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A B S T R A C T   

Objectives: Evaluation of sarcopenia from computed tomography (CT) is often based on measuring skeletal muscle 
area on a single transverse slice. Automatic segmentation of muscle volume has a lower variance and may be a 
better proxy for the total muscle volume than single-slice areas. The aim of the study was to determine which 
abdominal and thoracic anatomical volumes were best at predicting the total muscle volume. 
Methods: A cloud-based artificial intelligence tool (recomia.org) was used to segment all skeletal muscle of the 
torso of 994 patients who had performed whole-torso CT 2008–2020 for various clinical indications. Linear 
regression models for several anatomical volumes and single-slice areas were compared with regard to predicting 
the total torso muscle volume. 
Results: The muscle volume from the tip of the coccyx and 25 cm cranially was the best of the abdominal volumes 
and was significantly better than the L3 slice muscle area (R2 0.935 vs 0.830, P < 0.0001). For thoracic volumes, 
the muscle volume between the top of the sternum to the lower bound of the Th12 vertebra showed the best 
correlation with the total volume, significantly better than the Th12 slice muscle area (R2 0.892 vs 0.775, P <
0.0001). Adjusting for body height improved the correlation slightly for all measurements but did not signifi
cantly change the ordering. 
Conclusions: We identified muscle volumes that can be reliably segmented by automated image analysis which is 
superior to single slice areas in predicting total muscle volume.   

1. Introduction 

Sarcopenia, ie, reduction of muscle mass with loss of muscle func
tion, is associated with an increased risk of postoperative complications 
and shorter survival in several types of cancer surgery [1–4]. One of the 
ways to identify sarcopenia is to use computed tomography (CT) ex
aminations, where the most common method is to use the muscle area at 
a cross-section of lumbar vertebra 3 (L3) or thoracic vertebra 12 (Th12), 

for which cut-off thresholds have been proposed [5–9]. This has 
generally been done manually by radiologists in the studies. However, 
due to resource and time consumption, it has rarely been established in 
clinical use. Moreover, the relationship between one cross section and 
the total muscle mass carries significant uncertainty on an individual 
basis. 

The development of Artificial Intelligence (AI) has opened possibil
ities to automatically calculate the muscle area on CT in a very safe way, 
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both more time-efficient and requiring fewer personnel resources. 
Commercially available solutions exist that measure the cross section 
skeletal muscle area [10–13], but they still require some manual input 
and their clinical use have been limited. We have previously developed 
and described a cloud-based AI image analysis tool, the Research Con
sortium for Medical Image Analysis (RECOMIA). The website (recomia. 
org) can automatically measure skeletal muscle volume derived from CT 
scans and have shown that muscle volume has a lower variance than 
muscle area in L3 [14,15]. However, there is a lack of studies on which 
volume segments best correlate with the total muscle volume, and 
whether they are better than Th12/L3 as proxies of the total volume. 
Defining such optimal partial volumes would allow a better estimation 
of total muscle volume and sarcopenia from any CT scan of the abdomen 
or thorax. The goal of this study was to identify partial volumes, on CT of 
the thorax and of the abdomen, which correlate best with the total 
muscle volume and whether they perform better than Th12 or L3 slices. 

2. Methods 

2.1. Patient background and study design 

The CT scans of the entire torso of patients who had undergone 
positron emission tomography/computed tomography (PET/CT) scans 
for various clinical indications at Sahlgrenska University Hospital in 
Gothenburg and Skåne University Hospital in Lund/Malmö from 2008 to 
2020 were uploaded to the cloud-based AI image analysis tool Recomia. 
org. The majority were patients with prostate cancer (60%). The rest had 
lymphoma (20%), neuroendocrine cancer (10%) and other (10%). All 
patients were of legal age (18 years) at the time of imaging. Patients 
whose arms were alongside the body were excluded from analysis. The 
PET/CT scanners used for obtaining the CT images were from GE 
Healthcare Systems (models Discovery 690 and Discovery MI) and 
Siemens (models Biograph 64, Biograph 128 and Biograph 128 Edge). 

