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Enhancer demethylation-regulated gene score identified
molecular subtypes, inspiring immunotherapy or CDK4/6
inhibitor therapy in oesophageal squamous cell carcinoma
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Summary
Background The 5-year survival rate of oesophageal squamous cell carcinoma (ESCC) is approximately 20%. The
prognosis and drug response exhibit substantial heterogeneity in ESCC, impeding progress in survival outcomes.
Our goal is to identify a signature for tumour subtype classification, enabling precise clinical treatments.

Methods Utilising pre-treatment multi-omics data from an ESCC dataset (n = 310), an enhancer methylation-eRNA-target
gene regulation network was constructed and validated by in vitro experiments. Four machine learning methods
collectively identified core target genes, establishing an Enhancer Demethylation-Regulated Gene Score (EDRGS)
model for classification. The molecular function of EDRGS subtyping was explored in scRNA-seq (n = 60) and bulk-
seq (n = 310), and the EDRGS’s potential to predict treatment response was assessed in datasets of various cancer types.

Findings EDRGS stratified ESCCs into EDRGS-high/low subtypes, with EDRGS-high signifying a less favourable
prognosis in ESCC and nine additional cancer types. EDRGS-high exhibited an immune-hot but immune-
suppressive phenotype with elevated immune checkpoint expression, increased T cell infiltration, and IFNγ
signalling in ESCC, suggesting a better response to immunotherapy. Notably, EDRGS outperformed PD-L1 in
predicting anti-PD-1/L1 therapy effectiveness in ESCC (n = 42), kidney renal clear cell carcinoma (KIRC, n = 181),
and bladder urothelial carcinoma (BLCA, n = 348) cohorts. EDRGS-low showed a cell cycle-activated phenotype
with higher CDK4 and/or CDK6 expression, demonstrating a superior response to the CDK4/6 inhibitor
palbociclib, validated in ESCC (n = 26), melanoma (n = 18), prostate cancer (n = 15) cells, and PDX models
derived from patients with pancreatic cancer (n = 30).

Interpretation Identification of EDRGS subtypes enlightens ESCC categorisation, offering clinical insights for patient
management in immunotherapy (anti-PD-1/L1) and CDK4/6 inhibitor therapy across cancer types.
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Introduction
Oesophageal cancer (EC) ranks as the sixth most com-
mon cause of cancer-related death worldwide.1 Globally,
oesophageal squamous cell carcinoma (ESCC) is the
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dominant histological type, representing around 87% of
cases.2 Currently, conventional treatments based on
histopathological criteria do not adequately inform
treatment decisions due to the heterogeneity and
Wang).
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Research in context

Evidence before this study
Immunotherapy and CDK4/6 inhibitor therapy offer
promising strategies for tackling ESCC. However, only a
fraction of patients derive benefit from these innovative
treatments, indicating that current subtyping methods
insufficiently guide treatment decisions.

Added value of this study
We developed an Enhancer Demethylation-Regulated Gene
Score (EDRGS) model, categorising pre-treatment patients
with ESCC into EDRGS-high and EDRGS-low groups. EDRGS-
high individuals exhibit a poorer prognosis with an immune-
hot but immune-suppressive phenotype, suggesting a more

favourable response to immunotherapy. EDRGS-low patients
display a cell cycle-activated phenotype, indicating an
improved response to CDK4/6 inhibitors.

Implications of all the available evidence
EDRGS surpassed PD-L1 in predicting the effectiveness of anti-
PD-1/L1 therapy across ESCC, KIRC, and BLCA cohorts.
Additionally, it outperformed CDK4/6 in forecasting the
response to CDK4/6 inhibitors in ESCC, pancreatic cancer,
melanoma, and prostate cancer cell lines or patient-derived
xenograft (PDX) models. The EDRGS indicator could
significantly impact treatment decisions, enhancing patient
prognosis not only in ESCC but also in other cancer types.
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variable clinical outcomes in ESCC. Advances in
sequencing technology and multi-omics studies
enhanced our understanding of the molecular pathology
of ESCC.3–5 However, accurate cancer subtype classifi-
cations guiding clinical care and precision oncology are
not fully determined, leading to insufficient clinical
management in patients with ESCC and minimal sur-
vival improvements.

Most attempts to subtype ESCC were based on
single-omics profiling to separate cohorts, which yielded
numerous markers such as TP53, RB1, CDKN2A, and
NFE2L2 gene mutations6–8 in genetic level; PGK1 activ-
ity5 and CLK1 activity9 in proteomic level; hyper-
methylation of WNT2 promoter10 in epigenetic level.
Additionally, multiple clusters7,11 were revealed to be
associated with prognosis in different omics levels.
However, these groupings are able to guide drug
development and predict prognosis, but are limited in
informing ESCC treatment response. Although recent
multi-omics-based molecular subtypings3,4 have led to a
more comprehensive categorisation of ESCCs, and
enhanced the understanding of the biology and
treatment of ESCC, they do not alter clinical decision-
making in ESCC yet. Hence, it is imperative to estab-
lish a subtyping system to improve patient selection for
existing treatments, ultimately improving overall out-
comes for ESCC.

Recently, targeted therapies and immunotherapy
have been employed in the treatment of ESCC, with
drugs targeting EGFR, VEGF, HER-2, CDK4/6, and PD-
1/L1.12,13 Immunotherapy has made significant ad-
vancements in the treatment of patients with recurrent
or metastatic ESCC.14 Therefore, Food and Drug
Administration (FDA) has approved nivolumab (PD-1
monoclonal antibody) as adjuvant therapy for resected
oesophageal cancer with residual disease post neo-
adjuvant chemoradiotherapy. However, the current
clinical reliance on PD-L1 expression to assess immu-
notherapy efficacy remains a subject of international
debate regarding its predictive value for patients with
ESCC.15,16 Although CDK4/6 inhibitors have not yet
been included in the ESCC treatment guidelines, several
studies have reported CDK4/6 inhibitor therapy may
offer another promising treatment option for patients
with ESCC.13,17,18 Nevertheless, efficacy markers for
CDK4/6 inhibitor therapy are still under investigation.
Thus, there is an urgent need to uncover more reliable
markers to select patients for immunotherapy and
CDK4/6 inhibitor therapy.

