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Abstract

Early brain development is characterized by the formation of a highly organized

structural connectome, which underlies brain's cognitive abilities and influences its

response to diseases and environmental factors. Hence, quantitative assessment of

structural connectivity in the perinatal stage is useful for studying normal and abnor-

mal neurodevelopment. However, estimation of the connectome from diffusion MRI

data involves complex computations. For the perinatal period, these computations

are further challenged by the rapid brain development, inherently low signal quality,

imaging difficulties, and high inter-subject variability. These factors make it difficult

to chart the normal development of the structural connectome. As a result, there is a

lack of reliable normative baselines of structural connectivity metrics at this critical

stage in brain development. In this study, we developed a computational method

based on spatio-temporal averaging in the image space for determining such base-

lines. We used this method to analyze the structural connectivity between 33 and

44 postmenstrual weeks using data from 166 subjects. Our results unveiled clear and

strong trends in the development of structural connectivity in the perinatal stage.

We observed increases in measures of network integration and segregation, and

widespread strengthening of the connections within and across brain lobes and hemi-

spheres. We also observed asymmetry patterns that were consistent between differ-

ent connection weighting approaches. Connection weighting based on fractional

anisotropy and neurite density produced the most consistent results. Our proposed

method also showed considerable agreement with an alternative technique based on

connectome averaging. The new computational method and results of this study can

be useful for assessing normal and abnormal development of the structural connec-

tome early in life.
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1 | INTRODUCTION

Structural connectivity of the brain underlies our cognitive abilities

and influences the progression of neuropathologies (Collin & Van Den

Heuvel, 2013; Fornito et al., 2015). Metrics computed from a graph

representation of the structural connectome can be strong markers of

brain disorders (Cao et al., 2013; Wheeler & Voineskos, 2014). Study-

ing brain connectivity can be particularly useful for understanding and

characterizing early brain development, where the brain is vulnerable

to diseases and environmental factors. To name three examples, pre-

natal exposure to maternal stress (Chen & Baram, 2016; Scheinost

et al., 2017), congenital heart disease (Schmithorst et al., 2018), and

various brain malformations (Jakab et al., 2015; Meoded et al., 2011)

may disrupt the development of the connectome.

Diffusion-weighted magnetic resonance imaging (dMRI) is the

method of choice for non-invasive quantitative assessment of struc-

tural brain connectivity (Shi & Toga, 2017; Tymofiyeva et al., 2014).

Over the past decade, the accuracy and reliability of this approach as

well as our understanding of the potentials and limitations of this

technique have improved (Fornito et al., 2013; Jones, 2010;

Sotiropoulos & Zalesky, 2019; Zhang et al., 2022). However, the great

majority of prior works on structural connectivity have focused on

pediatric and adult brains. Comparatively, much less is known about

the structural brain networks very early in life. Quantitative assess-

ment of structural connectivity in the perinatal stage is challenged by

several factors:

• Low data quality. Image acquisition for this age range is challenged

by such factors as subject motion, increased MRI distortions, and

overall low data quality (Cordero-Grande et al., 2018;

Malamateniou et al., 2013; Pecheva et al., 2018). Subject motion is

likely to be high unless sedation is used or the subject is scanned in

natural sleep, which is not feasible in most settings. Even with

advanced retrospective motion correction techniques, subject

motion can significantly impact the data quality. Additionally, com-

pared with adult brain imaging, the signal to noise ratio is inher-

ently lower due to higher free water content of the brain tissue in

the perinatal period (Dubois et al., 2021; Pietsch et al., 2019).

• Rapid brain development and high inter-subject variability. During

the perinatal period, brain undergoes a rapid increase in size and

significant transformations in the cellular and microstructural

makeup (Dubois et al., 2021). Different brain structures and white

matter tracts emerge, develop, and mature at different time points

and with different rates during this short period (Dubois

et al., 2014; Ouyang et al., 2019). As a result, the structural con-

nectome develops in complex ways.

• Technical and methodological challenges. Another set of difficulties

are imposed by the lack of dedicated computational tools, paucity

of postmortem material for deriving the gold standard, and overall

limited existing knowledge regarding brain development at this

early stage. These factors make it especially difficult to develop

and validate new computational methods for quantitative struc-

tural connectivity analysis in the perinatal stage.

In addition, application of advanced dMRI-based methods such as

computation of complex fiber orientations and anatomically-

constrained tractography require high-quality data, preferably dense

multi-shell measurements. Moreover, in order to study the develop-

ment of the connectome with postmenstrual age (PMA), the data

should include a sufficient number of subjects at each PMA. Such

data have become available only recently through initiatives such as

the Human Connectome Project (HCP) (Bastiani et al., 2019).

Because of the limitations mentioned above, prior works on peri-

natal structural connectivity suffer from a number of important short-

comings. Methodologically, most of these studies have used a

diffusion tensor model to estimate the local orientation of fascicles in

each voxel (de Almeida et al., 2021; Ramirez et al., 2022; Van Den

Heuvel et al., 2015). This choice has been dictated, in part, by the fact

that a small number of measurements (usually 15–30) in a single shell

has been available (de Almeida et al., 2021; Ratnarajah et al., 2013;

Zhao et al., 2019). This can significantly influence the computed con-

nectome and the derived connectivity metrics. Moreover, a determin-

istic tractography algorithm has often been used, which restricts the

reconstruction of different white matter tracts especially in the neo-

natal brain where local white matter anisotropy is low (Dubois

et al., 2021; Smyser et al., 2019). The overwhelming majority of prior

works have not used anatomical information to prune false stream-

lines, which can substantially reduce the accuracy and reproducibility

of the results. Leveraging anatomical information can lead to drastic

reductions in tractography error, which can be especially important in

perinatal imaging given the low data quality. Another important short-

coming of prior works is that they have used unreliable measures,

such as the number of streamlines, to define the connection strength

(Shi et al., 2012). Moreover, microstructure-informed filtering of the

streamlines has not been utilized. A number of advanced methods for

filtering the tractogram to better match the brain microstructure have

been proposed in recent years (Daducci et al., 2014; Ocampo-Pineda

et al., 2021; Smith et al., 2013). These methods can effectively filter

the massive tractogram data such that the streamline counts/weights

are closer to an anatomically valid measure of connection strength.

While these have been shown to be essential to ensure accuracy of

connectivity quantification, they have not been applied to study the

perinatal brain. Moreover, most prior works on perinatal brain connec-

tivity have explored a very narrow age range with a limited number of

subjects, which limits the accuracy of these studies in characterizing

the complex development of the structural connectome with age.

This represents a critical gap in knowledge as it is well known that

adult-like topological structures and a highly structured brain connec-

tome develop very early in life (Bayer & Altman, 2005; Kostovi�c &

Jovanov-Miloševi�c, 2006; Marami et al., 2017; Ouyang et al., 2019;

Silbereis et al., 2016; Van Den Heuvel et al., 2015). Hence, there is an

urgent need for methods and resources to enable accurate and repro-

ducible quantitative assessment of structural brain connectivity in the

perinatal stage. Such methods can significantly enhance our under-

standing of perinatal brain development and improve our knowledge

of the neurodevelopmental processes that shape the structure and

function of the brain for the rest of life.
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In order to address this gap in methodology, the goal of this work

is to develop and evaluate a new computational framework for asses-

sing the normal development of brain's structural connectivity in the

perinatal stage. The central idea of our proposed method is spatial

alignment (also referred to as registration or spatial normalization) and

averaging of imaging data from subjects of the same age. We think

this approach holds the key to mitigating the impact of poor subject

data quality due to such factors as low signal to noise ratio and

motion effects that we mentioned above. By averaging the data from

subjects within the same age range, this approach also enables

improved characterization of the developments in structural connec-

tome in the presence of high inter-subject variability while accounting

for rapid changes over time. We strive to achieve precise spatial regis-

tration of white matter structures between subjects by computing the

registration transforms based on maps of diffusion tensor and fiber

orientation distribution (FOD). Accurate alignment and averaging of

tissue microstructure and FOD generate spatio-temporal atlases. As

shown by prior works, such atlases can portray the developmental

trends in fetal and neonatal brains and amplify important details that

may not be clearly seen in individual subject images (Calixto Nunez

et al., 2024; Ciceri et al., 2024; Khan et al., 2019; Oishi et al., 2019).

Therefore, we expect that spatio-temporal averaging in the image

space should be effective in characterizing the changes in structural

connectivity that take place due to brain development with age. To

the best of our knowledge, no prior work has developed such a com-

putational method to study the structural connectivity in the perinatal

stage. Furthermore, unlike prior studies, our framework utilizes the

state of the art techniques for data pre-processing, micro-structure

and fiber orientation estimation, streamline tractography, and tracto-

graphy post-processing. To enable these computations, we use

densely-sampled multi-shell dMRI data that allow us to compute accu-

rate FOD and whole-brain tractograms and to apply microstructure-

informed tractography filtering using advanced models of tissue

microstructure. The new method, applied to high-quality data used in

this work, is expected to reconstruct normative structural connectivity

metrics that can serve as reference baselines for reliable assessment

and comparison of normal and abnormal brain development at this

critical stage. We demonstrate the effectiveness of the proposed

computational framework by applying it to a large cohort of subjects

scanned between 33 and 44 weeks of PMA and analyzing important

metrics of structural connectivity.

