 Dense 8 Relu

Output Layer Dense 1 Sigmod

https://doi.org/10.1371/journal.pone.0305733.t001
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learning process, as they actively facilitate the comprehension of distinctions between the two

states under investigation.

Upon the successful completion of this training endeavor, the culmination is marked by the

attainment of a proficient and well-honed classifier. This classifier, having imbibed the intrica-

cies of EEG data classification and the nuanced differences between states, stands poised to

contribute significantly to the broader objectives of our research.

2.2.4 Predictor based on EEG frequency band characteristics. After the classifier train-

ing, we can get a good ability of EEG classification task, so we should use the time sequence of

features to predict the motion sickness level of real-time EEG signals.

A deep learning model architecture for predicting motion sickness from the user’s brain

waves is shown. The input nodes are original data and brainwave frequency values with fre-

quencies of α, β, δ and θ. Its characteristics are that as the input of the predictor, the predictor

consists of four hidden layers, the first hidden layer consists of 32 nodes. The following two hid-

den layers, each endowed with 16 nodes, actively participate in the ongoing refinement process.

The final hidden layer, comprising 8 nodes, takes on the mantle of synthesizing the information

gleaned from the preceding layers. The ultimate layer in this architectural ensemble is the out-

put layer, which plays a pivotal role in generating predictions. Its configuration ensures that the

model is well-equipped to make insightful predictions regarding motion sickness.

Table 2 shows the framework of the deep learning model for EEG signal prediction of

motion sickness. For the length of the prediction window, some studies have found that a lon-

ger window length can provide more historical information, which is helpful for the RNN

model to better capture the long-term dependence of time series data [42]. This can improve

the accuracy of forecasting, especially in tasks that require long-term memory, such as stock

price forecasting or weather forecasting. However, if the window length is too long, the model

may be too complicated, which may increase the calculation cost, and may not capture the

short-term changes of data. This may reduce the prediction accuracy, especially for tasks that

need to predict rapidly changing data [43].

To develop robust prediction models, we have thoughtfully employed distinct window

lengths, specifically 5 seconds, 10 seconds, and 20 seconds, in the training process. This strate-

gic choice enables the creation of three distinct prediction models, each fine-tuned to cater to

the temporal nuances of the task at hand.

Ultimately, the determination of the optimal prediction window length for the model is

contingent on its ability to effectively correlate with the real-time motion sickness state exhib-

ited by the experimental subjects. This critical evaluation serves as the litmus test for the mod-

el’s efficacy and its alignment with the dynamic nature of motion sickness.

Throughout the training process, the GRU model plays a pivotal role. As it navigates the

intricate neural network architecture, the model endeavors to map the disparities between the

resting state and the task state to the extent represented by the Subjective Score of Sickness

Table 2. The architecture of predictor.

Layer Type Nodes Activision function

Input Layer Dense 40 Relu

GRU Layer GRU 32 Tanh

Dense Layer1 Dense 32 Relu

Dense Layer2 Dense 16 Relu

Dense Layer3 Dense 16 Relu

Dense Layer4 Dense 8 Relu

Output Layer Dense 1 Sigmod

https://doi.org/10.1371/journal.pone.0305733.t002
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(SSQ). This calibrated mapping process is pivotal in enabling the model to make accurate pre-

dictions regarding the real-time motion sickness level, serving as a testament to its effective-

ness and robustness in the context of our research. Finally, we judge the optimal prediction

window length of the model by evaluating its correlation with the real-time motion sickness

state of the experimental object. After two layers of dense net and output layer, in the training

process, the GRU model maps the difference between the resting state and task state to the size

of SSQ as much as possible, to predict the real motion sickness level.

The difference of EEG between normal state and motion sickness state (E_t) is calculated

as:

Et ¼ jxt � RyðxtÞj; ð9Þ

The loss function of the predicted value LP of VR disease score is expressed as:

Lpre ¼
1

N

XN

n¼1

k fGRUðE
n
t Þ � SSQn

total k
2; ð10Þ

Where N represents the number of batches and SSQ_{\mathrm{total\}}^n represents the

true subjective score, which is defined as the total SSQ score of the N-th video sequence. f_
{GRU} stands for predictor function.

3. Results and discussion

For the classification task, we compare the accuracy (Acc), specificity (SPE), and sensitivity

(SEN) of three groups of 5s, 10s and 12s EEG data sets on the classifier to evaluate the perfor-

mance of the classifier. For the regression task of the predictor, different prediction windows

will also lead to different prediction performances. PLCC, SROCC and RMSE are used for

evaluation, and the results are compared with those predicted by other algorithms on the

benchmark database.

