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Abstract

Bacterial multimodular polyketide synthases (PKSs) are giant enzymes that generate a wide 

range of therapeutically important but synthetically challenging natural products. Diversification 

of polyketide structures can be achieved by engineering these enzymes. However, notwithstanding 

successes made with textbook, cis-acyltransferase (cis-AT) PKSs, tailoring such large assembly 

lines remains challenging. Unlike textbook PKSs, trans-AT PKSs feature an extraordinary 

diversity of PKS modules and commonly evolve to form hybrid PKSs. Here, we analyze amino 

acid coevolution to identify a common module site that yields functional PKSs. We use this site 

to insert and delete diverse PKS parts and create 22 engineered trans-AT PKSs from various 

pathways and in two bacterial producers. The high success rates of our engineering approach 

highlight the broader applicability to generate complex designer polyketides.

One-sentence summary

Evolutionary insights enable the engineered biosynthesis of designer polyketides, an important 

class of bioactive natural products.

Bacteria are a rich source of bioactive natural products, many of which have found 

pharmacological applications (1). Among the most therapeutically useful compounds 

are complex polyketides produced by large megaenzymes termed polyketide synthases 

(PKSs) (2–4). These assembly line-like proteins are composed of multiple modules, each 

introducing a specific part of the final structure. Biosynthesis is achieved by stepwise 

incorporation and modification of small acyl-CoA-derived building blocks. Textbook 

multimodular PKSs, coined cis-AT PKSs, largely contain modules employing fatty acid 

synthase-type biochemistry. A minimal module consists of an acyl carrier protein (ACP) 

domain tethering the polyketide intermediate, a ketosynthase (KS) domain catalyzing the 

chain elongation, and an acyl transferase (AT) domain selecting the building blocks. 

Optional additional modifications at the β-carbon, such as reductions by ketoreductases 

(KR) or dehydrations by dehydratases (DH), diversify the polyketide scaffold to generate 

chemical complexity. The sequence of modules is represented in the chemical structure of 

the final product – a phenomenon termed the collinearity principle. This correspondence 

at the protein and chemical level has inspired the vision to create designer PKSs from 

module parts that produce synthetically challenging polyketides in a predictable fashion 

(5). Efforts towards engineering have been successful for the erythromycin PKS and other 

model systems (6–8), yet design rules that enable combinatorial biosynthesis with high 

success rates remain elusive (9). The observation that KSs from cis-AT systems typically 

form distinct clades with other KSs from the same cluster (10) suggests the formation of 

natural hybrids by recombination is rare in cis-AT PKSs, which might represent an intrinsic 

challenge to engineering of this family of PKSs.

A second large family of bacterial multimodular PKSs, termed trans-AT PKSs, differ from 

cis-AT assembly lines (11). They commonly contain modules catalyzing non-fatty acid 

synthase-type reactions, such as halogenation (12, 13), formation of diverse heterocycles 

(14–16), oxygen insertion (17, 18), α-hydroxylation (13), and β-branching (15, 19). 

This unparalleled biochemical diversity provides a vast combinatorial space to diversify 
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polyketide structures in a modular fashion. Trans-AT PKSs evolve via widespread 

recombination between biosynthetic gene clusters (BGCs) to form mosaic-like natural 

hybrids (20). A common recombination site is located at a region corresponding to 

the C-terminus of KS domains (21, 22), i.e., KSs coevolve with modifying domains 

located directly upstream (20, 23). Together, the apparent natural combinatorial evolution 

of trans-AT PKSs and their expanded chemical repertoire make this class of enzymes 

highly attractive for engineering efforts. Guidelines to engineer these megaenzymes remain, 

however, unclear from the few reported modified trans-AT PKSs (24, 25). Here, we leverage 

insights obtained from natural trans-AT PKS evolution to uncover a fusion site that allows 

construction of diverse engineered, large PKS assembly lines in several organisms.

