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ABSTRACT
Protected areas in South Asia face significant challenges due to human disturbance and
deforestation. The ongoing debate surrounds the recent surge in illegal encroachment
of forest buffer zones in the Musali divisional secretariat division (DSD), which has
led to a significant loss of forest cover over the past three decades. In this context,
detecting changes in forest cover, assessing forest health, and evaluating environmental
quality are crucial for sustainable forest management. As such, our efforts focused on
assessing forest cover dynamics, forest health, and environmental conditions in the
DSD from 1988 to 2022. We employed standardized image processing techniques,
utilizing Landsat-5 (TM) and Landsat-8 (OLI) images. However, the forest area in
the DSD has shown minimal changes, and environmental conditions and forest health
have illustrated considerable spatial-temporal variations over the 34 years. The results
indicated that 8.5 km2 (1.9%) of forest cover in the DSD has been converted to other
land use classes. Overall, the Normalized Difference Vegetation Index (NDVI) has
declined over time, while Land Surface Temperature (LST) exhibits an increasing trend.
The regression results demonstrated a robust inverse relationship between LST and
NDVI. The declining vegetation conditions and the increasing LST contribute to an
increase in environmental criticality. The derived maps and indices will be beneficial
for forest authorities in identifying highly sensitive locations. Additionally, they could
enable land use planners to develop sustainable land management strategies.

Subjects Ecology, Environmental Impacts, Forestry, Spatial and Geographic Information Science,
Environmental Health
Keywords Deforestation, Environmental criticality index, Forest health, Land use, NDVI,
Vegetation condition index

INTRODUCTION
Changes in land use/land cover (LULC) reflect the impacts of socioeconomic factors on
the environment and human–environment interactions (Kayet & Pathak, 2015;Wijesinghe
& Withanage, 2021; Withanage, Mishra & Jayasinghe, 2024). Thus, updated and reliable
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land information is crucial for both current and future land use planning (Wijesinghe &
Withanage, 2021). Employing multi-temporal satellite imagery for LULC change detection
helps in comprehending landscape dynamics (Rawat & Kumar, 2015). Previous studies
have indicated that LULC changes have resulted in significant damage to forest cover,
leading to a rapid pace of deforestation. The growing population, urbanization, and
infrastructure development have contributed to an imbalance between the supply and
demand for forest products, posing a threat to forest ecosystems (Koellner et al., 2008).
Deforestation has led to the disappearance of 420 million hectares of forest between 1990
and 2020 (FAO, 2022 and FAO, 2014). The recent emphasis on non-consumptive use of
forests has garnered the attention of forest conservation authorities worldwide, leading to
sustainable forest management (Ranagalage et al., 2020). Reliable quantification of forest
cover and vegetation health is essential for developing comprehensive forest resource
management guidelines.

Changes in forest cover play a significant role in influencing LST, which in turn can
directly impact energy balance, evapotranspiration, and precipitation patterns, ultimately
altering vegetation conditions (Jaafar et al., 2020; Deng et al., 2018; Culf et al., 1996). Given
the challenges associated with in-situ observations, sensor platforms can be employed to
retrieve LST effectively (Jaafar et al., 2020). Numerous studies have utilized Landsat data
to analyze forest cover dynamics and health, often by analyzing NDVI (Jaafar et al., 2020;
Culf et al., 1996; Deng et al., 2018;Malik, Shukla & Mishra, 2019; Jenerette et al., 2006). The
NDVI is a basic index used to assess vegetation cover, vegetation health, and photosynthetic
activity and some studies implied that NDVI is an indicator of the link between LST and
vegetation conditions (Jaafar et al., 2020; Anbazhagan & Paramasivam, 2016; Peng et al.,
2014; Yuan et al., 2017). Additionally, it can be used as a proxy for biomass accumulation
(Jaafar et al., 2020). NDVI is used to create other indices, such as the Vegetation Condition
Index (VCI), by normalizing long-term satellite-based NDVI data (Yin et al., 2024).
Moreover, LST and NDVI serve as indicators of changing environmental quality. The
Environmental Criticality Index (ECI) is calculated based on the ratio between LST and
NDVI by normalizing each layer. Accordingly, previous researchers have employed the
ECI to assess varying levels of risk associated with environmental conditions (Senanayake,
Welivitiya & Nadeeka, 2013; Ranagalage, Estoque & Murayama, 2017; Saputra, Jamadi &
Sari, 2023).