3.1 Classification task results

In our classification research, we carefully evaluate the performance of the classifier on a series

of different test sets, and each test set is characterized by different sample sizes: 4800, 2400 and

2000 samples respectively. This comprehensive analysis is intuitively shown in Fig 9.

As revealed by the discrimination results described therein, the classifier shows its best per-

formance in a time window of 10 seconds. This highest performance is reflected in the accu-

racy and sensitivity of all three test sets, which shows its strength in the field of diagnostic

accuracy. In addition, when evaluating the specificity, compared with other time windows, the

classifier still reaches the peak of its discrimination ability, except for the 12-second window,

in which it shows a noteworthy exception.

This performance test not only emphasizes the proficiency of the classifier but also provides

valuable insights into the best time window to improve the accuracy and sensitivity of our clas-

sification tasks.

Table 3 shows the confusion matrix of the test data. The system aims to predict whether the

EEG at this time is in a motion sickness state. The test data consists of 2400 EEG pattern rec-

ords. The test set includes 1257 signal features in the normal case and 1143 signal features in

the case of motion sickness. Based on the confusion matrix, the system incorrectly predicts the

real categories with 197 patterns, with a false positive rate of about 8.2%. For this study, most

classifiers can identify whether this segment of EEG belongs to the real state obtained by

motion sickness.
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In Fig 10, By using EEG classification data sets with different lengths, we tested a single

individual on the classifier and achieved remarkable classification results. In the test process,

we use EEG signals with different lengths as input, which verifies the robustness of the classi-

fier when dealing with data with different time spans. Encouragingly, we observed that the

classification accuracy of a single individual is mostly between 0.75 and 0.9, which shows that

our classifier can effectively capture the EEG patterns of individuals in different time scales

and achieve high classification performance. This discovery is of great significance to the per-

sonalized application of brain-computer interfaces and the in-depth understanding of individ-

ual differences.

Table 4 shows the performance test of comparing the machine learning algorithm with our

proposed classifier.

Firstly, judging from the performance of two existing classifiers (Voting Classifier and Poly-

nomial-SVM) [44], Polynomial-SVM is slightly better than Voting Classifier in accuracy and

precision. However, the Voting Classifier performs better in sensitivity. This shows that the

Voting Classifier is more sensitive in identifying positive categories (positive), while Polyno-

mial-SVM is better in overall accuracy and accuracy.

Secondly, for the proposed classifier, we can observe that different time intervals (5 seconds,

10 seconds, 12 seconds) have a significant impact on the performance index. In all three cases,

the accuracy is between 0.793 and 0.849, while the accuracy varies from 0.708 to 0.791. How-

ever, the sensitivity varies at different time intervals, ranging from 0.826 to 0.903. This shows

that the proposed classifier has different sensitivity in identifying positive categories at differ-

ent time intervals.

Fig 9. Accuracy, specificity and sensitivity of three classification test sets.

https://doi.org/10.1371/journal.pone.0305733.g009

Table 3. Confusion matrix of 2400 samples.

Real state

Prediction Normal Sickness

Normal 1134 238

Sickness 123 905

https://doi.org/10.1371/journal.pone.0305733.t003
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Finally, we need to pay special attention to the excellent performance of the proposed classi-

fier in the 10-second time interval, with the highest accuracy (0.849) and accuracy (0.791) and

high sensitivity (0.903). This means that within a 10-second time interval, the classifier per-

forms well in correct classification and high accuracy, and is more sensitive to the detection of

positive categories.

To sum up, we can conclude that the proposed classifier shows different performances at

different time intervals, among which the classifier with a 10-second time interval shows the

best performance with high accuracy, precision, and sensitivity. This means that in the corre-

sponding application scenario, it is very important to choose the appropriate time interval to

obtain the best performance.

3.2 Regression prediction results

According to the previous description, for the predictor, we trained three prediction models

by using 5s, 10s, and 20s as the length of the prediction window respectively. In the same 50

iterations, the model loss of 20s prediction window has been reduced to less than 0.2, while the

model loss of 5s prediction window meets the requirements, but its prediction effect is not

ideal, so we finally choose 10s prediction window model as the best prediction window of the

predictor.

Fig 11 vividly illustrates the predictor’s performance in forecasting motion sickness levels

during both the resting and task states. Although the model uses three different prediction

lengths, the experimenter’s EEG began to show motion sickness in about 1 minute, and then

Fig 10. The classification accuracy performance of the classifier on the segmented EEG data set of each experimental object.

https://doi.org/10.1371/journal.pone.0305733.g010

Table 4. Performance comparison with other machine learning models.