Using the CT examinations for evaluating AI-based image analysis 
was approved by the Swedish Ethics Review Authority (2016/417 and 
2021-05734-02). 

2.2. Management of image material 

During image uploading, all identifying information was automati
cally stripped from the digital imaging and communications in medicine 
(DICOM) tags of the scans. Some non-identifying patient information 
such as sex, age, height, and weight were preserved and later retrieved 
from the DICOM tags. All analysis was performed on anonymized data. 
Segmentation of the skeletal muscle tissue was done automatically by 
the AI tool without any manual intervention. The AI has also been 
trained to identify all the specific anatomical landmarks used in this 
study without the need for human input. One of the authors (TY) per
formed a visual inspection of a random selection of 50 of the cases to 
ensure that the volume segmentation was adequate and correct. The 
segmentations were classified as either correct or not. The AI-based 
image analysis has previously been described in detail and takes about 
1 min per patient on a high-end desktop computer [14]. 

2.3. Selection of muscle volume 

The cranial limit of the segmentation was the top of the sternum. 
‘Sacrum and Coccyx’ was automatically segmented at the same time as 
muscle and fat, the most inferior slice of the automatic segmentation of 
coccyx was selected as the caudal limit. The volume of all skeletal 
muscle tissue between these reference points formed the total torso 
muscle volume used as reference in this study. 

The cross-sectional areas of Th12 and L3 were measured because 
these are often used as proxies for the total muscle volume. There is lack 
of standardization and consensus at which part of the vertebra the cross- 
sectional area should be measured, here we chose to measure the area at 

the “center of mass” of vertebra Th12 and L3, respectively. 
The pre-specified muscle volumes for abdominal CT scans that were 

analyzed were the volume between the tip of the coccyx and 25 cm 
cranially (Sacrum 25 cm), and the volume between the tip of the coccyx 
and the cranial limit of the first lumbar vertebra (Sacrum–L1). For 
thoracic CT scans the volumes were between the cranial border of the 
sternum and 25 cm caudally (Sternum 25 cm), the cranial border of the 
sternum to the caudal limit of the 12th thoracic vertebra (Ster
num–Th12), and the cranial limit of 10th thoracic vertebra to the caudal 
limit of the 12th thoracic vertebra (Th10–12). The 25 cm volumes 
(Sacrum 25 cm and Sternum 25 cm) were chosen based on our previous 
studies on abdominal and thoracic CT scans, where 25 cm from the 
respective level represented the largest volumes that were consistently 
represented in clinical CT scans. Sacrum–L1 and Sternum–Th12 were 
similarly chosen to maximize the evaluated volume, while also taking 
the build of each patient into account. 

2.4. Statistical analysis 

For each of the measured areas and volumes, univariable linear 
regression analysis was done to predict the total torso muscle volume. 
For each such model, the Akaike Information Criterion (AIC), root mean 
squared error (RMSE) and R2 were calculated and analyzed for 
goodness-of-fit. The regression analyses were first performed for all 
patients. In a second analysis, both univariable and multivariable, also 
including the body height and the interaction between the volume/area 
and body height was done for the patients who had body height data. To 
evaluate the resulting models for patients of different ages, the patients 
were divided into quartiles. Further, correlation analysis was performed 
for each area or volume with regard to the total torso muscle volume, 
which was compared using the method described by Hittner et al. [16]. 

Scatter plots of the predicted total torso muscle volumes compared to 
the actual measured volume for each regression model was done, as well 
as Bland-Altman diagrams [17] for visual comparison. 

Mean and standard deviation (SD) was calculated for each descrip
tive continuous variable. All statistical analysis was done using R version 
3.6.3 (R Foundation for Statistical Computing, Vienna, Austria) with the 
packages tidyverse 1.3.1 and cocor 1.1–3. 