Growing evidence has emphasised that an abnormal
enhancer-driven transcriptional program is a funda-
mental driver of oncogenesis and tumour
persistence.19–21 Enhancers are traditionally recognised
as cis-regulatory elements that regulate gene expression.
Recent research has found that enhancers can also be
transcribed into non-coding RNAs, known as enhancer
RNAs (eRNA). These eRNAs act as activators of
enhancer activity and thus enhance the expression of
target genes.22,23 As for the regulation of enhancers, it’s
worth noting that the predominant regulatory pattern
observed in pan-cancer is the activation of enhancers
through demethylation, resulting in the upregulation of
eRNAs and target genes.24–26 It has been discovered that
the regulatory interplay among C/EBPβ enhancer
methylation, eRNA, and target gene, contributes to
hepatocarcinogenesis through global transcriptional
reprogramming.27 While enhancer methylation, eRNA,
and target gene regulatory relationship is widespread in
various cancers and serves as a crucial transcriptional
regulatory pattern, it has not been systematically studied
in ESCC yet.

In this study, we constructed an enhancer
methylation-eRNA-target gene tripartite regulatory
network based on treatment-naïve WGBS and RNA-seq
data from 155 pairs of ESCC samples. An EDRGS
model was constructed based on 12 core target genes
identified from this regulatory network to classify
ESCCs accurately. Importantly, EDRGS could not only
indicate patient prognosis in various cancer types but
also serve as an efficacy marker for immunotherapy
www.thelancet.com Vol 105 July, 2024
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(anti-PD-1/L1) or CDK4/6 inhibitor therapy in patients
with ESCC or other over nine tumour entities.
Methods
eRNA quantification
We downloaded data for all eRNAs from the Human
enhancer RNA Atlas (https://hanlaboratory.com/HeRA/),
counted reads for eRNAs using samtools and normal-
ized the expression values by the reads per million
(RPM) method in RNA-Seq on 155 pairs of tumour
and adjacent normal tissue samples in HRA003107
dataset.4 We considered only eRNAs with an RPM ≥1 as
detectable eRNAs.

Enhancer methylation quantification
WGBS data in HRA003107 dataset4 was used to deter-
mine the enhancer methylation level. Methods for
assessing the methylation levels at each site according to
the approach introduced in the previous article.4 We
directly calculated the average eRNA region CpG
methylation level as the enhancer methylation level.

eRNA target gene identification
We identified eRNA target genes based on distance
(≤1 MB) and significant co-expression correlations
(Spearman correlation, R ≥ 0.3 and FDR <0.05).

Identification of a panel of core target genes
SVM, WGCNA, LASSO, and random forest methods
were applied in the RNA-seq data of 155 pairs of tumour
and adjacent normal tissue samples in HRA003107
dataset.4 In SVM approach, 148 target genes were used
as the features for classification and five-fold cross-vali-
dation to evaluate the classification performance. In
WGCNA method, we started by constructing a gene co-
expression network, followed by employing modulari-
zation techniques to identify gene modules with similar
expression patterns. In the LASSO method, a 10-fold
cross-validation approach was employed, and the tun-
ing parameter (λ) was selected based on minimizing the
squared error. The random forest method was trained
with parameters set to ntree = 1000 and mtry = 24. In
the generalized linear model, the predictors were the
transcriptome levels of target genes, the response vari-
able was the sample type (tumour or normal), the
random error distribution was the binomial distribu-
tion, and the link function was the logit link. The area
under the ROC curve (AUC) assessed the panel’s per-
formance on both training (HRA003107)4 and test
datasets (TCGA-ESCC and GSE53622). The expression
values of the 12 target genes from the external validation
sets were used as input for the model trained on the
training set to obtain model predictions. Subsequently,
the obtained predictions were compared with the actual
sample types (normal or tumour) in the validation sets
to calculate the AUC. We performed bootstrap
www.thelancet.com Vol 105 July, 2024
resampling to assess whether there were significant
differences among evaluated AUCs.

Construction and validation of the EDRGS
Through Stepwise Cox regression analysis, selecting
based on the best subset selection criteria, we identified
the final set of 12 target genes from the candidate pool
to construct the multivariable Cox regression model.
The multivariable Cox regression model incorporates
the expression levels of 12 target genes as independent
variables, with overall survival serving as the output
variable. The proportional hazards assumption was
accessed by Schoenfeld residuals method and the line-
arity assumption for quantitative predictors was
accessed by Martingale residuals method. The co-
efficients of Cox model were estimated by Efron
approximation method. EDRGS was calculated by
multiplying gene expression values with their Cox
model coefficients and summing them. Taking the
median EDRGS as the cutoff value, EDRGS subtyping
was established.

Survival analysis
The start time for survival analysis is defined as the time
of diagnosis of ESCC, and the end time for survival
analysis is determined by the time of death or, alterna-
tively, the latest follow-up visit if death has not occurred.
The median follow-up time is 797 days with an inter-
quartile range (IQR) of 452.5–948.5 days in the training
dataset. The censoring proportion of the training dataset
is 2.58% (4/155), with reasons for censoring including
but not limited to loss to follow-up and other instances
where complete follow-up information could not be
obtained. Prognostic power of EDRGS was assessed
using Kaplan–Meier survival curves with log-rank tests.

Functional enrichment analysis
Initially, we employed the ‘DESeq2’ R package for dif-
ferential expression analysis between high and low
EDRGS groups. Subsequently, we conducted Gene Set
Enrichment Analysis (GSEA) with the ‘clusterProfiler’ R
package.

Immune cell infiltration analysis
We utilized ‘GSVA’ R package to conduct single-sample
Gene Set Enrichment Analysis (ssGSEA) in the datasets
of HRA003107.

Definition of different EDRGS-subtyping like ESCC
cell line
Gene expression data from five datasets (GDSCv1,
GDSCv2, PRISM, CGP, and CTRP2) for ESCC cell lines
were collected.28–31 Using the Nearest Template Predic-
tion (NTP) method in the ‘CMScaller’ R package, ESCC
cell lines were categorised into different EDRGS groups
based on transcriptome similarities with EDRGS-
phenotype patients with ESCC.
3
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Evaluation of drug sensitivity
Pablociclib sensitivity data for ESCC cell lines were
obtained from GDSCv1 and GDSCv2.29 Data on pal-
bociclib sensitivity for melanoma, prostate cancer
cells, and PDX models derived from patients with
pancreatic cancer were sourced from GSE113268,
GSE99675, and GSE113922. The AUC was used to
assess the performance of EDRGS and CDK4/6 on
these datasets.