2 | MATERIALS AND METHODS

2.1 | Data

We used the MRI data from the second release of the Developing

Human Connectome Project (dHCP) study (Bastiani et al., 2019). All

subjects included in this analysis were healthy, that is, without major

focal brain lesions or any clinically significant abnormalities based on

expert evaluation of structural MRI. To conduct our analysis, we con-

sidered PMAs between 33 and 44 weeks. This period is characterized

by interhemispheric synchronization and a gradual resolution of the

subplate that corresponds to the establishment of permanent brain

circuitry (Kostovi�c & Judaš, 2010). The PMA is the summation of ges-

tational age (interval between the initial day of the last menstrual

period and the day of delivery) and chronological age. The PMA was

rounded to the nearest week. For PMA of 35 weeks, for example, we

used subjects scanned between 34.5 and 35.5 postmenstrual weeks.

For PMAs around 38 weeks, the dHCP dataset contained many more

subjects than needed for our analysis. Our recent work as well as

works of other researchers have shown minimal or no changes in the

quality of spatio-temporal atlases when more than 15 subjects are

used in each age group (Karimi & Gholipour, 2022; Pietsch

et al., 2019). Hence, we used at most 15 subjects for each PMA. For

the earliest age of 33 weeks only seven subjects were available, but

that was still sufficient for our analysis.

2.2 | Data preprocessing

Structural MRI data for each subject included T1w and T2w multi-

slice fast spin-echo images acquired with an in-plane resolution of

0.8 mm, slice thickness of 1.6 mm, and slice overlap of 0.8 mm in axial

and sagittal directions. The dMRI data was collected with a set of

spherically optimized directions at four b-values: b¼0 (n¼20),

b¼400 (n¼64), b¼1000 (n¼88), and b¼2600 (n¼128). Preproces-

sing of raw structural data included bias correction with the N4 algo-

rithm (Tustison et al., 2010), motion corrected volumetric

reconstruction of the multi-slice acquisitions, brain extraction using

BET from the FSL software package (Jenkinson et al., 2005), and tis-

sue segmentation using the DRAW-EM algorithm developed for neo-

natal brains (Makropoulos et al., 2014, 2018). A fetal neuroanatomist

(L.V.) and an MD with 3 years of experience in fetal and neonatal neu-

roimaging (C.C.) carefully inspected and verified the segmentations.

Preprocessing of the raw dMRI data included susceptibility-induced

distortion correction, correction of eddy current-induced distortions

and subject motion, followed by super-resolution volume reconstruc-

tion and registration to structural images. The details of the prepro-

cessing operations are described in Bastiani et al. (2019) and

Makropoulos et al. (2018). We denoised the dMRI data and resampled

all dMRI and anatomical data (i.e., T2 images and tissue segmenta-

tions) to an isotropic resolution of 1mm. Denoising was performed

with a method based on Marchenko-Pastur Principal Component

Analysis (Veraart et al., 2016). We used the implementation of this

method in MRtrix (Tournier et al., 2019).

2.3 | Computational pipeline

Figure 1 shows the data processing pipeline for computing

population-averaged age-specific connectomes. The pipeline has two

main branches. One branch uses FOD-based registration to compute

a tractogram for each age. The other branch uses diffusion tensor-

based registration to compute maps of micro-structural biomarkers.
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The FOD-based alignment could have been used to also compute

atlases of micro-structural biomarkers. However, we found that a dif-

fusion tensor-based registration resulted in sharper and more detailed

micro-structural biomarker maps. Different steps of the pipeline are

described below. Note that this pipeline is applied separately for each

age group to compute a separate structural connectome for every

week between 33 and 44 postmenstrual weeks.

2.3.1 | Computing age-specific FOD templates and
tractograms

We used the multi-shell multi-tissue constrained spherical deconvolu-

tion (MSMT-CSD) (Jeurissen et al., 2014) for FOD estimation. This

method is based on deconvolving the dMRI signal with signature

response functions from white matter, gray matter, and cerebrospinal

fluid (CSF). We first estimated these response functions separately for

each subject in an age group. To compute the response functions, we

used the method proposed in Dhollander et al. (2016). This method

first computes a segmentation of the brain tissue to identify voxels

that consist purely of white matter, gray matter, and CSF. Then, the

signals from these voxels are used to estimate response functions for

each of the three tissue types. Subsequently, we computed average

response functions for that age. The average response functions were

used to estimate the FOD images for each subject in the age group. A

white matter FOD template was then estimated using symmetric

diffeomorphic registration of the white matter FOD maps of all sub-

jects in the age group. To compute the registration, we used the

method proposed in (Raffelt et al., 2011). This method uses a point

spread function (PSF) representation of the FODs. Specifically, each

FOD is represented as a weighted sum of equally distributed PSFs.

The computed deformation is applied to each PSF separately and,

subsequently, the reoriented PSFs are used to compute the reoriented

FOD as a weighted sum. The main advantage of this method is that it

applies the correct rotation to the PSFs such that the reoriented FOD

is consistent with the nonlinear deformation. This is essential for

properly aligning the white matter structures between different

brains. The deformations computed based on the white matter FODs

were also used to warp the T2 images and tissue segmentation maps.

Voxel-wise averaging and majority voting, respectively, were used to

estimate a T2 template and a tissue segmentation template for

that age.

Anatomically-constrained tractography (Smith et al., 2012) was

then applied using the FOD and tissue segmentation templates. We

used a probabilistic streamline tracing method (Tournier et al., 2010).

This tractography method is based on a second-order integration of

FOD. In addition to the FOD at the current streamline tracing point, it

also takes into account the FOD at a number of candidate next points,

and takes the next step so as to maximize the joint probability. We

empirically set the maximum angle between successive streamline

tracing steps to 30� and the FOD amplitude cut-off threshold of 0.01

as the stopping criterion. We randomly seeded all voxels in the brain

F IGURE 1 The proposed computational pipeline for computing population-averaged age-specific structural connectomes. dMRI, diffusion-
weighted magnetic resonance imaging; FA, fractional anisotropy; MRI, magnetic resonance imaging; NDI, neurite density index; NODDI, neurite
orientation dispersion and density imaging; ODI, orientation dispersion index.
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volume and generated a total of five million valid streamlines. The

Spherical-deconvolution Informed Filtering of Tractograms 2 (SIFT2)

algorithm (Smith et al., 2015) was subsequently applied on the com-

puted tractogram. The SIFT2 algorithm computes a cross-sectional

area multiplier for each streamline such that, after applying the multi-

plier, the streamline density is reflective of the density of the underly-

ing white matter fiber.

2.3.2 | Computing age-specific templates of tissue
micro-structure biomarkers

There is no consensus on the proper weighting of the edges in a struc-

tural connectome. It is possible to compute the edge weight/strength

values based on tractography data alone, for example in terms of the

streamline count. However, there is growing evidence in favor of uti-

lizing biomarkers of tissue micro-structure integrity to weight the con-

nections (Qi et al., 2015; Yeh et al., 2021). In this work, we used

biomarkers derived from the diffusion tensor and the Neurite Orienta-

tion Dispersion and Density Imaging (NODDI) models (Zhang

et al., 2012).

We estimated the diffusion tensor with the iterative weighted

least squares method of Veraart et al. (2013) using the measurements

in the b¼1000 shell. We computed the fractional anisotropy

(FA) image from the diffusion tensor image. We fitted the NODDI-

Watson model to the full multi-shell data and computed the Orienta-

tion Dispersion Index (ODI) and the Neurite Density Index (NDI)

(Zhang et al., 2012). As suggested by Guerrero et al. (2019), we low-

ered the initial value of parallel diffusivity from 1:7�10�9m2=s to

1:4�10�9m2=s in order to better fit neonatal brain data.

Subsequently, we computed a template for these biomarkers

using a nonlinear diffusion tensor-based alignment algorithm (Zhang

et al., 2006). This algorithm divides the image into patches and com-

putes affine registration transforms for each patch. To ensure smooth-

ness of the transformation across the boundaries of neighboring

patches, a smoothness constraint is introduced into the optimization

objective. We used the implementation of this algorithm in the DTI-

TK software package. These templates were then registered to the T2

template map for the same age group using affine registration. Note

that the T2 and FOD templates were co-registered by design, as

shown in Figure 1. Hence, after being registered to the T2 template,

these biomarker templates could be used to weight the streamlines

computed based on the FOD template.