Fusions at a conserved NAHVILEE motif result in stalled intermediates

In a first attempt to identify the natural recombination sites in trans-AT PKSs, we extracted 

821 KS sequences with their adjacent up- and downstream regions from our in-house 

database of annotated trans-AT PKS biosynthetic gene clusters (20, 26). A multiple 

sequence alignment showed a conserved NAHVILEE motif near the C-terminus of KSs 

(Fig. S1). In many natural trans-AT PKS hybrids with shared module series (21, 22), we 

observed that pairwise sequence similarity dropped off behind the NAHVILEE motif of 

the terminal, shared module. However, a putative recombination site could not be precisely 

localized within a ca. 100 amino acid region due to high sequence divergences even among 

architecturally closely related PKS hybrids. Since the NAHVILEE motif was also reported 

as a functional fusion site to yield functional cis-AT PKS chimeras (27, 28), we explored 

its utility for trans-AT engineering using the bacillaene (pks) biosynthetic gene cluster from 

Bacillus subtilis (29, 30). Four chimeric PKSs were generated by genomic integration, 

resulting in PKSs with non-native terminal modules (Figs. S1–6, see Supplementary 

Information for additional details). However, instead of full-length polyketides, we detected 

products that resulted from hydrolytic release of stalled intermediates just before the fusion 

point. The data suggested that none of the chimeras was functional and that the NAHVILEE 

site is not suitable for engineering in this PKS.

Statistical coupling analysis suggests the LPTYPFx5W motif as potential 

recombination site

To infer the site at which trans-AT PKSs potentially recombine, we analyzed amino 

acid coevolution with statistical coupling analysis (SCA) (31, 32). This method analyzes 

covariance of amino acids in multiple sequence alignments and identifies global networks of 

coevolving residues. We reasoned that this method might reveal structurally or functionally 

interconnected networks of amino acid residues that might be sensitive to disruption by 

engineering (Fig. 1A). Due to dynamic processes during polyketide elongation as well as 

lateral interactions between assembly lines that create a multitude of domain contacts (33, 

34), such residue interactions remain obscure when using the available structural snapshots 

of trans-AT PKS components (35, 36). As such, we hypothesized that SCA might uncover 

engineering sites at boundaries between independent networks of coevolving residues 

that minimally disrupt evolutionary conserved interactions in trans-AT PKSs and thereby 
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enable engineering of productive chimeric trans-AT PKSs. For analysis, we extracted 

protein sequences that encompass the KS domain and commonly occurring neighboring 

regions from manually collected trans-AT PKSs and trans-AT PKSs deposited in the 

antiSMASH database (Fig. S9) (37) and analyzed sequence alignments with SCA (see 

Supplementary Materials). The amino acid covariance in the alignments of the extracted 

motifs reveals coevolution within each modifying domain (e.g., KS and KR, Figs. 1B, 

S10–12). In addition, covariance between KS domains and upstream modifying domains 

is also apparent, which is in line with the previous observation that KSs clade according 

to the polyketide modifications introduced by these upstream modifying domains (Figs. 

S10–12) (20, 23). We additionally observed coevolution of residues within the KS and a C-

terminal region termed flanking subdomain (FSD) (Figs. 1B, S10–12). Although the precise 

function of the FSD is unclear, it has been found to mediate lateral interactions between 

PKSs to form higher-order, supramolecular PKS assemblies (33, 36, 38–40), suggesting 

this subdomain plays an important role in the organizational dynamics of polyketide 

biosynthesis.