While there have been numerous studies quantifying forest cover using remote sensing
data in other areas (Wickramagamage, 1998; Fernando & Edirisuriya, 2016; Ranagalage
et al., 2020), it is challenging to find similar studies in our study area. Therefore, our
study fills this gap by measuring forest cover dynamics and evaluating forest health and
environmental conditions between 1988 and 2022 in Musali DSD which located in the
northern periphery of Vilpattu National Park, Sri Lanka. The study objective was to assess
changes in forest cover, vegetation health, and environmental conditions using the Landsat
time series dataset. Three standardized indices: LST; NDVI; and VCI, were employed to
evaluate changes in forest health. Additionally, environmental condition was analyzed
using the ECI.
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MATERIALS AND METHODS
Study area
Musali is one of the five DSD located in theMannar district of northwestern Sri Lanka. This
DSD located within latitudes 8◦31′26′′N, 8◦49′2′′N and longitudes 8◦3′2′′E, 79◦56′29′′E.
Nanaddan DSD bounds it to the North, while to the South lie the Anauradhapura and
Puttalam districts. The Madu DSD marks its Eastern border, with the Gulf of Mannar
stretching along its Western edge (Fig. 1). The total extent of the DSD is 475 Km2 with
20 Grama Niladhari Divisions (GNDs). The population of the DSD is comparatively low
and there was 29,011 population in 2021 with showing density is as 61 persons per km2

(Department of Census and Statistics, 2022). The primary livelihood activities in the DSD
include agriculture, fishing, and animal husbandry.

While the annual and monthly average rainfall for Sri Lanka stands at 2,397 mm and
200 mm respectively, the Musali experiences an annual average rainfall of 960 mm, with
monthly averages ranging from 74 mm to 134 mm. Thus, DSD is characterized as one of
the driest regions in Sri Lanka, with evapotranspiration reaching 2,135 mm/year, placing it
within a semi-arid climate zone (Athauda et al., 2024). The average humidity in the DSD is
approximately 75%, attributed to its location within the semi-arid zone. The DSD typically
encountering only the tail end of the northeastern monsoon. In April, aside from the
monsoon, the DSD also experiences rainfall from conventional rains. For the remainder of
the year, DSD experiences a long dry season (Land Use Policy Planning Department, 2016).
The rainfall pattern is very different from the southwestern side of Sri Lanka. The annual
minimum temperature in DSD is 26 ◦C while annual maximum temperature is 35 ◦C
(Department of Census and Statistics, 2022). There is little variation in the temperature
during the entire year. The dry season is possibly the longest in Sri Lanka, and a brief and
light monsoon season during the winter months. Agro-ecologically, the DSD falls into the
low-country dry zone-DL3 (Land Use Policy Planning Department, 2016).

Most areas in DSD is comprised of lowlands (elevation: 0 to 12 m) with some scattered
undulating surface topography (slope: 0◦ to 5◦). The predominant geological formation
comprisesMiocene limestone andQuaternary deposits. The soil types in the area encompass
yellow-brown sands, dune and beach sands, as well as lagoonal deposits (Athauda et al.,
2024). Along the coastal area, sandy soils (Regosols) predominate, while saline and marshy
lands are prevalent in the low-lying areas (Land Use Policy Planning Department, 2016).
Various forest and vegetation types can be identified in the DSD, encompassing dry
monsoon forest, riverine dry forest, mangroves, and dense forest.