Cell lines
The KYSE180 (RRID: CVCL_1349), KYSE410 (RRID:
CVCL_1352), KYSE450 (RRID: CVCL_1353), and
KYSE510 (RRID: CVCL_1354) cell lines were provided
by Dr. Yutaka Shimada.32 The TE-8 (RRID: CVCL_F786)
and 293T (RRID: CVCL_0063) cell lines were collected
from the American Type Culture Collection. The TE-1
(RRID: CVCL_1759) cell line was purchased from the
Cell Bank of Chinese Academy of Sciences. All above
ESCC cells were cultured in RPMI-1640 medium sup-
plemented with 10% foetal bovine serum, and 293T
cells were cultured in Dulbecco’s modified Eagle’s me-
dium (DMEM) supplemented with 10% foetal bovine
serum. All cells were cultured aseptically at 37 ◦C and
5% CO2 and passed through 0.25% trypsin. All cell lines
were validated by short tandem repeat (STR) DNA
fingerprinting and confirmed to be free of mycoplasma
contamination.

Lentivirus production and generation of stable cell
lines
The shRNA sequences were inserted into the pSIH1-
puro vector (#26597; Addgene, Cambridge, MA, USA)
(RRID: Addgene_26597). The shRNA sequences were as
follows: shTP63e#1: GGACCTTGACGAATCACTTCC;
shTP63e#2: GGAAACTACATAGGGTGAAGC. Lenti-
virus production and infection were conducted as pre-
viously described.33

Cell proliferation and cell viability assays
The cell proliferation rate and cell viability were assessed
as previously described.34 Cell Counting Kit-8 reagent
(CK04; Dojindo Laboratories, Kumamoto, Japan) was
used to assess the cell proliferation rate and cell viability
after drug treatment according to the manufacturer’s
instructions. The absorbance at 450 nm on days 2–5 was
normalized to that measured on day 1, and the relative
cell viability (a percentage compared to that in the con-
trol group) was calculated.

Live cell analysis
An IncuCyte Live Cell Imaging System (Essen Biosci-
ence, Hertfordshire, UK) was used for live cell imaging.
Cells were seeded in 96-well microplates, and the pal-
bociclib (HY-50767, MedChemExpress, NJ, USA) was
added after cell adhesion. The plates were placed in the
IncuCyte system, taking snapshots of two zones per well
every 3 h over a 72-h period. Quantitative cell confluency
was performed using the included commercial software.

RT‒qPCR
RNA preparation and RT‒qPCR were performed ac-
cording to previously described methods.34 The primers
for the RT‒qPCR assay were as follows: TP63e-F: GC
TGGGACCTTGACGAATCA; TP63e-R: CCTGCTGCCT
CTATCCGAAG. TP63-F: GGACCAGCAGATTCAGA
ACGG; TP63-R: GGACCAGCAGATTCAGAACGG.
β-actin-F: CTGGAACGGTGAAGGTGACA; β-actin-R:
AAGGGACTTCCTGTAACAATGCA. For CPI-455
(HY100412; MedChemExpress, NJ, USA) and 5-AzaC
(HY10586, MedChemExpress, NJ, USA) treatment, af-
ter seeding KYSE450 and KYSE180 cells for 12 h, the
drugs were added to the cells according to the response
concentration, and after 48 h, RNA was collected and
qPCR was performed in triplicates to detect the
expression levels of TP63 and TP63e.

Statistics
All statistical analyses (including Spearman correlation,
Wilcoxon rank-sum test, Fisher’s exact test, Chi-square
test, one-way ANOVA test, two-way ANOVA test and
unpaired Student’s t test) were performed in R (version
4.2.3). Our trainset cohort HRA003107 consists of a total
of 155 pairs of oesophageal squamous cell carcinoma
and adjacent non-cancerous samples. We did not
perform pre-selection of samples based on clinical in-
formation such as the patient’s TNM stage, sex, age, etc.
The clinical information for the samples is presented in
Supplementary Table S1.

Ethics
We used deidentified data from the parent studies for
this secondary analysis. As such, the study was
considered non-human subjects research and did not
require institutional review board approval. All study
procedures for the parent studies, which were
described in detail previously,4 were approved by the
institutional review boards of participating medical
centres. Participants or their surrogates provided
written informed consent.

Role of funders
This study was supported by funding from the National
Key R&D Program of China (2021YFC2501000,
2020YFA0803300), the National Natural Science Foun-
dation of China (82030089, 82188102), the CAMS
Innovation Fund for Medical Sciences (2021-I2M-1-018,
2022-I2M-2-001, 2021-I2M-1-067), the Fundamental
Research Funds for the Central Universities
(3332021091). The funders did not have any role in the
study design, data collection, data analyses, interpreta-
tion, or the writing of the report.
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Results
Construction of the enhancer methylation-eRNA-
target gene tripartite regulatory network
Previous research has indicated that demethylation-
induced enhancer activation followed by eRNA
positively-regulated target genes is a dominant regula-
tory pattern in pan-cancer.26 To identify the core signa-
ture in ESCC, we created a tripartite regulatory network
by analysing enhancer methylation’s negative correla-
tion with eRNAs and target genes, as well as eRNA’s
positive correlation with target genes based on
HRA003107 dataset (Supplementary Fig. S1a). Hi-C
data provides additional evidence on the target genes
regulated by enhancers.35 Upon analysing Hi-C data by
previous methods,36 we observed that 92.8% of en-
hancers in this regulatory network exhibited genomic
interactions with their corresponding target genes
(Supplementary Fig. S1b), confirming the reliability of
this identified regulatory network.

The entire layout of the article is presented in Fig. 1a.
In this tripartite regulatory network, we found that
enhancer regions in tumour samples were primarily in
a state of low methylation and high expression of eRNA
and target gene compared to adjacent non-cancer sam-
ples (Fig. 1b). Considering that both methylated en-
hancers and eRNAs mainly depend on target genes to
execute their functions, we conducted functional
enrichment analysis of 148 target genes via the Meta-
scape website37 (http://metascape.org) and identified
that the tripartite network primarily encompasses
functions related to drug metabolism, cancer-related
pathways, and cell activation (Fig. 1c).