3. Results 

A total of 1164 patients were included in the study. Of these, 170 
were excluded due to the arms being held alongside the body, leaving 
994 for analysis. Manual inspection of 50 randomly selected muscle 
segmentations did not show any that were obviously erroneous and did 
not lead to any exclusions (Fig. 1). The study group thus consisted of 821 
(83%) men and 173 (17%) women, with a mean age of 64 years (SD 14) 
and a mean body length of 176 cm (SD 8) (Table 1). Intravenous contrast 
had been administered in 546 (55%) of the scans. 

On analyzing all 994 patients, Sacrum 25 cm showed the highest 
correlation of the abdominal measures on all analyses, with an R2 of 
0.935 (Table 2). This was significantly higher than the L3 slice muscle 
area (R2 0.830, P < 0.0001). For thoracic measures, Sternum–Th12 
showed the highest correlation with total torso muscle volume, with an 
R2 of 0.892 which was significantly higher than the Th12 slice muscle 
area (R2 0.775, P < 0.0001). The latter was marginally higher than 
Sternum 25 cm with an R2 of 0.891, but this difference was not statis
tically significant (P = 0.16). 

For the 784 patients where body length was available, for abdominal 
scans the multivariable model including Sacrum 25 cm improved only 
slightly (R2 0.932 vs 0.922, P < 0.0001). In contrast, for thoracic scans, 
the multivariable model that included Sternum 25 cm improved mark
edly (R2 0.913 vs 0.869, P < 0.0001) and became similar to the multi
variable model that included Sternum–Th12 (R2 0.913 vs 0.905, P =
0.05). A cross table of differences in correlations is presented in Table 3. 
All the evaluated volumes, except Th10–Th12, showed a significantly 
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higher correlation with the total torso muscle volume than the single- 
slice areas, whether they were adjusted for body height or not (all P 
< 0.01; Supplemental Table 1). AIC and RMSE showed the same order of 
correlation as R2 for both univariable and multivariable models. Scat
terplots of the respective measures against the total torso muscle volume 
visually demonstrate the same results (Fig. 2), as do the Bland-Altman 
plots (Fig. 3). Analyzing scans of male (N = 698) and female patients 
(N = 86) separately showed the same ordering of correlation of the 
models and yielded similar R2 in both groups (Sacrum 25 cm with height 
R2 0.897 for men and 0.920 for women, P = 0.26 with Fisher’s z method; 
Sternum 25 cm with height R2 0.870 for men and 0.892 for women, P =

0.39). The parameters of all the regression models are shown in Sup
plemental Table 2. Evaluating the models for different age groups 
showed similar results for all age groups (Supplemental Table 3). 

4. Discussion 

In this study, we found that the total torso muscle volume could be 
accurately estimated by automatic muscle segmentation of specific 
anatomically defined volumes on abdominal or thoracic CT scans, and 
that these volumes performed better than the commonly used single 
transverse cross-sectional muscle areas at L3 or Th12, whether adjusting 
for body length or not. 

For abdominal CT scans, we found that the muscle volume between 
the tip of the coccyx and 25 cm cranially was the best at predicting the 
total torso muscle volume across all measures of goodness-of-fit. In their 
seminal paper, Shen and co-workers showed that the cross-sectional 
area at L3 was the best at predicting total muscle volume, with an R2 

of 0.855. These results were later replicated by, eg, Schweitzer and co- 
workers, with an R2 of 0.76 in men but only 0.71 in women [7]. Simi
larly, we found an R2 of 0.830 for L3, although that was in relation to the 
total torso muscle volume, ie, not including the muscle volume of the 
extremities. While R2 is not directly comparable across studies, the 
similar results suggest that the improvement in prediction by measuring 
the Sacrum 25 cm volume rather than only a single cross section area is 
valid in general. In addition, we have previously reported that the 
pre-operative muscle volume in Sacrum 25 cm is an independent pre
dictor of overall survival in patients who undergo radical cystectomy for 
urinary bladder cancer [1]. 