ACC SP SE

Voting Classifier 0.763 0.719 0.801

Polynomial-SVM 0.792 0.778 0.782

Proposed Classifier 5s 0.793 0.708 0.890

10s 0.849 0.791 0.903
12s 0.815 0.803 0.826

https://doi.org/10.1371/journal.pone.0305733.t004
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rose for a period of time, maintaining a certain level of motion sickness. After that, the predic-

tion effect of using 5s and 20s windows was to keep this state until the end, while the prediction

effect of using 10s window was a jumping state.

The real-time motion sickness state of the experimental subjects is perceptible, showcasing

a rapid increase in motion sickness level at approximately 56 seconds. Subsequently, the

motion sickness level fluctuates continuously for about 1 minute and 56 seconds. It is impor-

tant to acknowledge that while our proposed predictor is highly accurate, it may not always

precisely match the real-time motion sickness level. This divergence might be attributed to

potential delays in the subjects’ reporting of their scores. In future research endeavors, we plan

to implement a real-time motion sickness level recording system to facilitate instantaneous

and precise data recording. This improvement will enhance the alignment between our predic-

tor’s predictions and the real-time motion sickness levels.

Fig 12 presents the Loss curve of predictor training process; it is evident that the loss consis-

tently diminishes to a remarkable low of 0.0078 after 50 iterations on the test dataset.

We also compared the results with the most advanced methods. Table 5 shows the compari-

son results between these algorithms. The model will be evaluated with the lower baseline.

Fig 11. Real-time prediction effect of 5s(a),10s(b),20s(c) prediction window, the blue curve represents rest, and orange represents task state.

https://doi.org/10.1371/journal.pone.0305733.g011
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According to the performance index in superscript, we focus on the comparison between

our Proposed Predictor and other methods [45], which is helpful to highlight the superiority

of our model. Firstly, it is observed that Heart Rate, as an objective method, is relatively poor

in emotional state recognition. Its PLCC and SROCC are only 0.215 and 0.217 respectively,

and the RMSE is as high as 21.172, which means that its prediction accuracy is low and there

are significant errors. Then, FUSION NET showed better performance than heart rate, and its

PLCC and SROCC reached 0.854 and 0.700 respectively. However, its RMSE is still relatively

high, reaching 17.877, suggesting that there is still a certain degree of error. It is further

observed that the performance of VRSA NET is better than the first two, with higher PLCC

and SROCC, reaching 0.885 and 0.882 respectively. In addition, RMSE is significantly reduced

to 10.251, indicating that it has higher prediction accuracy and reliability.

Crucially, our Proposed Predictor performs well in all performance indicators, with PLCC

and SROCC as high as 0.904 and 0.915 respectively, while RMSE is only 8.872. This means that

our model has higher accuracy and lower error in the task of emotional state recognition, and

has obvious advantages compared with other methods.

To sum up, our prediction model is superior to other methods in objective emotional state

recognition, and provides a more accurate and reliable solution for this field.

Table 5. Performance comparison between our predictor and other methods.

Objective Methods PLCC SROCC RMSE

Heart Rate 0.215 0.217 21.172

FUSION NET 0.854 0.700 17.877

VRSA NET 0.885 0.882 10.251

Proposed Predictor 0.904 0.915 8.872

https://doi.org/10.1371/journal.pone.0305733.t005

Fig 12. Loss curve of predictor training.

https://doi.org/10.1371/journal.pone.0305733.g012
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4. Conclusion

This paper introduces an innovative deep-learning model founded on cyclic neural networks.

It excels in classifying motion sickness states within specific time frames and real-time predic-

tion across varied window lengths. Our experiments showcase the model’s superiority over

conventional machine learning methods and recent deep learning models. Notably, both the

predictor and classifier demonstrate remarkable performance improvements, showcasing

enhanced accuracy in signal prediction across different window lengths and improved recog-

nition in diverse sample set sizes.

Moving forward, our research aims to expand the sample size, addressing survivor bias con-

cerns. Additionally, there’s a focus on enhancing the accuracy and reliability of motion sick-

ness prediction algorithms grounded in EEG data, emphasizing standardization for

comparative assessments of model performance [46].

Future endeavors will integrate eye movement data, posture swing information, and EEG

data to craft a multi-modal prediction and evaluation model. The objective is to significantly

boost prediction accuracy. Furthermore, incorporating real-time feedback from participants

aims to delve deeper into the correlation between predictions and actual occurrences. This

comprehensive analysis seeks to unveil the relationship between motion sickness prediction

and real-time manifestation, ultimately striving to preemptively predict and mitigate motion

sickness for VR users.
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