2.3.3 | Computing the structural connectome

To define the connectome nodes, we used the Edinburgh Neonatal

Atlas (ENA50) (Blesa et al., 2020). This atlas included 107 regions of

interest (ROIs) from 53 structures with bilateral presentation in addi-

tion to the corpus callosum. We only utilized the cortical gray matter

parcellations, subcortical gray matter structures, and cerebellar parcel-

lations, resulting in a total of 98 nodes. Table 1 in the Supporting

Information shows the names of these nodes and the abbreviated

names that are used in this paper. In order to form brain lobes, we

merged the relevant nodes in this atlas. Table 2 in the Supporting

Information displays the names of these lobes and the abbreviations

that we use in this paper. We registered the parcellation to our com-

puted age-specific templates using deformable registration of the T2

image from the ENA50 atlas to the T2 template computed by our

pipeline.

Using the gray matter parcellations as graph nodes and the

streamlines as edges, we computed the structural connectomes. We

computed the mean of microstructural biomarkers along streamlines

connecting each pair of nodes to obtain wFA i, jð Þ, wNDI i, jð Þ, and

w1�ODI i, jð Þ, which were used to weight the connections. The negative

sign for ODI is standard practice and it is used because ODI is a mea-

sure of fiber dispersion, whereas one should assign larger weights to

higher microstructural integrity.

The procedure described above follows the state of the art

approach for computing the structural connectome (Smith

et al., 2020). The results presented in this paper mostly follow this

analysis. Nonetheless, we also present and discuss the connectivity

results after applying a connectome normalization operation that has

been used in some prior studies on perinatal brain too (Batalle

et al., 2017). This normalization aims to ensure that different connec-

tomes are equal in terms of the total network strength. It normalizes

each connectome as wnX i, jð Þ¼wX i, jð Þ=P
8i, j

wX i, jð Þ, where X refers to the

connectome weighting (FA, NDI, or 1-ODI). The rationale behind this

normalization strategy is that it may facilitate comparison of the con-

nectomes in terms of network topology by reducing the influence of

total network strength. In other words, this normalization is meant to

equalize the total network strength for all connectomes, thereby mak-

ing the graph metrics independent of the total network strength. This

experiment will determine whether such normalization can enhance

the capability of the computed connectome to describe the topologi-

cal and organizational properties of the brain.

We also performed the connectivity analysis at a higher nodal

resolution. It is well known that nodal resolution may significantly

influence the structural connectivity metrics (Messé, 2020; Qi

et al., 2015; Zalesky, Fornito, Harding, et al., 2010). In order to investi-

gate how this factor may impact the results of our pipeline, in addition

to the ENA50 atlas with 98 parcellations we also used the UNC

Cedars Infant Atlas (UNC FC atlas, (Shi et al., 2018)) with 223 parcella-

tions to define the connectome nodes. We followed the same proces-

sing steps explained above to compute the connectomes with this

alternative cortical parcellation.

2.3.4 | Computing the connectivity metrics

After computing the connectome as described above, we computed

five standard and widely-used structural connectivity measures: char-

acteristic path length (CPL), global efficiency (GE), local efficiency (LE),

clustering coefficient (CC), and small-worldness index (SWI). CPL and

GE are measures of network integration, which quantifies brain's

WU ET AL. 5 of 20



ability to incorporate information across distant brain regions

(Rubinov & Sporns, 2010). CC and LE are measures of network segre-

gation, which reflects the capability for specialized processing to occur

within interconnected groups of brain regions (Rubinov &

Sporns, 2010). SWI is a measure of network topology.

2.3.5 | Comparison with connectome-level
averaging methods

The main rationale behind our method is that averaging of subjects'

data for each PMA may suppress the subject-level variability and

amplify the changes in connectivity metrics with PMA. Our method

achieves this via spatial alignment and averaging in the image space.

An alternative approach is to perform the averaging in the connec-

tome space (Betzel et al., 2019). In this approach, connectomes are

computed separately for each individual subject and then averaged to

compute a group-representative connectome.

This averaging can be accomplished in various ways. Here, we

applied four different ways of implementing this approach, as

described by Betzel et al. (2019): (1) Simple average: In this approach,

the non-zero elements of subject connectomes are simply averaged

to compute the corresponding elements of an average connectome.

(2) Consensus-based uniform thresholding with τ¼0:50: Only the

connections that are present in at least half of the subjects are

retained and the rest are set to zero. (3) Consensus-based uniform

thresholding with a threshold τ¼Avg: Here, the value of τ is chosen

such that the binary density of the average connectome is as close as

possible to the average binary density of the subject connectomes.

(4) Length-preserved averaging. Using a single threshold, as in

methods 2 and 3, can result in a biased averaging because it is more

likely to retain the shorter connections and eliminate the longer ones

(Betzel et al., 2019). To overcome this shortcoming, an alternative

method is to divide all subject-level connections into N non-

overlapping bins based on their length and to retain a variable fraction

of connections in each bin. Different fractions of connections are kept

depending on their lengths such that the distribution of the connec-

tion lengths in the group-averaged connectome will match that of the

subjects.

We refer to Betzel et al.'s paper for details of implementation of

these methods (Betzel et al., 2019). After generating the group-

representative networks for each age, we computed the connectivity

metrics and performed age regression similarly as for our proposed

method. Even though we have applied all four methods, we mostly

focus on the results of length-preserved averaging method since it is

the preferred way of averaging the connectomes according to the

arguments presented in Betzel et al. (2019).

We compared our method with length-preserved connectome

averaging method in terms of the changes in structural connectivity

with PMA and brain asymmetry, described further below. Moreover,

we compared these methods in terms of the similarity between the

age-specific average connectomes and the connectomes of the indi-

vidual subjects in the same age subgroup. It can be argued that a good

average connectome should have a high similarity to the connectomes

of individual subjects of the same age. In the literature, different ways

of comparing connectomes and quantifying the similarity between

connectome matrices have been proposed (Sotiropoulos &

Zalesky, 2019; Zalesky, Fornito, & Bullmore, 2010). In this work, we

followed two approaches outlined below.

• Our first evaluation approach was based on scalar connectivity

measures. Specifically, we relied on GE, LE, CPL, CC, and SWI. For

example, for GE, we computed the difference between GE of each

subject and the GE of the age-specific average connectome for our

method and the length-preserved connectome averaging method.

We then performed a paired t-test to determine if the absolute dif-

ferences were significantly different between the two methods.

• The second approach that we followed was based on pairwise clas-

sification of connectomes. Specifically, we followed the method

proposed by Petrov et al. (2018). We represented each connec-

tome with a feature vector that consisted of the connectome

weights and eight topological features as described in Petrov

et al. (2018). Let us use f Cð Þ to denote the feature vector com-

puted for connectome C. Let us also denote the connectome for

subject i as Ci
sub and the average connectome j as Cj

avg (i.e., each j

corresponds to a different age between 33 and 44weeks). Follow-

ing (Petrov et al., 2018), we computed the difference in the feature

vectors as
���f Ci

sub

� �
� f Cj

avg

� ����, where we used ℓ1-norm, ℓ2-norm,

and ℓ∞-norm to obtain a pair-wise feature vector of size three. We

trained a support vector machine (SVM) classifier on this feature

vector. The SVM was trained to predict class “1” if the subject con-

nectome i was the same age as average connectome j, and class

“0” otherwise. We trained the SVM on 120 subjects. We then

applied the trained SVM on the remaining 46 subjects (3 or 4 test

subjects per PMA) and computed the classification accuracy. For

technical details, such as SVM implementation and training, we fol-

lowed Petrov et al. (2018).

2.3.6 | Age regression

We used general linear models (GLMs) to estimate the effect of age

on the structural brain connectivity measures using the network mea-

sures as dependent variables and PMA as the independent variable.

We used the R statistics package to perform all GLM analyses. We

considered a p value of less than 0.05 to be statistically significant.

2.3.7 | Edge-wise association with age

We assessed the correlations between the individual connections and

PMA to characterize the changes in connectivity weights with age.

This edge-wise association analysis was performed on un-normalized

as well as normalized FA-, NDI-, and (1-ODI)-weighted connections.

For this analysis, we only considered the connections that were com-

mon to all ages. We used the Spearman's rank correlation coefficient

(ρ) to quantify the association between edge-wise connection

strengths with PMA. We used the Bonferroni correction to account
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for multiple comparisons in order to control the family-wise error rate

at 0.05. Furthermore, we assessed the correlation between the PMA

and connection strengths between the lobes. Similar to the node-wise

analysis, we only considered the connections that were common to all

PMAs. We computed the Spearman's rank correlation coefficient to

assess the association between lobe-wise connections and PMA. We

applied the false discovery rate (FDR) correction to control the family-

wise error rate at 0.05.

2.3.8 | Asymmetry in brain connectivity

In order to analyze the differences between the structural connectiv-

ity in the left and right brain hemispheres, we computed the laterality

index LI¼ Right�Left
RightþLeft for FA-, NDI-, and (1-ODI)-weighted connections.