We employed four machine learning techniques,
namely SVM, WGCNA, LASSO, and random forest, and
thus consistently identified 12 target genes in the reg-
ulatory network of HRA003107 dataset that can accu-
rately classify tumours from adjacent normal samples
with an AUC of 0.999 [0.998–1] (Sensitivity = 0.994;
Specificity = 0.974; Fig. 1d–e, Supplementary Fig. S2a–
f). Next, we demonstrated high classification perfor-
mance in another two independent ESCC datasets, with
AUCs of 0.918 [0.847–0.99], and 0.989 [0.968–1]
(Sensitivity = 0.906; Specificity = 0.667 in PRJNA665149
dataset; Sensitivity = 0.739; Specificity = 1 in
PRJNA533799 dataset; Fig. 1f–g). In order to further
confirm that the identified core genes were indeed
regulated by enhancer methylation-eRNA regulatory
pattern, we conducted in-silico and experimental valida-
tion in our subsequent research.

Validating the enhancer methylation-eRNA-target
gene relationship
TP63 is one of the 12 core target genes identified earlier,
and it is also a critical transcription factor in ESCC.38

Therefore, TP63 was used as an example to demon-
strate the relationship between enhancer methylation,
eRNA, and target genes. Indeed, we found a significant
www.thelancet.com Vol 105 July, 2024
negative correlation between enhancer methylation of
TP63 and the expression of both enhancer RNA of TP63
(TP63e) and TP63 in the HRA003107 cohort (Fig. 2a–b).
Furthermore, a significant positive correlation was
observed between the expression of TP63e and TP63 in
PRJNA665149 and PRJNA533799 cohorts, which is in
line with the outcomes from the HRA003107 cohort
(Fig. 2c–e). These findings indicate a close association
between TP63 and TP63e expression and highlight that
the hypomethylation of the TP63 enhancer region might
promote the upregulation of both TP63 and TP63e.

The determination of TP63e segment was based on
our previous work,39 which involved detecting enrich-
ment of H3K27ac, a high H3K4me1/H3K4me3 ratio,
low H3K27me3 levels, and expressed transcripts in
KYSE450 cells (Fig. 2f). Next, we validated the positive
correlation between the expression of TP63e and TP63
by RT‒qPCR using a panel of 8 ESCC cell lines
(Spearman correlation, R = 0.74 [0.24–0.96], p = 0.046,
Fig. 2g). To investigate the impact of eRNA on the target
gene, we knocked down TP63e, revealing a significant
downregulation in TP63 expression and concurrent in-
hibition of KYSE450 and KYSE180 cell proliferation
(Fig. 2h–i). Then, to investigate the impact of methyl-
ation on the expression of TP63 and TP63e, we treated
KYSE450 and KYSE180 cells separately with the histone
demethylase inhibitor CPI-455 and the DNA methyl-
transferase inhibitor 5-AzaC. After treatment with CPI-
455, the expression of TP63 and TP63e was significantly
reduced in KYSE450 and KYSE180 cells (Fig. 2j).
Following the 5-AzaC treatment, the expression of TP63
and TP63e was significantly increased (Fig. 2k).

These results document that TP63 enhancer
methylation inhibits the expression of both TP63 and
TP63e, and TP63e upregulates the expression of TP63,
thereby validating the reliability of the relationship be-
tween enhancer methylation, eRNA, and the target
genes we have discovered.

Construction of EDRGS and its prognostic
implications in ESCC
After confirming the reliability of the relationship be-
tween enhancer methylation, eRNA, and target gene, a
prognostic index, EDRGS, was constructed by multi-
variable Cox regression analysis in 12 core target genes
for overall survival (OS) within the HRA003107 cohort,
and their corresponding weights were displayed in
Fig. 3a (Supplementary Table S2). The proportional
hazards assumption and the linearity assumption for
the multivariable Cox regression model are both satis-
fied (Supplementary Fig. S3a and b). Taking the median
EDRGS as the cutoff value, high EDRGS patients
consistently exhibited a worse OS than patients in the
low EDRGS group in both the overall patient population
(n = 151, p = 0.00011, log-rank test; Fig. 3b) and across
various subgroups of clinical variables in the
HRA003107 dataset (Supplementary Fig. S4). Similarly,
5
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Fig. 1: Enhancer methylation-eRNA-target gene regulation network in the ESCC cohort. a The comprehensive flowchart of the article. b The
differences in enhancer methylation, eRNA expression, and target gene expression between tumour and adjacent normal tissues. c The
functional enrichment of target genes in the tripartite network. d Core target gene screening via SVM, WGCNA, LASSO, and random forest. e
The ROC curve of the diagnostic model in the HRA003107 cohort. f The ROC curve of the diagnostic model in the PRJNA665149 cohort. g The
ROC curve of the diagnostic model in the PRJNA533799 cohort.
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Fig. 2: The relationship between TP63 enhancer methylation, TP63e expression, and TP63 expression. a TP63 enhancer methylation levels
and TP63e expression relationship in the HRA003107 cohort (Spearman correlation, R = −0.43 [−0.53∼−0.27], p < 0.0001; the shaded area
represents the 95% confidence region). b TP63 enhancer methylation levels and TP63 expression relationship in the HRA003107 cohort
(Spearman correlation, R = −0.43 [−0.58∼−0.33], p < 0.0001; the shaded area represents the 95% confidence region). c TP63e expression and
TP63 expression relationship in the HRA003107 cohort (Spearman correlation, R = 0.88 [0.82–0.90], p < 0.0001; the shaded area represents the
95% confidence region). d TP63e expression and TP63 expression relationship in the PRJNA665149 cohort (Spearman correlation, R = 0.92
[0.87–0.97], p < 0.0001; the shaded area represents the 95% confidence region). e TP63e expression and TP63 expression relationship in the
PRJNA533799 cohort (Spearman correlation, R = 0.91 [0.73–0.95], p < 0.0001; the shaded area represents the 95% confidence region). f
Identification of the TP63e segment using ChIP-seq and RNA-seq in KYSE450 cells. g TP63e expression and TP63 expression relationship in 8
ESCC cell lines by RT‒qPCR (Spearman correlation, R = 0.74 [0.24–0.96], p = 0.046; the shaded area represents the 95% confidence region). h
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high EDRGS patients showed a worse OS than patients
in the low EDRGS group in TCGA (n = 95, p = 0.0093,
log-rank test; Fig. 3c) and GSE53622 (n = 60, p = 0.042,
log-rank test; Fig. 3d) ESCC datasets. Moreover, the
proportion of patients in the EDRGS-high group who
eventually succumbed to the disease or experienced
recurrence was significantly higher than that in the
EDRGS-low group (Supplementary Fig. S5a–d). In an
ESCC scRNA-seq dataset40 (n = 60), we also observed
that patients with a high EDRGS tended to have a more
advanced pathological stage, T stage, and N stage
(Fig. 3e–g). Besides, EDRGS was found to be a signifi-
cant independent prognostic factor in patients with
ESCC, according to univariate and multivariable Cox
regression analyses (Fig. 3h–i). This was validated in
both the TCGA-ESCC and GSE53622 datasets
(Supplementary Fig. S5e–h).