Materials
The study primarily used Landsat-5 Thematic Mapper (TM) and Landsat-8 Operational
Land Imager (OLI) multispectral image series to investigate the spatial and temporal
variations in vegetation cover, vegetation health, and environmental conditions (United
State Geological survey, 2023). All images were taken during the dry period of the southwest
monsoon (February and August) with less than 5% cloud cover, sourced from the USGS
Earth Explorer (https://earthexplorer.usgs.gov/) for the year 1988, 1996, 2009 and 2022.
Table S1 summarizes the Landsat data specifications used for deriving LST, NDVI, ECI,
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Figure 1 Location: (A) Sri Lanka; (B) DSD inMannar district; (C) Landsat 4,3,2 composite of Musali
DSD.Maps were created by authors using United States Geological Survey Earth Explorer Landsat images
(https://earthexplorer.usgs.gov/) and Sri Lanka Survey department hard copy maps of DSD and Sri Lankan
boundary.

Full-size DOI: 10.7717/peerj.17714/fig-1
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Figure 2 Methodological flowchart of the study.Maps were created by authors using United States Ge-
ological Survey Earth Explorer Landsat images (https://earthexplorer.usgs.gov/) and Sri Lanka Survey de-
partment hard copy maps of DSD and Sri Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-2

and for mapping forest cover changes. To create the study area boundary map and the Sri
Lanka boundary map, hard copy maps available for purchase from the Sri Lanka Survey
Department were used. ArcMap 10.8 software (ESRI, February, 2020) was used for remote
sensing image processing, while regression analysis was performed using MS Office Excel
(2013) spreadsheet program.

Methods
Several steps were followed to create forest cover maps and other indices, including image
pre processing, classification, accuracy assessment, change detection, and the calculation of
NDVI, LST, VCI, and ECI. Finally, regression analysis was performed to find the correlation
between NDVI and LST for the concerned period. The methodical flowchart is represented
in Fig. 2.

Image pre processing
Pre processing of data involved several key steps to ensure that the data is clean, accurate,
and ready for analysis. Firstly, radiometric calibration was performed by converting raw
digital numbers (DN) to radiance or reflectance values. This process corrected sensor-
specific biases. Secondly, we removed the effects of the atmosphere on the reflectance
values by employing Dark Object Subtraction (DOS). To maintain spatial consistency, we
performed geometric correction by projecting all data layers into the WGS 1984, UTM
zone 44N projection system. In the image subsetting phase, we clipped the images to the
areas of interest (AOI) using the DSD boundary. Then, we adjusted the spatial resolution
of the Landsat images using the nearest neighbor resampling technique while maintaining
a 30 m spatial resolution.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 5/26

https://peerj.com
https://earthexplorer.usgs.gov/
https://doi.org/10.7717/peerj.17714/fig-2
http://dx.doi.org/10.7717/peerj.17714


Image classification
The features in the images were retrieved to predetermine the forest cover changes inMusali
DSD. During classification, five land use classes were identified: forest, agriculture, water
bodies, built-up/settlements, and others, as shown in Table S2. There are various statistically
driven supervised classification algorithms, such as maximum likelihood, parallelepiped,
and Mahalanobis. The chosen classification method for this study is maximum likelihood
classification (MLC). MLC, a widely used algorithm for LULC classification, relies on
statistical sampling using probability density functions to detect predefined sets of LULC
classes (Alawamy et al., 2020).Moreover, thismethod is widely used because fine-resolution
satellite remote sensing data are comparatively inexpensive sources for LULC mapping
(Weng, 2002; Dissanayake et al., 2019). It relies upon the likelihood that a pixel belongs to
a specific class. One well-known method, MLC, based on the Bayesian equation, calculates
the likelihood D of unknown measurement vector X, belongs to Eq. (1) (Mohajane et al.,
2018):

D= In(ac)− [0.5 In(|Covc |)]−[0.5{X−Mc)T(Covc−1)(XMc)] (1)

In the equation the weighted distance represent by D; particular class is c; the
measurement vector of the candidate pixel is represented by X. The mean vector of
the sample of class c represented by Mc . The percent probability of the candidate pixel
being a member of class c represented by ac. The covariance matrix of the pixels in the
sample of class c is presented by Covc. |Covc | is the determinant of Covc (matrix algebra).
Covc−1 is is the inverse of Covc (matrix algebra). ln = natural logarithm function; and T
= transposition function (matrix algebra) (Mohajane et al., 2018).