LI <0 indicates leftward asymmetry, whereas LI >0 indicates rightward

asymmetry. Furthermore, we performed linear regression analyses to

assess the effect of age on the asymmetry of the brain connectivity.

3 | RESULTS

3.1 | Spatio-temporal atlases

Figure 2 shows selected views of the atlases reconstructed by our

computational pipeline for PMAs of 35 and 43 weeks. The atlases

portray a detailed representation of the brain's structure. To ensure

accuracy, an expert visually assessed the atlases to confirm that they

were free from errors and artifacts, verify the orientation of the FODs,

and determine the correctness of the computed tractograms. Figure 1

in the Supporting Information shows the FOD atlases for all 12 PMAs

between 33 and 44 weeks.

3.2 | Similarity between subject connectomes and
average connectomes

Here, we present the results of the two comparisons between individ-

ual subject connectomes and age-specific average connectomes

described in Section 2.3.5. Table 1 shows the difference between sub-

ject connectomes and age-specific average connectomes of the same

age in terms of connectivity metrics. It shows the results for our

method and length-preserved connectome averaging, separately for

each of the three connection strength weightings. The results clearly

show that the average connectomes computed with our method are

closer to the individual subject connectomes within the age subgroup.

In terms of most measures, the average connectome computed with

our method has a smaller difference with individual connectomes. In

terms of GE, LE, and CPL most of the differences between our

method and length-preserved connectome averaging are statistically

significant. The results presented in this table have been pooled

across all ages. When looking at individual age subgroups separately,

the results were similar in that the connectome computed by our

method was closer to the individual subject connectomes.

In the SVM-based classification evaluation, for the average connec-

tomes computed with our method, the classification accuracy, sensitivity,

and specificity were, respectively 0.77, 0.76, and 0.79. For the connec-

tomes computed with length-preserved connectome averaging, classifi-

cation accuracy, sensitivity, and specificity values were 0.70, 0.68, and

0.71. In this analysis, for each individual connectome we considered only

the closest average connectome to be the correct match. For example, a

subject of age 38.6 weeks should only be matched with the average con-

nectome of age 39 weeks. We could relax this by accepting all matches

with an age difference of within 1 week to be correct. In this relaxed

analysis, a subject of age 38.6 weeks is considered to be correctly classi-

fied if it is matched to an average connectome of 38 weeks or 39 weeks.

F IGURE 2 From left to right: Example FOD atlas, tractogram, FA, NDI, and ODI atlases generated by our computational pipeline for
35 weeks (top) and 43 weeks (bottom). FA, fractional anisotropy; FOD, fiber orientation distribution; NDI, neurite density index; ODI, orientation
dispersion index.
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With this relaxed evaluation, for our method the classification accuracy,

sensitivity, and specificity were 0.83, 0.85, and 0.82, respectively. For

length-preserved connectome averaging the accuracy, sensitivity, and

specificity were, respectively 0.77, 0.79, and 0.76. These results also

show that the average connectomes computed with our method are

closer to the individual subject connectomes.

3.3 | Association between connectivity metrics
and PMA

Figure 3 shows the observed trends in GE, LE, CPL, and CC as a func-

tion of PMA. Overall, the plots in this figure depict an increase in GE,

LE, and CC and a decrease in CPL. For ODI-weighted connectome, lin-

ear correlations are relatively strong (jR j � 0:61,0:70½ �). For connec-
tomes weighted by FA and NDI, on the other hand, there are

unmistakable strong linear correlations with jR j ≥ 0:97. GE is

positively correlated with PMA in the connectomes weighted by FA

(R= .99, p< .001), NDI (R= .98, p< .001), and 1-ODI (R= .70,

p= .011). Similarly, LE is positively correlated with PMA in the con-

nectomes weighted by FA (R= .99, p< .001), NDI (R= .98, p< .001),

and 1-ODI (R= .68, p= .014). CPL is negatively correlated with PMA

in the connectomes weighted by FA (R=�.97, p< .001), NDI

(R=�.97, p< .001), and 1-ODI (R=�.68, p= .014). Lastly, CC is posi-

tively correlated with PMA in the connectomes weighted by FA

(R= .98, p< .001), NDI (R= .97, p< .001), and 1-ODI (R= .61,

p= .035). The last column in Figure 3 shows the SWI values computed

with different connectome weighting schemes. For SWI, instead of

the correlation with PMA, we are interested in knowing whether the

computed values are larger than one, which would indicate small-

world network properties. We used one-sample t-tests to test the

hypothesis that SWI was significantly larger than one. As shown in

the figure, these tests show that SWI for the connectome weighting

based on FA, NDI, and (1-ODI) is significantly larger than one.

TABLE 1 Mean of the absolute difference in five connectivity measures between the individual subject connectomes and the age-specific
average connectomes. Results are shown separately for three connection strength weightings. An asterisk indicates a statistically significant
difference (p¼ :05) between the proposed method and length-preserved connectome averaging method.

Proposed method Length-preserved connectome averaging

jΔGE j jΔLE j jΔCPL j jΔCC j jΔSWI j jΔGE j jΔLE j jΔCPL j jΔCC j jΔSWI j
FA 0.047 0.045* 0.630* 0.055 0.007 0.047 0.050 0.685 0.056 0.007

NDI 0.046* 0.048* 0.611* 0.064 0.007 0.051 0.053 0.679 0.067 0.008

1-ODI 0.090* 0.092* 0.739* 0.096 0.008 0.130 0.144 0.772 0.101 0.008

F IGURE 3 Plots of different structural connectivity measures, computed with the parcellation nodes defined with the ENA50 atlas, versus
PMA for the connectome edge weighting based on FA, NDI, and 1-ODI. FA, fractional anisotropy; NDI, neurite density index; ODI, orientation

dispersion index; PMA, postmenstrual age.
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Results of the analysis with the length-preserved connectome

averaging method are shown in Figure 4. In terms of the trends in GE,

LE, CPL, and CC, the results are surprisingly similar to those computed

with our method, especially for the connectomes weighted based on

FA and NDI. Specifically, for the FA- and NDI-weighted connectomes,

the trends are in the same directions as those in Figure 3 and they are

all statistically significant. For the (1-ODI)-weighted connectome, on

the other hand, although the trends are in the same direction as

Figure 3, they are much weaker and none are statistically significant

at p¼ :05. In terms of SWI, the results computed with the two

methods are consistent in the sense that SWI is significantly larger

than one for all three connection weighting methods.

Table 2 presents a summary of the results for all four connectome

averaging methods described in Section 2.3.5. The results of all four

methods are highly similar for FA and NDI connection weighting. With

(1-ODI)-weighting, the Simple Average method shows opposing but

statistically insignificant trends in GE and LE. For the remainder of this

paper, we present the results only for the length-preserved averaging

technique because it is the preferred method (Betzel et al., 2019) and

because the other three methods show largely similar results.

3.4 | Node-wise associations with age

Figure 5 shows the association between connection strength and

PMA for different connection weighting schemes. For the

connectomes that have been computed based on FA and NDI weight-

ing, all connections show a positive correlation with PMA, which

means all connections become stronger with age. Analysis with the

connectome weighting based on 1-ODI paints a largely similar picture,

with the exception of a few sporadic connections that show a signifi-

cant decrease in strength with PMA. These results show a consistent

increase in the strength of the connections that seem to be primarily

driven by improved neural density, reduced dispersion, and increased

myelination. Figure 6 shows the corresponding plots for the

length-preserved connectome-level averaging method. The plots for

connection weighting based on FA and NDI are very similar to those

presented for the proposed method in Figure 5, in the sense that all

significantly changing connections show an increase in strength and

that there are many such connections between all brain lobes consid-

ered. However, for connection weighting in terms of 1-ODI, no con-

nection shows a significant increase or decrease with PMA for this

method, which is quite unlike the results for our method as shown in

Figure 5.

3.5 | Correlation between PMA and connections
between the lobes

Figure 7 shows the change in the connection strength between differ-

ent brain lobes in the connectomes weighted with FA, NDI, and

1-ODI. The connectomes weighted with FA and NDI display a near-

F IGURE 4 Plots of different structural connectivity measures versus PMA for the connectomes computed with the length-preserved
connectome averaging technique. FA, fractional anisotropy; NDI, neurite density index; ODI, orientation dispersion index; PMA,
postmenstrual age.
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uniform increase in the connection strength with PMA. The (1-ODI)-

weighted connectome shows an overall similar pattern of increasing

connection strength with a few sporadic decreasing connection

strengths. Figure 8 shows the results for the length-preserved con-

nectome averaging method. For connection weighting in terms of FA

and NDI, connections show increasing strength with PMA, similar to

our method. For connection weighting in terms of 1-ODI, on the other

hand, there are fewer connections that show a significant change in

strength with PMA and most of those show a decrease in strength,

which is very different from the results observed with our proposed

method that show mostly positive correlations with PMA.