The above results indicate that EDRGS, as an in-
dependent risk factor for ESCC, has prompted us to
investigate whether there are differences in molecular
characteristics between different EDRGS subtypes.

The EDRGS indicated differences in the tumour
immune microenvironment and immunotherapy
response
To unveil the molecular features among EDRGS sub-
types in ESCCs, GSEA was performed in bulk RNA-seq
(HRA003107, n = 310). Immune-related pathways,
such as adaptive immune response, T-cell activation,
and interferon-gamma production, were enriched in
the EDRGS-high samples (Fig. 4a; FDR <0.05,
Supplementary Table S3), suggesting an immune-hot
phenotype from the aspect of gene expression pat-
terns. We then further explored cell fractions in
different EDRGS subtypes with scRNA-seq
(GSE160269, n = 60) and bulk RNA-seq (HRA003107,
n = 310). Based on ssGSEA, we found that compared to
the EDRGS-low group, the EDRGS-high group had a
higher level of immune cell infiltration, including
activated CD8+ T cells, effector memory CD8+ T cells,
and natural killer cells, etc (Fig. 4b), consistently
implying an immune-hot phenotype. Furthermore,
scRNA-seq data indicated a higher proportion of Tex
and CAF3 cells (a subtype of cancer-associated fibro-
blasts that has been defined as associated with cancer
progression) in patients with a higher EDRGS score
(Fig. 4c). The expression of multiple immune check-
point genes, such as PD-1, LAG3, TIM3 and TIGIT,
was highly concordant between bulk RNA-seq
TP63e and TP63 expression after knocking down TP63e in KYSE450 and
bars refer to Standard Deviation, SD; one-way ANOVA test, n = 3.). i The
(the data are presented as the mean ± SD values; error bars refer to Stan
expression levels in KYSE450 and KYSE180 cells after CPI-455 treatment
Standard Deviation, SD; unpaired Student’s t test, n = 3). k TP63e and
treatment (the data are presented as the mean ± SD values; error bars r
(Supplementary Fig. S6a) and scRNA-seq (Fig. 4d)
with a significant elevation in EDRGS-high subtype.
These results indicated an immune-suppressive
phenotype.

The findings from both bulk RNA-seq and scRNA-seq
analyses suggest that the EDRGS-high group demon-
strates an immune-hot but immune-suppressive
phenotype, implying a favourable response to immuno-
therapy. Therefore, we predicted the response to
immunotherapy in ESCC samples using TIDE score, an
immunotherapy efficacy prediction index validated in
melanoma,41 with a lower value indicating a higher
likelihood of benefiting from immunotherapy. In align-
ment with our assumptions, patients in the EDRGS-high
group showed significantly lower TIDE score41

(Supplementary Fig. S6b). To validate our findings, we
assessed the reproducibility of the response prediction in
an anti-PD-1 single-agent treatment cohort (n = 42).14

This validation also showed that the EDRGS-high
group exhibited a more favourable response to treat-
ment with anti-PD-1 antibody (p = 0.038, Fisher’s exact
test, Fig. 4e). What’s even more significant is that when
compared to two well-known methods for predicting
immunotherapy response, namely the expression of
PDL1 and TIDE score,41 EDRGS exhibited the best per-
formance (Fig. 4f). Previous studies have indicated that
higher somatic tumour mutational burden (TMB) was
associated with better immunotherapy response,42,43 a
trend consistent with what we observed in the EDRGS
high group. Therefore, the influence of TMB on the
predictive ability of EDRGS needs to be considered. The
correlation analysis indicated that EDRGS and TMB
were not significantly correlated (Spearman correlation,
R = −0.12, p = 0.14; Supplementary Fig. S6c), and there
was no significant difference in TMB values between the
EDRGS low and high groups (Wilcoxon rank-sum test,
p = 0.50; Supplementary Fig. S6d). These results indicate
that EDRGS can potentially guide immunotherapy (anti-
PD-1) for ESCCs.

The EDRGS in a pan-cancer cohort and its
association with immunotherapy response
To explore EDRGS’s applicability in predicting prog-
nosis and indicating immunotherapy response across
cancer types, we applied it to a pan-cancer cohort of 33
cancer types using TCGA datasets. The EDRGS was
significantly related to a worse prognosis in nine can-
cer types (Supplementary Fig. S7a–i). This suggests
that EDRGS is relevant beyond ESCC and is especially
KYSE180 cells (the data are presented as the mean ± SD values; error
viability of KYSE450 and KYSE180 cells after knocking down TP63e
dard Deviation, SD; two-way ANOVA test, n = 5.). j TP63e and TP63
(the data are presented as the mean ± SD values; error bars refer to
TP63 expression levels in KYSE450 and KYSE180 cells after 5-AzaC
efer to Standard Deviation, SD; unpaired Student’s t test, n = 3).
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Fig. 3: A prognostic index for ESCC based on 12 core target genes. a The weights of 12 core target genes in the EDRGS model. b Patients
with a high EDRGS had a worse prognosis than patients in the EDRGS-low group in the HRA003107 dataset (HR = 3.00 [1.67–5.38],
p = 0.00011, log-rank test; the shaded area represents the 95% confidence region). c Patients with a high EDRGS had a worse prognosis than
patients in the EDRGS-low group in the TCGA-ESCC dataset (HR = 2.80 [1.25–6.29], p = 0.0093, log-rank test; the shaded area represents the
95% confidence region). d Patients with a high EDRGS had a worse prognosis than patients in the EDRGS-low group in the GSE53622 dataset
(HR = 2.03 [1.01–4.09], p = 0.042, log-rank test; the shaded area represents the 95% confidence region). e The pathologic stage in different
EDRGS subgroups in the ESCC scRNA-seq dataset (p = 0.026, Chi-square test). f The T stage in different EDRGS subgroups in the ESCC scRNA-
seq dataset (p = 0.080, Chi-square test). g The N stage in different EDRGS subgroups in the ESCC scRNA-seq dataset (p = 0.040, Chi-square
test). h Univariate Cox analysis of clinicopathologic factors and EDRGS in the HRA003107 dataset. i Multivariable Cox analysis of the factors
significant in the univariate Cox analysis in the HRA003107 dataset.
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Fig. 4: EDRGS-high phenotype indicated a better response to immunotherapy. a Immune-related pathways were enriched in the EDRGS-
high group of the HRA003107 dataset. b Immune cell infiltration level estimated by ssGSEA in different EDRGS subgroups in the HRA003107
dataset (Wilcoxon rank-sum test; the definition for outliers is when the data falls below Q1–1.5 × IQR or exceeds Q3 + 1.5 × IQR; Q1: the 25th
percentile; Q3: the 75th percentile; IQR = Q3–Q1). c The EDRGS-high group exhibited higher levels of Tex and CAF3 infiltration in the ESCC
scRNA-seq dataset (Wilcoxon rank-sum test; the definition for outliers is when the data falls below Q1–1.5 × IQR or exceeds Q3 + 1.5 × IQR; Q1:
the 25th percentile; Q3: the 75th percentile; IQR = Q3–Q1). d Immune checkpoint gene expression in the normal, EDRGS-low and EDRGS-high
groups of ESCC scRNA-seq dataset. e The EDRGS-high group of patients with ESCC showed a better response to anti-PD-1 therapy in an ESCC
anti-PD-1 therapy cohort (p = 0.038, Fisher’s exact test). f ROC curves of the EDRGS, the expression of PD-L1 and TIDE score in an ESCC anti-PD-
1 therapy cohort.
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prevalent in digestive tract malignancies and squa-
mous cell carcinoma. Moreover, in five cancer types,
namely, uveal melanoma (UVM), breast invasive car-
cinoma (BRCA), KIRC, ovarian serous cys-
tadenocarcinoma (OV), and testicular germ cell
tumours (TGCT), higher expression of immune
checkpoint genes was observed in the EDRGS-high
group (Fig. 5a). In line with ESCC, 13 other cancer
types presented significantly decreased TIDE scores41