For thoracic CT scans, we found that the volume between the top of 
the sternum and the lower bound of the 1st lumbar vertebra was the best 
at predicting the total torso muscle value, although the top of the ster
num and 25 cm caudally was essentially equally good. Both were 
significantly better than the single slice area at Th12, but also slightly 
worse than the best abdominal volume measure. To the best of our 
knowledge, no previous study has compared thoracic single-slice cross- 
sectional muscle areas to the total muscle volume, only comparisons to 
L3 slices or reference ranges in relation to L3 slices have been made [18, 
19]. Matsuyama and co-workers found a correlation coefficient of 0.804 
between L3 and Th12 slices. We did not calculate the correlation be
tween these slices but did find that Th12 had a worse correlation with 
the total torso muscle volume than L3. This agrees with the previously 
mentioned study by Shen and co-workers where a slice 15 cm above the 
L4-L5 disc was evaluated and which was worse than L3. 

A recent meta-analysis has shown that lean muscle mass is a strong 
predictor of mortality in different forms of cancer [4]. This was also 
found in our previous report on mortality after radical cystectomy for 
bladder cancer [1]. Most studies, however, have used L3 single slices 
which we have shown here are less correlated to the total muscle volume 
than the partial volumes evaluated. Thereby, using automated seg
mentation of these volumes could allow a more accurate individual 
prediction of risks involved for the patients. However, cutoff values for 
sarcopenia will need to be established for these partial volumes [20]. 

The main strength of this study is the large number of whole-torso CT 
scans included. This was made possible by the automatic segmentation 
performed by cloud-based imaging analysis tool at Recomia.org. The 
main limitation is that we could not use total muscle volume as reference 
since the CT scans did not consistently include the extremities. Instead, 
we chose total torso muscle volume as a proxy, which may not entirely 
correlate with the total muscle volume. The similar R2 between the 
references we used and that of Shen and others with regard to L3 muscle 
area suggest that this may be a small limitation, but further validation is 
warranted. Another limitation is that we do not have any clinical data to 
correlate our findings, it is therefore difficult to set reference values as 
we do not know which patients actually suffer from sarcopenia. In 
addition, we did not visually inspect all the automatic segmentations, 
leaving a risk that there may be faulty segmentations that could distort 

Fig. 1. Flow chart of inclusion and exclusions of patients in the study.  

Table 1 
Characteristics of the patients and their CT scans that were included in the study. 
Continuous variables are shown as mean (standard deviation), while categorical 
variables are shown as number of subjects (%).  

Characteristic  Overall No height With height   

N = 994 N = 210 N = 784 
Age, yrs  64 (14) 51 (17) 68 (10) 
Female  173 (17%) 87 (41%) 86 (11%) 
Male  821 (83%) 123 (59%) 698 (89%) 
Height, m  1.76 (0.08)  1.76 (0.08) 
Weighta, kg  83 (16) 78 (17) 85 (16) 
BMI, kg/m2  27.2 (4.4)  27.2 (4.4)  

Manufacturer 
SIEMENS  311 (31%) 206 (98%) 105 (13%) 
GE Medical Systems  683 (69%) 4 (2%) 679 (87%) 
kVp 80 8 (0.8%) 0 (0%) 8 (1.0%)  

100 325 (33%) 2 (1.0%) 323 (41%)  
120 661 (66%) 208 (99%) 453 (58%) 

Slice Thickness, mm 2.5 197 (20%) 1 (0.5%) 196 (25%)  
3 312 (31%) 206 (98%) 106 (13%)  
5 485 (49%) 3 (1.4%) 482 (61%) 

Intravenous contrast  546 (55%) 3 (1.4%) 543 (69%) 

BMI, body mass index; kVp, kilovoltage peak. 
a Weight were missing in 3 of the patients in the “No height” group. 
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the results. However, in the random 5% sample that was inspected no 
aberrant segmentations were detected, suggesting that the effect of 
faulty segmentations is likely small. Finally, a very large majority of the 
CT scans included in the study were made in men due to a large pro
portion of the patients had performed PET/CT scans for evaluation of 
prostate cancer. Analyzing females separately showed results very 
similar to the group as a whole, however, so this limitation seems to be 
small. 