To test whether this coevolution between KS and FSD is significant, we deconvoluted 

the amino acid covariance and extracted networks of statistically significantly coevolving 

positions. The most significant of the amino acid networks, coined sectors, has been 

associated with conserved residues and general enzyme stability (41), whereas other 

significant sectors that contain less-conserved residues are associated with more specialized 

enzyme functionality (41, 42). We consistently found that the LPTYPFx5W motif at the FSD 

C-terminus acts as boundary between sectors containing lesser-conserved residues that are 

presumably involved in enzyme functionality (Figs. 1C, D, S13). This suggested that the 

LPTYPFx5W motif, which also occurs in cis-AT PKSs downstream of the AT domain and 

has been successfully used in AT swapping experiments in cis-AT PKSs (43, 44), separates 

evolutionarily autonomous parts in trans-AT PKSs. In line with terminology from NRPS 

engineering (45), we use the term “exchange units” for these evolutionarily autonomous 

parts that contain various domains (25, 34, 46), while “module” refers to biochemically 

functional KS-to-ACP sections (Fig. 1A).

A Serratia plymuthica platform for PKS engineering

To experimentally assess whether the computationally suggested LPTYPFx5W motif can 

serve as an artificial fusion site, we developed a screening platform using the oocydin 

BGC in the genetically tractable bacterium Serratia plymuthica 4Rx13 (henceforth termed 

S. plymuthica) (13, 17). The oocydin trans-AT PKS contains biochemically diverse 

modules including a halogenation module that catalyzes chlorination during polyketide 

chain elongation (13, 47). This module comprises a heterodimer of the trans-acting Fe(II)/α-

ketoglutarate-dependent halogenase OocP and the auxiliary protein OocQ (Figs. 2A, S14). 

By using the chlorination module at the engineering interface, we hoped to introduce a 

characteristic chlorine isotope tag into hybrid polyketides that would facilitate their mass 

spectrometric detection in bacterial extracts (47).

High-performance liquid chromatography coupled to mass spectrometry (HPLC-MS) 

analysis of culture extracts of S. plymuthica ΔoocQR, a mutant lacking oocQ and the 
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downstream PKS gene oocR, showed that chlorination of polyketide intermediates was 

indeed abolished (Fig. 2C). We next supplemented oocQ to S. plymuthica ΔoocQR on 

a plasmid encoding oocQ and oocR up to the LPTYPFx5W motif of the second KS of 

OocR (pBAD-oocQR) (Fig. 2B, top). Besides restoring oocydin production (Fig. S30), 

supplementation of oocQR also resulted in the production of a compound with an m/z 
value corresponding to compound 1 (Figs. 2C–E), the free acid of the putative polyketide 

intermediate at the OocR ACP domain (13), thereby confirming restored chlorination by 

supplementation of oocQ. With the aim to facilitate processivity of the truncated assembly 

line, we next appended the terminal ACP-C didomain of OocS to the truncated OocR. This 

didomain natively offloads the polyketide intermediate by catalyzing macrolactonization 

(13). Extracts resulted in larger amounts of a product with an additional C2 extension. 

NMR-based structural elucidation after HPLC-MS-guided fractionation confirmed the 

macrolactone structure of 2 (Figs. 2C, D, F, S17–21). S. plymuthica ΔoocQR thus provides 

a platform for introducing engineered oocR mutants to assess guidelines for trans-AT PKS 

engineering (Fig. 2G).

Introducing foreign domains after the LPTYPFx5W motif yields functional 

chimeric PKSs

Having generated a functional engineered PKS with native ooc parts, we next explored the 

compatibility of the LPTYPFx5W site with a foreign component. To minimize the number 

of non-native interactions, we introduced a single fusion site by joining the truncated oocR 
to the terminus of the psymberin (psy) BGC from an uncultivated bacterium (21). The 

psy region encodes the domain series ACP-KS-DUF-DH-ACP (DUF: domain of unknown 

function), and an offloading thioesterase (TE) domain that jointly catalyze β-keto extension 

and δ-lactone formation (Fig. 3A). The psy KS natively accepts a β-ketoacyl intermediate 