in the EDRGS-high group, indicating EDRGS’s
increased potential for an immunotherapy response
(Fig. 5b). To validate the ability of the EDRGS to predict
PD-1/PD-L1 treatment response, we assessed repro-
ducibility in the PD-1 treatment cohort (n = 181, Braun
et al.44) and PD-L1 treatment cohort (n = 348, IMvi-
gor210). Consistently with ESCC, patients in the
EDRGS-high group had a prominent survival advan-
tage over patients in the EDRGS-low group in both
cohorts embodying KIRC and BLCA (Fig. 5c–d).
Furthermore, we observed that the EDRGS exhibited
the strongest performance in KIRC cohort for the 12-,
36-, and 60-month follow-up periods, outperforming
the accuracy of PD-L1 expression level and TIDE
score41 (Fig. 5e). In BLCA cohort, best performance of
EDRGS was observed at the 6- and 22-month follow-up
points (Fig. 5f). In summary, patients with higher
EDRGS may exhibit a better response to immuno-
therapy (anti-PD-1/L1) across various cancer types.
www.thelancet.com Vol 105 July, 2024
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Fig. 5: EDRGS-high phenotype indicated a better response to immunotherapy in various cancer types. a The expression of immune
checkpoint genes in the EDRGS-high group compared to the EDRGS-low group across multiple cancer types (Wilcoxon rank-sum test, *p < 0.05,
**p < 0.01, ***p < 0.001). b The TIDE score in different EDRGS subgroups across multiple cancer types (Wilcoxon rank-sum test; the definition
for outliers is when the data falls below Q1–1.5 × IQR or exceeds Q3 + 1.5 × IQR; Q1: the 25th percentile; Q3: the 75th percentile; IQR = Q3–Q1). c
Patients with a high EDRGS had a better response to anti-PD-1 therapy in the Braun et al.44 cohort (HR = 0.51 [0.35–0.73], p = 0.00026, log-
rank test). d Patients with a high EDRGS had a better response to anti-PD-L1 therapy in the IMvigor210 cohort (HR = 0.57 [0.40–0.80],
p = 0.0011, log-rank test). e ROC curves of EDRGS, PD-L1 expression level and TIDE score at 12-, 36-, and 60-month follow-up in Braun et al.44

cohort. f ROC curves of EDRGS, PD-L1 expression level and TIDE score at 6-, 18-, and 22-month follow-up in the IMvigor210 cohort.

Articles
EDRGS-low phenotype indicated a better response
to CDK4/6 inhibitors
To reveal the molecular characteristics within the
EDRGS-low group, GSEA was performed in bulk RNA-
seq (HRA003107, n = 310). Cell cycle-related pathways,
such as cell cycle checkpoints, G1/S transition and G2/M
checkpoints, were enriched (Fig. 6a, Supplementary
Table S3). Moreover, cell cycle-related genes, including
CDK1, CDK2 and CDK4, showed significantly higher
expression in the EDRGS-low group than in the EDRGS-
high group (Supplementary Fig. S8a). Based on the
functional characteristics of the EDRGS-low group, we
hypothesized that patients in the EDRGS-low group were
www.thelancet.com Vol 105 July, 2024
more likely to benefit from CDK4/6 inhibitor-palbociclib.
It is the first CDK4/6 inhibitor approved as a cancer
therapy and selectively inhibits the cyclin-dependent ki-
nases CDK4 and CDK6.45 Due to the lack of tran-
scriptomics data from patients with ESCC undergoing
CDK4/6 inhibitor therapy, we were constrained to vali-
date our hypothesis solely at the cellular level.