5. Conclusions 

The skeletal muscle volumes Sacrum 25 cm, Sternum 25 cm and 
Sternum–Th12 are more accurate as proxies of total muscle volume than 
the single-slice areas commonly used, especially if combined with pa
tient body height. These volumes can easily be measured through the 
cloud-based image analysis tool Recomia.org. Further studies are 

needed to define thresholds for clinical applications. 
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Table 2 
Performance characteristics of regression models for predicting total torso muscle volume from a limited volume or slice area. For the patients with body height data 
available, both regression models with and without height as covariate are shown. The best model in each category is shown in bold.  

All patients (N = 994)    Patients with body height data (N = 784)   

AIC R2 RMSE  AIC R2 RMSE 
Abdomen        
Sacrum 25 cm 15,368 0.935 549 Sacrum 25 cm 12,151 0.922 559     

Sacrum 25 cm with height 12,052 0.932 524 
Sacrum - L1 15,718 0.907 655 Sacrum - L1 12,445 0.887 675     

Sacrum - L1 with height 12,421 0.890 663 
L3 16,321 0.830 887 L3 12,883 0.802 892     

L3 with height 12,716 0.840 800 
Thorax        
Sternum 25 cm 15,882 0.891 711 Sternum 25 cm 12,557 0.869 725     

Sternum 25 cm with height 12,237 0.913 589 
Sternum-Th12 15,875 0.892 709 Sternum-Th12 12,504 0.878 701     

Sternum-Th12 with height 12,313 0.905 619 
Th10–Th12 16,440 0.809 942 Th10–Th12 12,986 0.774 953     

Th10–Th12 with height 12,872 0.805 883 
Th12 16,603 0.775 1022 Th12 13,069 0.749 1004     

Th12 with height 12,817 0.819 853 

AIC, Akaike information criterion; RMSE, root mean squared error; L3, level of the third lumbar vertebra; Th10, level of the 10th thoracic vertebra; Th12, level of the 
12th thoracic vertebra. 

Table 3 
Cross table of differences in correlations. Positive numbers mean that the column has a higher correlation than the row.   

L3 L3 
with 
height 

Sacrum 
- L1 

Sacrum 
- L1 
with 
height 

Sacrum 
25 cm 

Sacrum 
25 cm 
with 
height 

Sternum- 
Th12 

Sternum- 
Th12 
with 
height 

Sternum 
25 cm 

Sternum 
25 cm 
with 
height 

Th10–Th12 Th10–Th12 
with height 

Th12 Th12 
with 
height 

L3 – 0.021 0.046 0.048 0.065 0.070 0.041 0.055 0.037 0.060 − 0.016 0.002 − 0.030 0.009 
L3 with 

height 
– 0.025 0.027 0.043 0.048 0.020 0.034 0.015 0.039 − 0.037 − 0.019 − 0.051 − 0.012 

Sacrum - L1  – 0.002 0.019 0.024 − 0.005 0.009 − 0.009 0.014 − 0.062 − 0.044 − 0.076 − 0.037 
Sacrum - L1 with 

height  
– 0.017 0.021 − 0.007 0.007 − 0.011 0.012 − 0.064 − 0.046 − 0.078 − 0.039 

Sacrum 25 
cm    

– 0.005 − 0.023 − 0.009 − 0.028 − 0.004 − 0.080 − 0.062 − 0.095 − 0.055 

Sacrum 25 cm with 
height    

– − 0.028 − 0.014 − 0.033 − 0.009 − 0.085 − 0.067 − 0.100 − 0.060 

Sternum- 
Th12      

– 0.014 − 0.005 0.019 − 0.057 − 0.039 − 0.071 − 0.032 

Sternum-Th12 with 
height      

– − 0.019 0.005 − 0.071 − 0.053 − 0.085 − 0.046 

Sternum 
25 cm        

– 0.023 − 0.052 − 0.035 − 0.067 − 0.027 

Sternum 25 cm with 
height        

– − 0.076 − 0.058 − 0.090 − 0.051 

Th10–Th12          – 0.018 − 0.014 0.025 
Th10–Th12 with 

height          
– − 0.032 0.007 

Th12             – 0.039 
Th12 with 

height             
–  
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