Figure 9 shows the results of statistical significance tests to com-

pare our method and length-preserved connectome averaging method

in terms of the age-related changes in lobe-wise connection strengths.

It shows the connections for which the Spearman's rank correlation

coefficient are significantly different between the two methods. For

F IGURE 5 These plots show the connectome edges that are significantly correlated with PMA, quantified in terms of Spearman's rank
correlation coefficient (ρ) after Bonferroni correction. The color intensity of the edges is proportional to ρ. FA, fractional anisotropy; NDI, neurite
density index; ODI, orientation dispersion index; PMA, postmenstrual age.

TABLE 2 Summary of the PMA regression results. ENA50 column shows the results of our proposed method with the parcellation nodes
defined with the ENA50 atlas. The other four columns present the results of four different ways of implementing connectome-level averaging,
including length-preserved averaging (column 2), simple average (column 3), consensus-based uniform thresholding with τ¼0:50 (column 4), and
consensus-based uniform thresholding with a threshold τ¼Avg (column 5).

ENA50 Length-preserved Simple average Consensus τ¼0:5 Consensus τ¼Avg

p-value R p-value R p-value R p-value R p-value R

FA GE <.0001 .9854 <.0001 .9777 <.0001 .9905 <.0001 .9671 <.0001 .9766

LE <.0001 .9858 <.0001 .9699 <.0001 .9907 <.0001 .9481 <.0001 .9872

CPL <.0001 �.9728 <.0001 �.9603 <.0001 �.9775 <.0001 �.9586 <.0001 �.9592

CC <.0001 .9772 <.0001 .9753 <.0001 .9894 <.0001 .9517 <.0001 .9746

SWI <.0001 / <.0001 / .1098 / <.0001 1.0000 /

NDI GE <.0001 .9813 <.0001 .9829 <.0001 .9926 <.0001 .9756 <.0001 .9809

LE <.0001 .9794 <.0001 .9770 <.0001 .9920 <.0001 .9639 <.0001 .9692

CPL <.0001 �.9730 <.0001 �.9700 <.0001 �.9829 <.0001 �.9620 <.0001 �.9638

CC <.0001 .9750 <.0001 .9798 <.0001 .9914 <.0001 .9661 <.0001 .9648

SW <.0001 / .0074 / .8537 / .0293 / 1.0000 /

1-ODI GE .0111 .7008 .4092 .2628 .7368 �.1086 .2748 .3431 .7386 .1079

LE .0144 .6826 .6256 .1572 .4145 �.2600 .4607 .2358 .9868 .0054

CPL .0140 �.6850 .3283 �.3091 .5306 �.2012 .3217 �.3131 .3532 �.2942

CC .0353 .6098 .8440 .0638 .6820 .1323 .6498 .1464 .5419 �.1958

SW .0020 / <.0001 / .0012 / <.0001 / .0005 /
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(1-ODI)-weighting, our method shows a much larger number of stron-

ger age-related changes in lobe-wise connection strengths. For FA-

and NDI-weighting, on the other hand, the results are mixed and each

of the two methods reconstructs significantly stronger age-related

changes in a different subset of lobe-wise connections.

3.6 | Brain asymmetry

The results of asymmetry analysis are presented in Figure 10. The

asymmetry patterns revealed by the FA-, NDI-, and (1-ODI)-weighted

connectomes, although complex, display remarkable similarities, as

shown in Figure 10a–c. The connections between the frontal and

temporal lobes and the other lobes show right-ward asymmetry, while

the connections between medial and occipital lobes and the other

lobes display left-ward asymmetry. Figure 10d–f shows the

correlation between connection asymmetry and PMA. The patterns

for FA- and NDI-weighted connectomes are largely similar, but mark-

edly different from the (1-ODI)-weighted connectome. Connections

among occipital, temporal, and parietal lobes, insula, and cerebellum

show an increase in right-ward asymmetry, while the connections

among medial and frontal lobes and BG show slight increases in left-

F IGURE 6 Connectome edges that are significantly correlated with PMA, quantified in terms of Spearman's rank correlation coefficient (ρ)
after Bonferroni correction for the length-preserved connectome averaging method. The color intensity of the edges are proportional to ρ. FA,
fractional anisotropy; NDI, neurite density index; ODI, orientation dispersion index; PMA, postmenstrual age.

F IGURE 7 Lobe-wise connections that are significantly correlated with PMA. These connectomes show the Spearman's rank correlation
coefficient (ρ) after FDR correction. The color intensity of the edges is proportional to ρ. FA, fractional anisotropy; FDR, false discovery rate; NDI,
neurite density index; ODI, orientation dispersion index; PMA, postmenstrual age.
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ward asymmetry. The sharpest changes occur between cerebellum

and insula in the FA- and NDI-weighted connectomes. With (1-ODI)

weighting, only two significantly changing connections are observed,

which are also observed with FA and NDI weighting.

The corresponding results for length-preserved connectome aver-

aging method are presented in Figure 11. In terms of brain asymmetry,

the results are interestingly very similar to those obtained for the pro-

posed method. There are very few minor differences between the

laterality patterns discovered with the two methods, such as a left-

ward asymmetry in the connections between cerebellum and insula in

our results, which is not observed in the results obtained with

connectome-level averaging. Otherwise, the results are almost identi-

cal. In terms of the change in brain asymmetry with PMA, the results

are different from those obtained with our method. Moreover, unlike

our method that shows consistent results between FA and NDI

weighting, the results with length-preserved connectome averaging

are not consistent between these two weighting schemes.

3.7 | Connectome normalization

Figure 2 in the Supporting Information shows the change in GE, LE,

CPL, and CC as a function of PMA, as well as SWI, for the connec-

tomes normalized in terms of total strength, computed as explained in

Section 2.3.3. Overall, these observed trends do not agree with those

shown for the original (i.e., un-normalized) connectomes shown in

Figure 3. The correlations with PMA are much weaker and often the

opposite of the trends that we observe for un-normalized

F IGURE 8 Lobe-wise connections that are significantly correlated with PMA for the length-preserved connectome averaging method. These
connectome plots show the Spearman's rank correlation coefficient (ρ) after FDR correction. The color intensity of the edges is proportional to ρ.
FA, fractional anisotropy; NDI, neurite density index; ODI, orientation dispersion index; PMA, postmenstrual age.

F IGURE 9 Significant differences between our method and length-preserved connectome averaging method in terms of the Spearman's rank
correlation coefficient of lobe-wise connection strength with PMA. Blue squares indicate significantly larger correlation for the connectome
averaging method, whereas red squares show significantly larger correlation for our proposed method. FA, fractional anisotropy; NDI, neurite
density index; ODI, orientation dispersion index; PMA, postmenstrual age.
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connectomes. The only statistically significant trend was the decrease

in GE for the NDI-weighted connectome, which is the opposite of the

trend observed for the un-normalized connectomes. Overall, the

trends in GE, LE, CPL, and CC for FA- and NDI-weighted connec-

tomes, although mostly not significant, were all the opposite of those

for the unnormalized connectomes shown in Figure 3. The SWI results

were similar to those for the un-normalized connectomes.

Figure 3 in the Supporting Information shows the correlation

between connection strengths and PMA in the connectomes that are

normalized in terms of the total network strength. Compared with the

results shown in Figure 5, the normalized connectomes display a more

complex picture with significant regional variations in maturation. The

normalized FA-weighted connectome, for instance, shows an increase

in strength for some connections, including within the right frontal

lobe and between precentral and lingual. On the other hand, the con-

nection strength decreases for several connections, including connec-

tions within the cerebellum, between BG and cerebellum, between

frontal lobe and posterior cingulate, between medial lobe and BG and

hippocampus, as well as inter-hemisphere connections. The normal-

ized NDI-weighted connectome shows more increasing connection

strengths in the left than in the right hemisphere. Specifically, connec-

tion strengths increase between the frontal lobe, insula, temporal, and

occipital lobes in the left hemisphere. In the right hemisphere, a few

connections become stronger between the frontal lobe and other

regions. Inter-hemispheric connections, on the other hand, show

much slower rates of change. The normalized (1-ODI)-weighted con-

nectome shows a strengthening of the connections within the frontal

lobe and between the frontal lobe and putamen, but a weakening of

connections between BG and cerebellum and between the occipital

and temporal lobes. Figure 4 in the Supporting Information shows the

corresponding plots for the length-preserved connectome averaging

method. For connection weighting based on FA and NDI, there are

many positive and fewer negative correlations with PMA. There are

some similarities with those of our method (Figure 3 in the Supporting

F IGURE 10 Top: Brain asymmetry quantified in terms of the laterality index (LI). The connections with leftward asymmetry are colored in
blue, while the connections with right asymmetry are in red. The color intensity and thickness of the links are proportional to the LI value.
Bottom: Correlation between LI and PMA. The color intensity and thickness of the links are proportional to the regression slope β. A blue color
indicates an increasing leftward asymmetry with PMA, while red indicates increasing rightward asymmetry. FA, fractional anisotropy; NDI, neurite
density index; ODI, orientation dispersion index; PMA, postmenstrual age.
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Information), but also many differences. For example, for NDI weight-

ing, the length-preserved connectome averaging method shows many

more strengthening connections between the frontal and occipital

lobes within each of the two hemispheres. For connectome weighting

based on 1-ODI, no connections show an increasing or decreasing

strength with PMA, which is again quite different from the results of

our method.