For cellular-level validation, it was necessary to
define ESCC cells exhibiting an EDRGS-high or
EDRGS-low phenotype. To do so, we categorized ESCC
cells into EDRGS-high/low-like groups using the NTP
method, considering their transcriptome resemblances
with patients with ESCC (Fig. 6b). Given CDK4/6’s role
11
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Fig. 6: EDRGS-low group indicated a better response to CDK4/6 inhibitors. a Cell cycle-related pathways were enriched in the EDRGS-low
group of HRA003107 dataset. b ESCC cell lines are classified into EDRGS-high or EDRGS-low-like cells. c ROC curves of the EDRGS, the expression
of CDK4 and CDK6 in ESCC cells of the GDSCv1 dataset. d The expression of CDK4 and CDK6 in the EDRGS-high group compared to the EDRGS-
low group across multiple cancer types (Wilcoxon rank-sum test; the definition for outliers is when the data falls below Q1–1.5 × IQR or exceeds
Q3 + 1.5 × IQR; Q1: the 25th percentile; Q3: the 75th percentile; IQR = Q3–Q1). e ROC curves of the EDRGS, the expression of CDK4 and CDK6 in
the pancreatic cancer patients-derived models treated with palbociclib (GSE113922). f ROC curves of the EDRGS, the expression of CDK4 and
CDK6 in melanoma cell palbociclib treatment cohort (GSE113268). g ROC curves of the EDRGS, the expression of CDK4 and CDK6 in prostate
cancer cell palbociclib treatment cohort (GSE99675).
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in current clinic CDK4/6 inhibitor efficacy, we
compared CDK4 or CDK6 expression across EDRGS
groups. The results indicate higher CDK6 expression in
EDRGS-low cells, with no significant difference in
CDK4 expression in GDSCv1 and GDSCv2 datasets
(Supplementary Fig. S8b–e), implying a relationship
between EDRGS and the efficacy of CDK4/6 inhibitor
therapy. To further validate our hypothesis, we
compared the predictive performance of EDRGS and
the expression of CDK4 or CDK6 in ESCC cell lines
regarding sensitivity to palbociclib. Interestingly,
EDRGS showed better performance than CDK4/6
expression supported by the GDSCv1 (n = 26) and
GDSCv2 (n = 23) datasets (Fig. 6c, Supplementary
Fig. S8f). Finally, we experimentally validated that cell
lines KYSE410 and KYSE510 from the EDRGS-low
group exhibited a significantly better response to pal-
bociclib than cell lines TE1 and TE8 from the EDRGS-
high group (Supplementary Fig. S8g). Given that DNA
damage repair (DDR) can induce cell cycle arrest,46,47

potentially influencing patients’ response to CDK4/6
inhibitors, we examined the impact of DDR on the
predictive capability of EDRGS. The results indicated
that EDRGS was not significantly correlated with either
the overarching DDR pathway or its six individual major
pathways48 (Supplementary Fig. S9a–g). Additionally,
there were no discernible differences in the scores of
each DDR pathway between the low and high EDRGS
groups (Supplementary Fig. S9h–n). These results sug-
gest that patients with EDRGS-low phenotype can
potentially benefit from CDK4/6 inhibitors in the
treatment of ESCC.

In order to investigate whether patients with low
EDRGS may benefit from CDK4/6 inhibitors across
cancer types, we first examined the expression of CDK4
and CDK6 between EDRGS-high and EDRGS-low
groups in the pan-cancer cohort. In line with ESCC,
the EDRGS-low group consistently exhibited a signifi-
cant increase in the expression of CDK4 and/or CDK6
in multiple cancer types (Fig. 6d), suggesting a
connection between EDRGS and the effectiveness of
CDK4/6 inhibitor therapy in other cancer types. Next,
with the aim of assessing the predictive capacity of
EDRGS for the efficacy of CDK4/6 inhibitor treatment,
we compared it with that of CDK4 or CDK6 expression
across three independent datasets. Excitingly, we found
that EDRGS exhibited the best classification perfor-
mance compared to both CDK4 and CDK6 expression in
the PDX models of pancreatic cancer treated with pal-
bociclib (GSE113922, n = 30, Fig. 6e), melanoma cell
palbociclib treatment cohort (GSE113268, n = 18,
Fig. 6f), and prostate cancer cell palbociclib treatment
cohort (GSE99675, n = 15, Fig. 6g).

In summary, patients characterized by EDRGS-low
phenotype demonstrate improved response to CDK4/6
inhibitors in a diverse range of cancer types.
www.thelancet.com Vol 105 July, 2024
Discussion
A tremendous shift in cancer treatment of ESCC, from
broad-spectrum treatment to targeted drugs, has provided
promising outcomes in clinical practice or ongoing tri-
als.12,13 However, response and survival benefit typically
differs by population.14,17,18 A more comprehensive clas-
sification is needed to personalize patient therapy and
thus improve response and outcomes. Here, we estab-
lished a prognostic marker, EDRGS, which characterized
ESCCs into two molecular subtypes reproducibly in a
multicohort retrospective study. Specifically, not only in
ESCC cohorts, patients in the EDRGS-high group
demonstrated significantly improved responses to
immunotherapy in 13 cancer types, whereas patients in
the EDRGS-low group showed markedly better responses
to CDK4/6 inhibitors in nine cancer types. This subtyp-
ing classification provides a conceptual framework to
understand the heterogeneity of ESCC better and exhibits
a potential to guide the selection of immunotherapy (anti-
PD-1/L1) and CDK4/6 inhibitor therapy for patients
across cancer types.

In this study, the EDRGS was constructed after
establishing a 12-target-genes panel and performing
multivariable Cox regression analysis. We are confident
that the analysis process is solid enough to warrant a
comprehensive evaluation thereafter. Accumulating ev-
idence suggests that enhancer methylation-eRNA-target
gene regulatory network is a predominant regulatory
pattern observed in pan-cancer.26,27 However, it has not
been systematically studied in ESCC yet. Therefore, this
gene regulatory relationship was employed to initiate
the discovery of the classifier. Out of 148 genes regu-
lated by this tripartite network, a robust 12-target-genes
panel to classify normal from tumorous tissues was
identified. Training data from pre-treatment 155 pairs of
adjacent non-cancerous and cancer tissues ensured an
unbiased approach. This robust classification is further
supported by the consistent identification of these 12
markers from four independent feature selection
methods and reproducible results in two independent
datasets. In all the comparisons, AUC values were
consistently above 0.91, with no significant differences
observed. This suggests that there was no major over-
fitting or underfitting problem generated during classi-
fier calculation. Furthermore, the reliability of this
regulatory network was confirmed by experimental
validation. TP63, previously identified as a master
regulator in ESCC,38 was also found in this 12-gene
panel. Consistent with our bioinformatic analysis,
experimental results indicated that TP63 was regulated
by the TP63e and methylation. Finally, the results of
multivariable Cox regression analysis were highly
concordant between discovery and another two inde-
pendent validation cohorts, consistently showing the
poorer prognosis in the EDRGS-high group. This series
of results underscore the high credibility of the EDRGS.
13
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The EDRGS-high subtype corresponded to signifi-
cantly elevated expression of immune checkpoints and
increased infiltration of CAF3, accompanied by
increased T cell infiltration and IFNγ signaling,
implying an immune-suppressive but immune-hot
phenotype. Though the phenotype of EDRGS was
immune-suppressive, it could be reversed by the treat-
ment of immune inhibitors.49,50 Additionally, consistent
with previous studies,51,52 tumours with an inflamed
phenotype tend to be more responsive to immune
checkpoint inhibitors. Not surprisingly, our results
suggest that EDRGS-high cases might respond to
immunotherapy. No association between EDRGS and
TMB further indicated that EDRGS is a immunotherapy
efficacy prediction method that is independent of TMB.
Immunotherapy has yielded very encouraging outcomes
in a series of clinical trials when employed as the pri-
mary or secondary treatment for advanced oesophageal
cancer.14,53 Nevertheless, merely 33.3% of patients with
ESCC benefit from the immunotherapy.53 While PD-L1
expression may serve as a biomarker to reveal which
patients are responsive to immunotherapy, it falls
significantly short of accurately stratifying oesophageal
cancer patients for immunotherapy. Additionally, there
is still debate regarding the predictive value of PD-L1 in
patients with oesophageal cancer.15,16 Inspiringly,
compared to the expression of PD-L1 and TIDE score,41