(21), as would be produced by the upstream minimal ACP-KS domain series that is the 

result of the PKS fusion (13). As a control experiment, we constructed a PKS with the same 

domains, but the fusion point located at the NAHVILEE motif of the OocR KS. HPLC-MS 

analysis of medium extracts showed that only the LPTYPFx5W-fused chimera suggested 

by SCA produces a chlorinated compound with an m/z value of 511.1729, corresponding 

to the expected, doubly extended product 3 (Figs. 3B, C), whereas the NAHVILEE-fused 

chimera yielded offloaded intermediates 1 and 2. HPLC-guided purification and structural 

elucidation confirmed 3 as a pyrone resulting from two keto extensions and δ-lactone 

formation (Figs. 3D, S22–26).

Having established the utility of the LPTYPx5W site for new PKS termini, we next aimed 

to insert foreign domains between domains of the ooc assembly line. For this, we placed 

an exchange unit containing a β-ketoacyl-accepting minimal ACP-KS12 domain series from 

the lobatamide (lbm) PKS of Gynuella sunshinyii (18) between the truncated OocR and the 

OocS ACP C terminus (Fig. 3E). If functional, this PKS would catalyze two terminal keto 

extensions as for the psy construct. In addition to the SCA-conform LPTYPx5W double 

fusion, we prepared three control constructs with one or both lbm fusion sites exchanged to 

the NAHVILEE motif (Figs. 3E, F). HPLC-MS analysis showed that fusion the LPTYPx5W 

motif at both sites led to notable production of 3, whereas fusion at the NAHVILEE motif at 
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any of the two sites primarily showed stalled biosynthesis, indicated by only trace amounts 

of 3. Mutants employing a fusion site upstream of the OocR KS12, which was shown to 

yield productive truncated disorazol PKSs (24), were not productive (Fig. S15). We thus 

concluded that the LPTYPx5W motif provides an engineering site for chimeric trans-AT 

PKSs and used this fusion site in our further experiments.

A wide range of exchange units with minimal ACP-KS domain series is 

tolerated

Excised KS domains can accept and elongate substrates in vitro that differ from the natively 

encountered polyketide intermediate, albeit at lower rates (14). This promiscuity suggests 

that the β-ketoacyl thioesters presented by the truncated OocR PKS can be extended by 

foreign KS domains that natively elongate different substrates. To test this hypothesis, 

we constructed five chimeric PKSs with ACP-KS inserts that naturally process reduced 

intermediates (Figs. 3G, H). As above, foreign domains were located between the truncated 

OocR and OocSC. Two of these chimeric PKSs, containing exchange units harboring lbm 
KS11 and pks KS5 (48), were excised from larger, dehydrating domain series, whereas the 

remaining three, harboring KS10 and KS13 from the tartrolon BGC (tar) (20) and KS13 

from the lacunalide (lcn) BGC, both from G. sunshinyii (26), occur naturally in a minimal 

KS-ACP architecture. We observed production of 3 for all mutants (Fig. 3H). However, 

3 to 50-fold lower HPLC-MS intensities suggested impaired processivity of the chimeric 

assembly lines, likely due to decreased rates of elongation. This hypothesis is additionally 

supported by the increased intensity of signals attributable to hydrolysis products of stalled 

intermediates with masses near-identical to the mass of 3, but slightly shorter retention 

time (Figs. 3H, S16). While these lower intensities suggest that matching KSs increase 

titers in PKS engineering, the notion that KS specificity might be important for engineering 

trans-AT PKSs (49, 50) seems not to be stringent. Encouraged by the six functional chimeras 

containing exchange units of foreign domain series from interior protein regions, we also 

tested ACP-KS domain series from the N-termini of PKS proteins at the same engineering 

site. A chimeric PKS containing lcn KS24 with its upstream tandem ACP also produced 3, 

albeit at considerably lower titers than those observed for constructs incorporating domain 

series excised from internal modules (Fig. 3J). Unexpectedly, 3 was also produced by 

a chimera harboring the ACP-less KS1 from the start of the entire lcn assembly line, 

i.e., containing a tandem KS (Fig. 3I). Collectively, these data show that trans-AT PKS 

engineering at the LPTYPFx5W motif enables incorporation of minimalACP-KS domain 

series from diverse biosynthetic context with variable processivity.