The majority filtering method has been employed to rectify the errors that may arise
during the classification process. This approach has been utilized by previous researchers as
well to bolster the reliability of their results (Weng, 2002;Dissanayake et al., 2019). Figure S1
illustrates the LULC information provided in Table S2. These images were collected from
the Google Earth Pro. August 25, 2022, was the date for selecting the images as it is the
closest available date to offer an illustrative representation of the LULC information.

Accuracy assessment
Securing the quality of classified images is paramount in every LULC change detection
process. To achieve this, a stratified random sampling technique was employed in the
procedure, ensuring coverage of all LULC classes, with 600 Ground Control Points (GCP)
created each year (Wu &Murray, 2003). Subsequently, Google Earth Pro historical imagery
served as reference data for accuracy assessment. Four widely used accuracy metrics were
computed: Overall Accuracy (OA), Producer’s Accuracy (PA), User’s Accuracy (UA), and
Kappa Coefficients (K).

OA represents the overall percentage of correctly classified LULC classes, calculated
by dividing the number of accurately classified land cover pixels by the total number
of pixels in the datasets using Eq. (2) (Yuh et al., 2023; Olofsson et al., 2014; Weng, 2002;
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Dissanayake et al., 2019; Estoque & Murayama, 2017).

OA=
1
N

n∑
ii=1

Pii (2)

where, OA is overall accuracy; N is total samples number; n is total categories number; and
Pii is correct classifications number of ith sample in confusion matrix.

PA measures the percentage accuracy of individual LULC classes within a map,
determined by dividing the number of correctly classified pixels in a specific land cover class
by the total number of pixels belonging to that class in the reference data. Misclassified
pixels within this metric are known as errors of omission and was calculated using as
Eq. (3):

PA=
Correctly classified number pixel in each category

Correctly classified total number pixels in that category (column total)
(3)

UA evaluates the reliability of a given land cover map concerning its agreement with
ground observations. It is calculated by dividing the number of correctly classified pixels
in a specific land cover class by the total number of pixels classified within that class.
Similar to Producer’s Accuracy, misclassified pixels in this metric are referred to as errors
of omission. Equation (4) is as below:

UA=
Correctly classified number pixel in each category

Correctly classified total number pixels in that category(row total)
(4)

K indicates the level of agreement between test and validation data in a generated land
cover map. It is based on the probability of the test data closely matching the validation
data during the land cover mapping process and is highly correlated with overall accuracy.
K coefficient was utilized as a metric to gauge the agreement between classified results and
actual conditions, thereby determining the levels of accuracy. A threshold of 0.75 or higher
was set, indicating sufficient agreement for actionable insights based on the image. The
Eq. (5) was used to calculate the K (Alqurashi & Kumar, 2014). The results of the accuracy
assessments are presented in Table S3.

K =
N
∑k

i=j xii−
∑k

i=1(xi+×x+i)

N 2−
∑k

i=1(xi+×x+i)
(5)

where k is the number of rows in the matrix; xii is the number of observations in row i and
column i; xi+ and x+i are the marginal totals of row k and column i. N is the number of
observations (Alqurashi & Kumar, 2014).

Change detection
A change detectionmethod was used to cross-tabulate LULC data between different periods
after image classification: (i) 1988 vs. 1996, (ii) 1996 vs. 2009, (iii) 2009 vs. 2022, and (iv)
1988 vs. 2022.