which were already developed to predict immuno-
therapy response, the EDRGS model exhibited higher
accuracy when predicting responders of anti-PD-1
therapy in a clinical trial with single-agent PD-1 ther-
apy, indicating potential benefits for EDRGS-high sub-
type. Therefore, EDRGS can potentially act as a
biomarker for immunotherapy (anti-PD-1) in patients
with primary ESCC.

The EDRGS-low subtype was characterized by rela-
tively higher expression of CDK4 and/or CDK6 and
associated with cell cycle-related pathways that enhance
cyclin D-CDK4/6 complexes kinase activity.13 In recent
years, CDK4/6 inhibitors have achieved great progress
in treating metastatic ER-positive, HER2-negative breast
cancer and extensive-stage small-cell lung cancer.54,55

Despite insufficient clinical evidence in ESCC,
research involving cell lines and PDX models indicates a
promising future for clinical application in ESCCs.13,56

Encouragingly, the clinical trial NCT04433494, study-
ing the efficacy of CDK4/6 inhibitors in the treatment of
ESCC, is currently underway. In our study, the EDRGS-
low subtype was linked to the pathways that govern the
cell cycle. Consistent with prior research,13,17 we found
that the ESCC cells with higher expression of CDK4/6
were more sensitive to palbociclib. We then proposed
that individuals categorized as EDRGS-low subtype
could potentially benefit from CDK4/6 inhibitor ther-
apy. No association between EDRGS and DDR further
indicated that EDRGS is a method for predicting the
efficacy of CDK4/6 inhibitors, independent of DDR as a
covariate. Compared to the expression of CDK4 or
CDK6, EDRGS demonstrated the highest efficacy in
predicting the response to CDK4/6 inhibitor treatment,
supported by the validation in the datasets from PDX
models of pancreatic cancer and cancer cells of mela-
noma and prostate cancer. Despite the promising effi-
cacy of EDRGS, it still requires further validation with
additional data from PDO/animal models and clinical
trials in ESCC.

The impact of the EDRGS on patient survival and
response prediction was identified and validated across
multiple cancer types. In recent decades, the develop-
ment of more universal diagnostic and therapeutic
strategies in oncology has been facilitated by multiple
pan-cancer biomarkers, such as BRCA1/BRCA257 and
HER2.58 Therefore, it is necessary to discover the
broader applicability of biomarkers across different
cancer types. It was speculated that the identified
EDRGS model in ESCC had the potential to be applied
across a broad spectrum of cancers, given the knowl-
edge that enhancer methylation-eRNA-target gene reg-
ulatory network is a common regulatory pattern
observed in pan-cancer26 as well as 12 identified target
genes were associated with cell activation and drug
metabolism which was crucial for cancer development
and treatment. Indeed, consistent with the observation
in ESCC, we then found that EDRGS exhibited as an
adverse prognostic factor in another nine cancer types.
This result further supports the robustness of our
EDRGS model. More importantly, the EDRGS-high
group exhibited a better response to immunotherapy
in another 13 cancer types, while the EDRGS-low group
showed an improved response to CDK4/6 inhibitors in
another nine cancer types. These findings suggest that
EDRGS has the possibility to indicate patient prognosis
and guide the selection of adjuvant therapies, not
limited to ESCC alone.

Despite the compelling results found in our study,
there are still some limitations to be noted. First, in the
Cox regression model (Fig. 3i, Supplementary Fig. S4),
the observed large or infinite hazard ratio (HR) esti-
mates are meaningless artifacts resulting from data
sparsity, suggesting the presence of sparse-data bias,59,60

which affects the evaluation of effect measures. This
bias results from few outcome events per variable (EPV)
or categorical covariates with very low or high preva-
lence, as examined in Supplementary Table S1 and
Supplementary Fig. S4. Despite our application of
Firth’s penalized maximum likelihood bias reduction
method to enhance the accuracy of risk prediction,
sparse-data bias remains a significant limitation of the
study. Second, while we adjusted for key covariates such
as recurrence and TNM, we must acknowledge the po-
tential impact of other variables, such as demographic
factors, which could also affect prognosis assessment
and warrant thorough consideration. Third, although
our work suggests that the EDRGS model may be useful
www.thelancet.com Vol 105 July, 2024
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for the prognosis evaluation and the prediction of
treatment response, it should be noted that the cohort
for validation was limited. In predicting the efficacy of
immunotherapy for ESCCs, the sample size of the anti-
PD-1 therapy clinical trial was constrained, primarily
because a combination regimen is a more prevalent
choice for patients as opposed to single-agent anti-PD-1
therapy. In predicting the response of the CDK4/6
treatment for ESCCs, only cell-line data was available. In
the pan-cancer study, the analysis was mainly based on a
retrospective study collected from TCGA. Fourth,
EDRGS expression was quantified at the transcriptome
level, while the protein expression level doesn’t always
correspond to the RNA expression, and proteins such as
mutation-derived neoantigens are directly involved in
tumour immunity. Finally, despite the model showing
good robustness, it may still be affected by several other
factors, such as differences in genetic background, the
stage at the time of diagnosis, and the treatment mo-
dalities. Further validation in a larger cohort, persuasive
wet-lab experiments, and clinical studies are still needed
to confirm the classifier’s accuracy and future clinical
use.

In conclusion, we constructed an ESCC enhancer
methylation-eRNA-target gene regulation network and
developed an EDRGS model that can potentially predict
both the prognosis and the efficacy of immunotherapy
and CDK4/6 inhibitor therapy, offering invaluable in-
sights for the clinical management of pharmaceuticals
in ESCC.
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