Chimeric assembly lines with foreign β-keto-modifying domain series

Having shown that our engineering strategy allows for insertion of exchange units of 

diverse minimal ACP-KS domain series into a PKS, we interrogated the engineering scope 

for exchange units of domain series that contain additional modifying domains. First, we 

inserted reducing exchange units comprising KR, ACP, and KS domains into the test site 

(Fig. 4A). The selected exchange units contain tar KS11, gyn KS3, and lcn KS6 from the 

lacunalide, gynuellalide, and tartrolon pathways, respectively. For the gyn and tar chimeras, 

Mabesoone et al. Page 6

Science. Author manuscript; available in PMC 2024 July 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



HPLC-MS analysis showed a chlorinated compound with m/z values corresponding to the 

singly extended and reduced product 4 (Figs. 4A–D). Lastly, we inserted exchange units 

of dehydrating domain series incorporating lbm KS9, lbm KS11, and pks KS5 with the 

architecture DH-KR-ACP-KS into OocR (Fig. 4E). The resulting mutants produced two 

chlorinated, isobaric compounds eluting around 14.5 minutes, suggesting the presence of E- 

and Z-isomers of the singly extended and dehydrated polyketide 5 (Figs. 4F–H). Although 

the low titers precluded isolation of 4 and 5, the presence of both ammonium and sodium 

adducts of these compounds and their absence in S. plymuthica ΔoocQR extracts (Figs. 4D, 

H, S28) suggest that the engineering strategy also allows for the incorporation of exchange 

units that not only elongate but also modify the polyketide intermediate.

Engineering at LPTYPFx5W motifs enables biosynthesis of truncated 

lacunalides

We further tested the generality of the engineering strategy by applying it to a different 

bacterial host and assembly line, i.e., the lacunalide PKS of G. sunshinyii YC6258 (Fig. 

5A). Using the statistically identified LPTYPFx5W motif, we deleted exchange units of 

lcn modules 14 and 15 containing a DH-KR-ACP-KS-KR-ACP-KS domain series, to 

produce the mutant G. sunshinyii YC6258 Δlcn14–15 (Figs. 5A, B). In this design, we 

specifically aimed to match the α-δ regions of the putative polyketide intermediate with the 

moiety that is naturally accepted by the downstream KS (Fig. S54). Based on biosynthetic 

logic, a functional engineered PKS would not generate lacunalides A, 6, and B, 7, but 

instead the spliced lacunalides 8 and 9 (Figs. 5B, C). In line with this hypothesis, MS 

features corresponding to 8 and 9 were only observed in culture extracts of G. sunshinyii 
YC6258 Δlcn14–15, whereas production of 6 and 7 was completely abolished in this 

mutant. HPLC purification and combined NMR and MS analysis confirmed the structure 

of truncated lacunalides 8 and 9 (Figs. S62–79). The stable genomic integration of the lcn 
PKSs truncation allows combination of multiple such modifications. While taking the above-

mentioned design principles into account, we then deleted three further exchange unit series 

in the lcn PKS, covering modules 21–22; 20–23 and 17–24 (Fig. 5A) from the wild-type 

producer as well as from the mutant G. sunshinyii YC6258 Δlcn14–15. HPLC-MS analysis 

of culture extracts of the respective mutants revealed distinct MS features corresponding 

to truncated lacunalides 10–21 (Fig. 5B). To verify the processivity of all members of 

this engineered PKS library, we isolated compounds from each G. sunshinyii mutant and 

determined the structure by NMR (Figs. 5B, S80–121). Isolated yields of lacunalide A 

analogues 8, 10, 12 and 20 (0.4–0.7 mg/mL) and lacunalide B analogues 9, 11 and 21 (0.04–