Retrieval of LST
LST is commonly defined as the temperature at the interface between the Earth’s surface
and its atmosphere and this serves as a critical indicator in all physical processes concerning
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surface energy and water balance at both micro and macro spatial scale (Malik, Shukla &
Mishra, 2019; Sobrino, Jiménez-Muñoz & Paolini, 2004). This plays a pivotal role in surface
processes and boasts a wide array of applications, including vegetation stress monitoring,
climate change studies, environmental assessment, and urban climate analysis. With the
availability of large-scale remote sensing data, near-surface air temperature measurements
can be effectively monitored and utilized to retrieve the temperature of various LULC
surfaces (Malik, Shukla & Mishra, 2019). In our study, Landsat 5 and Landsat 8 data were
employed to analyze LST and investigate the impact of forest degradation. The LST was
obtained by Thermal Infrared (TIR) band 6 of Landsat 5 and TIR band 10 and 11 of
Landsat 8 by converting DN values into radiance values (Jaafar et al., 2020; Ranagalage,
Estoque & Murayama, 2017;Dissanayake et al., 2019). Here we used thremal bands holding
brightness temperatures which are represented in Kelvin. Before retrieval, the LST land
surface emissivity values was derived using Eq. (6):

ε=mPV+n (6)

where ε represents land surface emissivity; m represents (εv − εs) − (1 − εs) εv ; Pv
represents the amount of vegetation; n represents εs + (1− εs) εv ; εs is soil emissivity; εv is
the vegetation emissivity; and F is a shape factor (Ranagalage, Estoque & Murayama, 2017;
Dissanayake et al., 2019). Here we used m = 0.004 and n = 0.986 as in previous research
(Jaafar et al., 2020; Ranagalage, Estoque & Murayama, 2017; Dissanayake et al., 2019). The
proportion of vegetation (PV) is derived from Eq. (7).

PV= ((NDVI−NDVImin)/(NDVImax−NDVImin))2 (7)

where NDVI is the normalized difference vegetation index derived from Eq. (9) as in sub
section below. The NDVImin and NDVImax are the minimum and maximum values of
the NDVI, respectively. Then emissivity corrected LST were retrieved using Eq. (8).

LST
(
◦C
)
=

TB
1
+ (λ×TB/p)Inε (8)

where TB = Landsat TM Band 6 at-satellite brightness temperature; λ = wavelength of
emitted radiance (λ = 11.5 µm for Landsat TM Band 6, λ = 10.8 µm for Landsat TIRS
Band 10) (Ranagalage, Estoque & Murayama, 2017; Dissanayake et al., 2019); p = h ×
c/σ (1. 438× 10 –2 mK), σ = Boltzmann constant (1. 38×10− 23 J/K), h = Planck’s
constant (6. 626×10− 34 Js),c = velocity of light (2. 998× 108 m/s), ε is the land surface
emissivity. Last, the LST values of Kelvin were converted into degrees Celsius (◦C).

Derivation of NDVI
The results of spectral analysis are typically summarized into vegetation indices, which
establish relationships between reflectance across two or more wavelength intervals or
bands in satellite images. Measurement of such indices serves as an especially valuable
tool for precision agriculture and vegetation analysis (Fernández-Alonso, Hernández &
Torres-Costa, 2023). Various sensors and multi spectral devices are extensively utilized
nowadays to assess the condition of vegetation, including chlorophyll meters, canopy
reflectance sensors, and Plant-O-Meter (Padilla et al., 2018; Kitić et al., 2019). NDVI is the
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most common vegetation index, frequently employed as an indicator of chlorophyll content
and overall vegetation health (Fernández-Alonso, Hernández & Torres-Costa, 2023). The
NDVI is a vital remote sensing metric, acting as a key indicator for assessing vegetation
coverage and growth. This quantifies vegetation through the spectral reflectance and
derived from the ratio of the difference to the sum of values in the red and near-infrared
bands, with values typically ranging from−1.0 to 1.0 (Yin et al., 2024). Near infrared (NIR)
(band 4 in TM and band 5 in OLI) and red bands (band 3 in TM and band 4 in OLI)
of Landsat are needed to retrieve the NDVI. Vegetation density and chlorophyll activity
variations were measured using the Landsat images which were taken during the dry period
of the study area using Eq. (9) (Jaafar et al., 2020; Ranagalage, Estoque & Murayama, 2017;
Dissanayake et al., 2019).