Figure 5 in the Supporting Information shows the association

between lobe-wise connection strengths and PMA in the connec-

tomes that have been normalized in terms of the total network

strength. Similar to Figure 3 in the Supporting Information, and unlike

Figure 7, the relations displayed in this figure are complex and do not

lend themselves to a simple description. Both FA- and NDI-weighted

connectomes display weakening connections between multiple lobes

within and across the two brain hemispheres, although a few of the

connections become stronger such as the connection between

the insula and cerebellum in the left hemisphere. With (1-ODI)-

weighting, similarly, most connections become weaker, except for a

few connections between the left frontal lobe and other lobes.

Figure 6 in the Supporting Information shows the results for length-

preserved connectome averaging method. The results are different

among the three connection weighting schemes and they are also dif-

ferent from those shown in Figure 5 in the Supporting Information for

our proposed method. Overall, these results show that normalizing

the connectomes based on the total connectome strength leads to

more divergent results between the different connection weighting

schemes and group-wise averaging methods.

3.8 | Parcellation resolution

Figure 7 in the Supporting Information shows the connectivity metrics

for the connectomes computed with the parcellation nodes defined

with the UNC FC atlas with 223 nodes. The trends in GE, LE, CPL,

F IGURE 11 Analysis of brain asymmetry patterns for length-preserved connectome averaging method. Top: Brain asymmetry quantified in
terms of the laterality index (LI). The connections with leftward asymmetry are colored in blue, while the connections with right asymmetry are in
red. The color intensity of the links is proportional to the LI value. Bottom: Correlation between LI and PMA. The color intensity is proportional to
the regression slope β. A blue color indicates an increasing leftward asymmetry with PMA, while red indicates an increasing rightward asymmetry.
FA, fractional anisotropy; NDI, neurite density index; ODI, orientation dispersion index; PMA, postmenstrual age.
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and CC as a function of PMA are largely consistent with those

observed with the ENA50 atlas shown in Figure 3. For FA- and NDI-

weighted connectomes, jR j > :95, while for the (1-ODI)-weighted

connectome jR j � [.52, .65]. For SWI, on the other hand, the results

are different. Unlike Figure 3 where SWI>1, for this alternative atlas

with 223 nodes the SWI values are mostly smaller than one for all

three weighting methods.

Table 3 in Supporting Information summarizes some of the main

results from the above-explained experiments. It shows the p and R

values for our proposed method with the ENA50 atlas parcellation

(without and with total network strength normalization) and with the

UNC FC atlas parcellation (without normalization) as well as

the results obtained with the length-preserved connectome-level

averaging.

4 | DISCUSSION

In this work, we proposed a computational framework for quantitative

assessment of the development of structural connectome in the peri-

natal stage. We computed the structural connectome and connectivity

metrics using three micro-structural biomarkers (i.e., FA, NDI, and

1-ODI) for connection weighting. Our results showed that the pro-

posed framework could unveil strong relationships between several

important measures of brain connectivity and PMA. Our analysis of

the correlation between connection strength and PMA showed a con-

sistent and widespread increase in node-wise and lobe-wise connec-

tion strengths in the connectomes weighted with FA and NDI.

Several prior studies have examined the development of struc-

tural connectivity from infancy to adolescence using graph theoretical

approaches (Baker et al., 2015; Bhroin et al., 2020; Hagmann

et al., 2010; Ouyang et al., 2022). There have also been a few studies

on the structural connectivity in preterm neonates (Batalle

et al., 2017; Brown et al., 2014; de Almeida et al., 2021; Ratnarajah

et al., 2013; Van Den Heuvel et al., 2015). However, all prior works

have been conducted on individual subjects. To the best of our knowl-

edge, our work is the first to develop a methodology to assess the

development of the structural connectome in the perinatal stage using

spatio-temporal normalization and averaging in the image space. Even

though connectome averaging methods have existed in the past, they

have not been applied to study the perinatal brain. Moreover, our

method works differently as it carries out the averaging in the image

domain. Therefore, our results provide new insights into the normal

development of the structural connectome in this critical period.

Comparisons of our results with those of the length-preserved

connectome averaging method of Betzel et al. (2019) show overall

good agreement between these two methods. For example, both

methods show similar trends in GE, LE, CPL, and CC as a function of

PMA for the connectomes computed with FA and NDI weighting. Our

method shows significant linear trends in these measures for connec-

tion weighting based on 1-ODI, but for the connectome averaging

method these trends are not statistically significant. Similarly, both

methods show uniformly increasing connection strengths with PMA

between the nodes and lobes for connectome weighting based on FA

and NDI. For this analysis too, with (1-ODI) weighting our method

shows results that are largely consistent with FA and NDI weighting

(Figure 5), whereas connectome averaging method does not show this

(Figure 6). Another striking similarity is observed in terms of the asym-

metry patterns portrayed by the two methods as shown in

Figures 10a–c and 11a–c. In our opinion, given the fundamental dif-

ferences between the way the two methods work, these similarities in

the results may be interpreted as confirmation for both methods.

They show that group averaging in the image space and connectome

space can be effective approaches to studying structural connectivity

in the perinatal stage.

Some of the observations in this study are consistent with the

findings of prior works. Increases in local efficiency and global effi-

ciency (Batalle et al., 2017; Bhroin et al., 2020; Song et al., 2017) and

a decrease in characteristic path length (Brown et al., 2014; Van Den

Heuvel et al., 2015) with PMA have been reported in prior studies.

The increase in global efficiency and decrease in characteristic path

length indicate an increase in network integration, which translates

into improved ability of the brain to integrate information from distant

regions of the brain and enhanced efficiency of communication

between those regions (Rubinov & Sporns, 2010; Sporns, 2016). The

increase in local efficiency, on the other hand, indicates an increase in

network segregation, which means an increased ability of the brain to

support specialized information processing by interconnected clusters

of brain regions (Rubinov & Sporns, 2010; Sporns, 2016). Some stud-

ies have also found that the clustering coefficient increases with PMA

(e.g., Brown et al., 2014). This is consistent with our results for the

connectomes weighted by FA, NDI, and 1-ODI.

Some prior works have reported results that are qualitatively simi-

lar to ours. For example, some studies have found positive correla-

tions between local efficiency, global efficiency, and characteristic

path length with PMA in connectomes weighted by FA and NDI

(Batalle et al., 2017; Bhroin et al., 2020; Van Den Heuvel et al., 2015).

Some of our findings, on the other hand, do not agree with those

reported in the literature. Perhaps most prominently, our SWI compu-

tations are not consistent with those reported in some prior works.

The SWI values reported in the literature are typically in the range 1–

5 (de Almeida et al., 2021; Ratnarajah et al., 2013; Van Den Heuvel

et al., 2015), although some studies have computed SWI <1 on a few

individual neonatal brains (Ramirez et al., 2022; Van Den Heuvel

et al., 2015). Moreover, some studies have reported that SWI

increases with age in the perinatal stage (Batalle et al., 2017; Brown

et al., 2014; Van Den Heuvel et al., 2015). Our analysis did not reveal

such a trend. As shown in Figure 3 and several other figures in the

paper and the Supporting Information, our computed SWI values were

very close to 1 and mostly below 1.1. Moreover, as shown in Figure 7

in the Supporting Information, with the higher nodal parcellation our

computed SWI values decreased and were mostly in the range 0.90–

1. This observation also disagrees with prior studies that show SWI

increases with nodal parcellation resolution (Zalesky, Fornito, Harding,

et al., 2010). We think the difference between our results and previ-

ous perinatal brain studies (de Almeida et al., 2021; Marami
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et al., 2017; Ratnarajah et al., 2013; Shi et al., 2012; Van Den Heuvel

et al., 2015) may be mainly because of the methodological differences.

Unlike previous works, our method relies on anatomically-constrained

tractography, microstructure-informed filtering of the streamlines, and

microstructure-based weighting, which represent the state of the art

methodology for computing the structural connectome. Most prior

works have not used any of these techniques. It has been shown that

these methodological differences can impact the quantitative results

(Bastiani et al., 2012; Li et al., 2012; Qi et al., 2015), which may

explain the difference between our results and those of prior works.