0.21 mg/L) were comparable to yields of the parent lacunalide A (0.7 mg/L) and lacunalide 

B (0.15 mg/L) (51), while the other metabolites were isolated with reduced yields (0.03–

0.26 mg/L) (Table S17). Cytotoxicity assays against Henrietta Lacks (HeLa) cervical cancer 

cells furthermore showcase the utility of our engineering strategy in elucidating structure-

activity relationships in synthetically challenging polyketides (Fig. S122). In summary, the 

seven constructed mutants produced at least 12 different new compounds. As such, these 

results show that the engineering strategy not only enables introduction of foreign domains 

into trans-AT PKS, but also enables the reductive combinatorial biosynthesis of lacunalide 

congeners.
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Conclusion

We demonstrate that evolution-guided engineering of trans-AT PKSs at the FSD 

LPTYPFx5W motif provides a useful strategy to construct functional chimeric and truncated 

complex assembly lines. We show its broad applicability by successfully engineering 22 

large, chimeric assembly lines comprising parts from diverse PKSs and using two host 

organisms and study the bioactivity of several engineered metabolites. The discovery of 

this engineering principle, in combination with the exceptional biochemical diversity of 

trans-AT PKS modules, offers potential for combinatorial biosynthesis of de novo designed, 

synthetically challenging polyketides including structure-activity relationship studies and 

drug improvement, pharmacophore discovery and introduction, and the biotechnological 

production of stereochemically complex fine chemicals.
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Figure 1. SCA identifies the LPTYPFx5W motif as a candidate fusion point for chimeric trans-
AT PKSs.
(A) Engineering within regions of coevolving residues is hypothesized to perturb important 

amino acid interactions, yielding non-functional chimeras (site I). In contrast, engineering at 

boundaries between regions of coevolving residues minimizes such perturbations and might 

lead to functional chimeras (sites II and III). At the protein level, trans-AT PKS exchange 

units span between the C-terminal boundaries of the FSDs, which slightly contrasts with 

the commonly used PKS module boundaries, spanning from KS to ACP. (B) Covariance 

matrix of Clustal-aligned (53) multiple sequence alignments of the KS-FSD-KR tridomain, 

showing the positional entropy obtained from SCA for amino acid residue pairs of the 

tridomain. The position of conserved IAII, HGTGT, NAHVILEE, and LPTYPFx5W motifs 

are indicated on the side. (C) Consensus sequence of the C-terminal part of the KS-FSD-

KR tridomain obtained from the conservation-filtered sequence alignment used for SCA. 

Residues are color-coded according to SCA sectors. Residues not assigned to sectors are 
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black. The NAHVILEE motif and the experimentally used engineering site downstream 

of the LPTYPFx5W motif is indicated with the yellow and red shades, respectively. (D) 

3D visualizations of sector 1 (left), sector 2 (middle), and sector 3 (right) on an alphaFold2-

generated (54) model of the OocR KS-FSD-KR tridomain. Colors correspond to residue 

colors in panel B.
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Figure 2. The oocydin BGC as platform for PKS engineering.
(A) The oocydin BGC from S. plymuthica 4Rx13 and chemical structures of natural oocydin 

congeners. Core PKS genes are shaded dark green, accessory biosynthetic genes light green, 

oocP and oocQ are shaded yellow. (B) Domain motifs of truncated OocR PKSs and OocQ as 

supplemented with the pBAD-oocQR and pBAD-oocQRSC plasmids. (C) EICs for 1+NH4
+ 

(top) and 2+NH4
+ (bottom) for S. plymuthica, S. plymuthica ΔoocQR and S. plymuthica 

ΔoocQR supplemented empty pBAD, pBAD-oocQR and pBAD-oocQRSC plasmids. (D) 