NDVI= (NIR−RED)/(NIR+RED) (9)

The retrieved maps were classified upon their values.We used the thresholding method
to classify NDVI into four categories: non vegetation (less than 0) low-density vegetation
(0–0.2), moderate-density vegetation (values between 0.2 and 0.5), and high-density
vegetation (values above 0.5) following the similar work conducted by Mohajane et al.
(2018).

Derivation of VCI
VCI is a widely used drought index which developed by Kogan (1990) for monitoring
vegetation drought stress and estimating drought trends. Kogan (1990) developed this
index to enhance the weather-related components in the NDVI value (Ha, Uereyen &
Kuenzer, 2023). It is constructed by normalizing long-term satellite-based NDVI data. The
VCI offers several advantages, such as eliminating envelope signal variations in NDVI
and accounting for regional climate diversity. It is also easy to construct using only NDVI
data. Consequently, it has various applications, including drought investigation, crop yield
estimation, and vegetation dynamics assessment (Yin et al., 2024; Ha, Uereyen & Kuenzer,
2023). This helps to compare current NDVI values with past year NDVI values of the same
season. Equation (10) was used to calculate VCI for the selected years (Yin et al., 2024; Ha,
Uereyen & Kuenzer, 2023; Kogan, 1990; Dutta et al., 2015).

VCI= (NDVI−NDVImin)/(NDVImax−NDVImin)∗100 (10)

where NDVI indicates the value of a specific pixel in that particular month, NDVImax
and NDVImin show the multi-layer highest and lowest NDVI values in the same period.
The VCI values represented as % and 0 is for extreme drought conditions and 100 is
optimal vegetation health. Following (Ha, Uereyen & Kuenzer, 2023; Kogan, 1990; Dutta et
al., 2015), we classified VCI values into five categories upon drought severity: non drought
(100%–50%), mild drought (50%–30%), moderate drought (30%–20%), severe drought
(20%–10%), and extreme drought (less than 10%).

Derivation of ECI
Due to rising LST and declining NDVI, the environment is in a critical state, as measured by
the ECI. Increases in LST have been shown to directly correlate with ECI, while decreases in

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 9/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.17714


NDVI have been reported to have an inverse correlation with ECI (Senanayake, Welivitiya
& Nadeeka, 2013; Saputra, Jamadi & Sari, 2023). Based on the ratio between LST andNDVI
the ECI is calculated to identify environmentally critical areas (Senanayake, Welivitiya &
Nadeeka, 2013; Ranagalage, Estoque & Murayama, 2017)). The LST and NDVI layers are
used to derive the ECI using Eq. (11). The retrieved NDVI and LST layers were first
normalized using the histogram equalization method, which ranges pixel values between
1–255 (Ranagalage, Estoque & Murayama, 2017). The higher the ECI value, the more
environmentally critical. The spatial variation of ECI over the study area was interpreted
as high, medium, and low.

ECI= LST (Stretched 1−255)/NDVI (Stretched 1−255). (11)

RESULTS
Forest cover change in Musali DS
Figures 3 and 4 illustrate the spatial and temporal variations of the LULC in the study
area. According to the findings presented in Table 1, the forest area has decreased from
348.7 km2 (73.5%) to 340 km2 (71.6%) over 34 years. The urban areas and settlements have
expanded from 13.9 km2 (2.9%) to 28 km2 (5.8%) between 1988 and 2022, primarily driven
by population growth and other socioeconomic factors. Agricultural lands have decreased
by 2.2 km2 over this period. The area of water bodies has diminished by approximately
2.4 km2, while other land uses (sand and salt marshes) have decreased by approximately
1 km2. Between 1988 and 1996, forest cover experienced a significant decrease, with a
negative change of approximately −9.7 km2 (Table 2). Consequently, the net change in
forest area over the 34-year period is −8.09 km2, reflecting a gain of 20.5 km2 and a loss
of 28.6 km2. The primary cause of the decline in forest area is the expansion of agriculture
and settlements, as depicted in Fig. S2.
Within the specified time frame, approximately 4.8 km2 of forest land was converted into
agricultural areas, specifically for paddy fields (Fig. S2). Additionally, a total of 2.75 km2 of
forest land was converted into built-up areas. Between 1988 and 1996, the majority of the
scattered forest patches in the northwestern area (Fig. 5A) were converted into agricultural
areas. Between 1996 and 2009, a significant portion of the forest lands adjacent to roadways,
as seen in Figs. 5C and 5D, were taken over by human settlements and developed areas. Over
time, a significant portion of agricultural land owned by Kondachchi Plantation Limited
within Vilpattu National Park has been converted into forest areas (Fig. 5E). Between 2009
and 2022, forest areas along the northern boundary, southeastern, and eastern portions
experienced conversion into agricultural and residential areas. Over 34 years, there has
been a 3% expansion in built-up and settlement areas, totaling approximately 14.35 km2.
Additionally, there has been a reduction of forest cover by about 8.09 km2.