The SWI values reported in this paper have been computed using the

definition (C/Cr)/(L/Lr). In this equation, C and L, respectively, denote

the clustering coefficient and characteristic path length for the brain

network, while Cr and Lr denote the same for a random network

(Humphries et al., 2006). We experimented with other definitions of

SWI (Neal, 2017; Telesford et al., 2011). However, the results did not

consistently show small world properties. Moreover, we also used

other weighting methods such as the inverse of the streamline length,

and we did not observe consistent small-world properties. Therefore,

we think our results raise new questions about the quantification of

small-world properties of the perinatal brain networks and warrant

further research on this topic.

Several prior works have analyzed the change in connection

strengths with PMA. Zhao et al. found increasing

connection strengths across the brain lobes and hemispheres in their

analysis of structural connectivity between 32 and 42 weeks PMA

(Zhao et al., 2019). Batalle et al. observed significant increases in aver-

age FA-weighted and NDI-weighted connection strengths (Batalle

et al., 2017). In terms of individual connections, they observed signifi-

cant increases in many connections in the connectomes weighted

with FA and NDI and decreases in the connectome weighted by

1-ODI. Their results with FA- and (1-ODI)-weighting included several

connections with opposite changes. Therefore, there are important

differences between some of those results and our findings, which

show uniform increases in terms of FA and NDI and near-uniform

increases in terms of 1-ODI (Figure 5). There are other qualitative dif-

ferences between our results and those of (Batalle et al., 2017). For

example, in the normalized NDI-weighted connectome, we observed

increasing connection strengths between the frontal and occipital

lobes and decreasing connection strengths between the frontal and

medial lobes in both hemispheres (Figure 5 in Supporting Information).

No such changes were observed by Batalle et al. (2017). Brown et al.

assessed the change in the connection strength in terms of streamline

count and FA with PMA (Brown et al., 2014). Their study included

47 subjects between 27 and 45 weeks PMA, with 23 of the subjects

scanned twice. They observed that in terms of streamline count and

FA, respectively, 664 and 1009 of the connections changed signifi-

cantly with PMA and that most of these changes had a positive slope.

For FA-weighted connectome, 83% of those 1009 connections signifi-

cantly increased in strength while 17% of them showed a significant

decrease. As shown in Figure 5a, in our results all significantly chang-

ing connection strengths have a positive correlation. It is possible that

this is due to the suppression of unreliable and noisy results by our

framework, which may be impossible to achieve when data from indi-

vidual subjects are considered. The results of connectome averaging

technique (Figure 6a) seem to support this hypothesis as they are also

based on aggregating data from multiple subjects.

For our method as well as for the connectome averaging method,

the results show higher agreement between connection weighting in

terms of FA and NDI and much less agreement between these two

and connection weighting in terms of 1-ODI. For example, FA- and

NDI-weighting show stronger and more similar temporal trends in

connectivity metrics as well as more consistent and widespread

increases in node-wise and lobe-wise connection strengths. Compara-

tively, far less consistent results are observed with (1-ODI)-weighting.

This may be due to two factors. First, FA and NDI may be inherently

more appropriate for determining the strength of structural connec-

tions. FA is a composite metric that basically quantifies the anisotropy

of a diffusion tensor fit to the dMRI measurements. The NODDI

model is meant to offer more specific information about the micro-

structure by disentangling the factors that may contribute to a change

in FA. An increase in FA may be due to increased NDI, a decrease in

ODI, or other factors such as myelination (Beaulieu, 2014). In white

matter, voxels with a single dominant fiber orientation with strong

bending or fanning show low FA, but so do voxels that contain cross-

ing fibers. Zhang et al. (2012) show that both NDI and ODI are weakly

correlated with FA. However, they argue that ODI may be a good

indicator of bending or fanning, whereas NDI may be a good indicator

(even better than FA) for myelination. Therefore, NDI may be intrinsi-

cally better suited than ODI for determining the strength of structural

connections. Secondly, estimation of ODI may be more challenging

and suffer from higher variability. This was shown in a comprehensive

recent study that quantified intra- and inter-session/scanner variabil-

ity in microstructure mapping and found consistently higher variability

for ODI than for FA and NDI (Cai et al., 2021). For example, the intra-

session variability in ODI was 4.6%, compared with 3.3% and 3.6% for

FA and NDI, respectively. These higher estimation errors may have

contributed to the lower consistency in the results obtained with ODI.

A comparison of the results obtained without and with normaliza-

tion in terms of the total network strength shows that such

normalization leads to less consistent results. For example, the corre-

lation between network connectivity measures with PMA as well as

the correlation between node-wise and lobe-wise edge strengths with

PMA were stronger and more consistent for the unnormalized con-

nectomes than for the normalized connectomes. We made similar

observations for the length-preserved connectome averaging method.

This suggests that normalizing the connectomes in terms of the total

strength may not be the proper approach for analyzing the develop-

ment of perinatal brain. Increased fiber density and myelination during

the perinatal stage result in a strengthening of the structural connec-

tions in this stage. Microstructural measures such as FA and NDI can

effectively quantify these changes. Normalizing the connectomes in

terms of network strength, on the other hand, essentially removes the

effects of these developments. Therefore, we think these observa-

tions suggest that unnormalized connectomes better represent the

development of structural connectivity at the perinatal stage.
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Very few studies have assessed the asymmetry in brain's struc-

tural connectivity in the perinatal stage. Ratnarajah et al. observed dif-

ferences in local and global efficiency between the left and right brain

hemispheres in a population of 124 neonates between 36.9 and 42.7

gestational weeks (Ratnarajah et al., 2013). However, their regression

analysis did not reveal any asymmetries in local/global efficiency or

betweenness centrality for a large set of brain structures considered.

Our results, shown in Figure 10, are novel. They show significant left

laterality in the connections ending in the occipital and medial lobes

and significant right laterality in the connections ending in the frontal

and temporal lobes. Our results are consistent with previous research

on neonates, with rightward asymmetry for temporal lobes (Hill

et al., 2010; Lehtola et al., 2019; Li et al., 2014, 2015), rightward

asymmetry for the frontal lobe (Vannucci et al., 2019), and leftward

asymmetry for occipital lobe (Gilmore et al., 2007; Lehtola

et al., 2019; Vannucci et al., 2019). Similar patterns have been

reported for adult brains with significant asymmetry in frontal, tempo-

ral, and occipital lobes (Good et al., 2001; Toga & Thompson, 2003).

Remarkably, the main observations from all three weighting schemes

are very similar.

5 | LIMITATIONS

This study suffers from a number of limitations that may be addressed

in future works. One of the limitations of our evaluations is the lack of

measures of reproducibility or variability such as coefficient of varia-

tion (CV) or intra-class correlation coefficient (ICC). To compute such

statistics for our methods, scan-rescan imaging data from the same

subjects or scans of matched subjects would be needed, which were

unavailable to us. When such imaging data are available, assessing

reproducibility of the results reported in this paper can be very useful

in characterizing the advantages and limitations of the proposed com-

putational framework. This is especially important for our study

because the limited number of data points used in our regression anal-

ysis may have the tendency to produce false positives (Button

et al., 2013).

There are also methodological limitations in our proposed

computational framework that may be improved in future works. For

example, we have used the same brain parcellation atlas (either the

ENA50 atlas or the UNC FC atlas) for all postmenstrual ages between

33 and 44 weeks. As we explained in Section 2.3.3, we warped the

same atlas, based on deformable registration of T2 images, to align

with each gestational age. This is a common practice that has been

followed by prior studies on perinatal connectivity analysis (Ramirez

et al., 2022; Shi et al., 2012; Zhao et al., 2019). Nonetheless, it may be

advisable to develop age-specific parcellations, or to manually refine

the parcellation after registering to age-specific templates. There is

also often high inter-expert variability in assessing the correctness

and quality of the results of medical image analysis computations.

Employing a larger number of experts (than two, in this work) may be

beneficial.

6 | CONCLUSION

This work has proposed a novel computational framework for quan-

titative assessment of the development of brain's structural connec-

tome in the perinatal stage based on dMRI scans. The new

framework relies on accurate alignment of white matter structures

across many subjects using tensor- and FOD-based registration. This

approach makes it possible to reduce the inter-subject variability

and to reconstruct the developmental trajectories of the normal

brain. Our experimental results, on 166 neonates between 33 and

44 postmenstrual weeks, show that the proposed framework can

unveil relationships between several important measures of brain

connectivity and PMA. Connectome edge weighting based on FA

and NDI are especially effective in uncovering strong trends in the

structural connectivity measures. Our results show significant

increases in network integration and segregation in the perinatal

stage. They also portray significant changes in connection strength

and asymmetry between many nodes and lobes within and across

brain hemispheres. The trends reconstructed in this work are stron-

ger and more consistent than the results reported in prior works on

perinatal structural brain connectivity that have been based on

subject-wise analysis. Moreover, comparisons with alternative

methods based on connectome-level averaging in this paper showed

high agreement with our method. Our method showed more consis-

tent results, for example in terms of the changes in the connectivity

measures and connection weights with PMA in connectomes

weighted with 1-ODI. The normative developmental trends that

have been discovered in this work can be used as reference base-

lines for comparing and contrasting normal and abnormal brain

development in future works. Future works may also extend the

proposed framework to analyzing brain connectivity in longitudinal

and population studies.
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dependent consensus thresholds for generating group-representative

structural brain networks. Network Neuroscience, 3(2), 475–496.
Bhroin, M. N., Seada, S. A., Bonthrone, A. F., Kelly, C. J., Christiaens, D.,

Schuh, A., Pietsch, M., Hutter, J., Tournier, J. D., Cordero-Grande, L., &

Rueckert, D. (2020). Reduced structural connectivity in cortico-

striatal-thalamic network in neonates with congenital heart disease.