Isotope patterns confirm chlorination of 1 (top) and 2 (bottom). (E) Putative chemical 

structures of 1 and (F) NMR-confirmed structure of 2. (G) The engineering strategy relies 

on supplementing oocQ and engineered variants of oocR on a pBAD plasmid.
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Figure 3. Insertion of KS domains yields various functional chimeric PKSs.
(A) Domain architecture of chimeric PKSs incorporating the terminal domains of the 

psymberin (psy) PKS. The two fusion sites are indicated in the enlarged region. (B) 

Extracted ion chromatograms (EIC)s for 1, 2, and 3 from mutant cultures harboring the 

ooc-psy chimeras. (C) Mass spectrum of 3 at a retention time of 11.88 min showing the 

characteristic peak pattern indicative of chlorination. (D) NMR-characterized structure of 

3. (E) Domain architecture of the various chimeric PKSs incorporating lobatamide (lbm) 

KS12 with its native upstream ACP. The two fusion sites upstream and downstream of the 

inserted ACP-KS domain series are indicated. (F) EICs for 1, 2, and 3 from mutant cultures 

harboring the ooc-lbm-ooc chimeras. (G) Domain architecture of additional chimeric PKSs 

incorporating ACP-KS domain series with various foreign non-matching KSs, i.e., which 

naturally accept substrates other than β-ketoacyl thioesters. (H) EICs for 3 of mutant 

cultures harboring these chimeric PKSs. (I) Domain architecture of the two chimeric PKSs 

incorporating ACP-KS domain series from N-termini of PKS proteins. (J) EICs for 1, 2, 

and 3 from mutant cultures harboring the chimeric PKSs. The peak eluting at 11.51 minutes 

originating from a prematurely offloaded intermediate has been blurred. See Fig. S16 for 

additional details.
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Figure 4. Domain series with additional modifying domains can be engineered into chimeric 
PKSs.
(A) Domain architecture of the chimeric PKS incorporating reducing domain series. (B) 

Putative structure of hydroxylated polyketide 4. (C) EICs for m/z=530.2151 of extracts 

of cultures of mutants expressing chimeric, reducing PKSs. The peak assigned to 4 is 

indicated by the shaded area. (D) Mass spectrum of the peak eluting at 12.80 minutes 

from culture extracts of S. plymuthica pBAD-oocQR-tar11-oocSC, showing masses and 

chlorination isotopes patterns corresponding to NH4
+ and Na+ adducts of 4. (E) Domain 

architecture of the chimeric PKS incorporating dehydrating domain series. (F) Putative 

structure of dehydrated polyketide 5. (G) EICs for m/z=512.2046 of extracts of cultures of 

mutants expressing chimeric, dehydrating PKSs. (H) Mass spectra of the peaks eluting at 

14.46 and 14.59 minutes from culture extracts of S. plymuthica pBAD-oocQR-lbm11DH-KR-

ACP-KS-oocSC, showing masses and chlorination isotopes patterns corresponding to NH4
+ 

and Na+ adducts of 5.
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Figure 5. The engineering strategy enables biosynthesis of truncated lacunalides.
(A) The domain architecture of the last PKSs in the lacunalide (lcn) PKS in wild type 

(WT) G. sunshinyii YC6258. (B) EICs for m/z values corresponding to proton adducts 

of compounds 6–21 for the various G. sunshinyii mutants. Each column shows the EICs 

obtained for the mutant mentioned above the column. The rows show the EICs obtained for 

m/z values indicated at the right of the row. Masses corresponding to 15 and 19 could not 

be observed. (C) Chemical structures of wild-type lacunalide A (6), lacunalide B (7), the 

NMR-confirmed truncated lacunalides 8,9, 10, 11, 12, 14, 16, 18, 20, and 21 and putative 

structures of truncated lacunalides 13 and 17. The shaded numbered circles indicate the 

moieties installed by the corresponding lcn domain series.
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