NeuroImage: Clinical, 28, 102423.

Blesa, M., Galdi, P., Sullivan, G., Wheater, E. N., Stoye, D. Q., Lamb, G. J.,

Quigley, A. J., Thrippleton, M. J., Bastin, M. E., & Boardman, J. P.

(2020). Peak width of skeletonized water diffusion MRI in the neonatal

brain. Frontiers in Neurology, 11, 235.

Brown, C. J., Miller, S. P., Booth, B. G., Andrews, S., Chau, V.,

Poskitt, K. J., & Hamarneh, G. (2014). Structural network analysis of

brain development in young preterm neonates. NeuroImage, 101,

667–680.
Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J.,

Robinson, E. S., & Munafò, M. R. (2013). Power failure: Why small

sample size undermines the reliability of neuroscience. Nature Reviews

Neuroscience, 14(5), 365–376.
Cai, L. Y., Yang, Q., Kanakaraj, P., Nath, V., Newton, A. T., Edmonson, H. A.,

Luci, J., Conrad, B. N., Price, G. R., Hansen, C. B., Kerley, C. I.,

Ramadass, K., Yeh, F. C., Kang, H., Garyfallidis, E., Descoteaux, M.,

Rheault, F., Schilling, K. G., & Landman, B. A. (2021). MASiVar: Multi-

site, multiscanner, and multisubject acquisitions for studying variability

in diffusion weighted MRI. Magnetic Resonance in Medicine, 86(6),

3304–3320.
Calixto Nunez, C., Soldatelli, M., Jaimes Cobos, C., Warfield, S. K.,

Gholipour, A., & Karimi, D. (2024). A detailed spatio-temporal atlas of

the white matter tracts for the fetal brain. bioRxiv, 2024, 2004.

Cao, Q., Shu, N., An, L., Wang, P., Sun, L., Xia, M. R., Wang, J. H.,

Gong, G. L., Zang, Y. F., Wang, Y. F., & He, Y. (2013). Probabilistic

diffusion tractography and graph theory analysis reveal abnormal

white matter structural connectivity networks in drug-naive boys with

attention deficit/hyperactivity disorder. Journal of Neuroscience,

33(26), 10676–10687.
Chen, Y., & Baram, T. Z. (2016). Toward understanding how early-life

stress reprograms cognitive and emotional brain networks. Neuropsy-

chopharmacology, 41(1), 197–206.
Ciceri, T., Casartelli, L., Montano, F., Conte, S., Squarcina, L., Bertoldo, A.,

Agarwal, N., Brambilla, P., & Peruzzo, D. (2024). Fetal brain MRI atlases

and datasets: A review. NeuroImage, 292, 120603.

Collin, G., & Van Den Heuvel, M. P. (2013). The ontogeny of the human

connectome: Development and dynamic changes of brain connectivity

across the life span. The Neuroscientist, 19(6), 616–628.
Cordero-Grande, L., Hughes, E. J., Hutter, J., Price, A. N., & Hajnal, J. V.

(2018). Three-dimensional motion corrected sensitivity encoding

reconstruction for multi-shot multi-slice MRI: Application to neonatal

brain imaging. Magnetic Resonance in Medicine, 79(3), 1365–1376.
Daducci, A., Dal Palù, A., Lemkaddem, A., & Thiran, J. P. (2014). COMMIT:

Convex optimization modeling for microstructure informed tractogra-

phy. IEEE Transactions on Medical Imaging, 34(1), 246–257.
de Almeida, J. S., Meskaldji, D. E., Loukas, S., Lordier, L., Gui, L.,

Lazeyras, F., & Hüppi, P. S. (2021). Preterm birth leads to impaired

rich-club organization and fronto-paralimbic/limbic structural connec-

tivity in newborns. NeuroImage, 225, 117440.

Dhollander, T., Raffelt, D., & Connelly, A. (2016). Unsupervised 3-tissue

response function estimation from single-shell or multi-shell diffusion

MR data without a co-registered T1 image. In ISMRM workshop on

breaking the barriers of diffusion MRI (Vol. 5, pp. 1). ISMRM.

Dubois, J., Alison, M., Counsell, S. J., Hertz-Pannier, L., Hüppi, P. S., &

Benders, M. J. (2021). MRI of the neonatal brain: A review of method-

ological challenges and neuroscientific advances. Journal of Magnetic

Resonance Imaging, 53(5), 1318–1343.
Dubois, J., Dehaene-Lambertz, G., Kulikova, S., Poupon, C., Hüppi, P. S., &

Hertz-Pannier, L. (2014). The early development of brain white matter:

A review of imaging studies in fetuses, newborns and infants. Neuro-

science, 276, 48–71.
Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the

human connectome: Promise, progress, and pitfalls. NeuroImage, 80,

426–444.
Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of

brain disorders. Nature Reviews Neuroscience, 16(3), 159–172.
Gilmore, J. H., Lin, W., Prastawa, M. W., Looney, C. B., Vetsa, Y. S. K.,

Knickmeyer, R. C., Evans, D. D., Smith, J. K., Hamer, R. M.,

Lieberman, J. A., & Gerig, G. (2007). Regional gray matter growth, sex-

ual dimorphism, and cerebral asymmetry in the neonatal brain. Journal

of Neuroscience, 27(6), 1255–1260.
Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., &

Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing

in 465 normal adult human brains. NeuroImage, 14(1), 21–36.
Guerrero, J. M., Adluru, N., Bendlin, B. B., Goldsmith, H. H., Schaefer, S. M.,

Davidson, R. J., Kecskemeti, S. R., Zhang, H., & Alexander, A. L. (2019).

Optimizing the intrinsic parallel diffusivity in NODDI: An extensive

empirical evaluation. PLoS One, 14(9), e0217118.

Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R.,

Wedeen, V. J., Meuli, R., Thiran, J. P., & Grant, P. E. (2010). White mat-

ter maturation reshapes structural connectivity in the late developing

human brain. Proceedings of the National Academy of Sciences, 107(44),

19067–19072.
Hill, J., Dierker, D., Neil, J., Inder, T., Knutsen, A., Harwell, J., Coalson, T., &

van Essen, D. (2010). A surface-based analysis of hemispheric asym-

metries and folding of cerebral cortex in term-born human infants.

Journal of Neuroscience, 30(6), 2268–2276.
Humphries, M. D., Gurney, K., & Prescott, T. J. (2006). The brainstem retic-

ular formation is a small-world, not scale-free, network. Proceedings of

the Royal Society B: Biological Sciences, 273(1585), 503–511.

18 of 20 WU ET AL.

https://www.developingconnectome.org/
https://orcid.org/0009-0007-2277-8365
https://orcid.org/0009-0007-2277-8365
https://orcid.org/0000-0001-5500-9721
https://orcid.org/0000-0001-5500-9721


Jakab, A., Kasprian, G., Schwartz, E., Gruber, G. M., Mitter, C., Prayer, D.,

Schöpf, V., & Langs, G. (2015). Disrupted developmental organization

of the structural connectome in fetuses with corpus callosum agenesis.

NeuroImage, 111, 277–288.
Jenkinson, M., Pechaud, M., Smith, S., et al. (2005). BET2: MR-based esti-

mation of brain, skull and scalp surfaces. In Eleventh annual meeting of

the organization for human brain mapping (Vol. 17, p. 167).

Jeurissen, B., Tournier, J. D., Dhollander, T., Connelly, A., & Sijbers, J.

(2014). Multi-tissue constrained spherical deconvolution for improved

analysis of multi-shell diffusion MRI data. NeuroImage, 103, 411–426.
Jones, D. K. (2010). Challenges and limitations of quantifying brain con-

nectivity in vivo with diffusion MRI. Imaging in Medicine, 2(3),

341–355.
Karimi, D., & Gholipour, A. (2022). Atlas-powered deep learning (adl)-

application to diffusion weighted mri. In International conference on

medical image computing and computer-assisted intervention (pp. 123–
132). Springer.

Khan, S., Vasung, L., Marami, B., Rollins, C. K., Afacan, O., Ortinau, C. M.,

Yang, E., Warfield, S. K., & Gholipour, A. (2019). Fetal brain growth

portrayed by a spatiotemporal diffusion tensor MRI atlas computed

from in utero images. NeuroImage, 185, 593–608.
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