Spatial-temporal changes of NDVI and LST
The spatial and temporal distribution of NDVI shows significant variability. Despite
deforestation experiencing relatively minor changes over 34 years, the NDVI indicates
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Figure 3 Land use inMusali DSD: 1988; 1996; 2009; 2022.Maps were created by authors using United
States Geological Survey Earth Explorer Landsat images (https://earthexplorer.usgs.gov/) and Sri Lanka
Survey department hard copy maps of DSD and Sri Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-3

a significant decline, suggesting a deterioration in the health of the vegetation in the
region. The NDVI shows a significant reduction in high-density vegetation areas, which
have transitioned into moderate- and low-density vegetation areas over the past 34 years.
Additionally, there has been an increase in non-vegetation areas (Figs. 6A–6D). The
corresponding descriptive statistics, as shown in Table S4, also support this phenomenon.
In 1988, NDVI values ranged from −0.55 to 0.75, indicating extensive high-density
vegetation coverage across the study area (Fig. 6A). However, in 2022, this range decreased
from −0.18 to 0.54. At all four time points, areas with high NDVI values were found in
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Figure 4 Land use statistics in Musali DSD: (A) 1988; (B) 1996; (C) 2009; (D) 2022.
Full-size DOI: 10.7717/peerj.17714/fig-4

Table 1 LULC changes summary inMusali DSD,1988-2022.

LULC 1988 1996 2009 2022

Area (km2) % Area (km2) % Area (km2) % Area (km2) %

FC 348.72 73.5 345.56 72.4 342.05 72.01 340.2 71.6
AG 89.27 18.7 93.54 19.6 84.72 17.8 87.4 18.4
BS 13.95 2.9 18.28 3.8 26.39 5.5 28.3 5.9
WB 9.45 1.98 6.57 1.3 4.53 0.95 7.1 1.4
OT 13.05 2.74 11.05 2.3 16.74 3.5 12.0 2.5
Total 474.44 99.8 474.44 99.8 474.44 99.8 474.44 99.8

Notes.
FC, Forest cover; AG, Agriculture; BS, Built-up/settlements; WB, Water bodies; OT, Others.

high-density and moderate-density vegetation areas, while areas with low NDVI values
were concentrated in non vegetation and settlement areas, as depicted in Fig. 6B. Between
1988 and 1996, the NDVI indicated a significant decrease in high-density vegetation in
the study area while non-vegetation areas expanded (Figs. 6C, 6D). This trend continued
further in 2009 and 2022. The areas of Silavatura, Alakaddu, and Putukulam, which have
recently been developed and populated, have exhibited a decrease in NDVI values by the
year 2022. The northern portion of the region features paddy fields with low NDVI values.

The spatial and temporal changes in LST over 34 years are depicted in Figs. 7A–7D. In
1988, the lowest recorded LST was 22.3 ◦C, while the highest recorded LST was 32.8 ◦C.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 12/26

https://peerj.com
https://doi.org/10.7717/peerj.17714/fig-4
http://dx.doi.org/10.7717/peerj.17714


Table 2 Statistics of forest cover changes inMusali DSD.

1988–1996 1996–2009 2009–2022 1988–2022

Forest gain (km2) 14 11.7 6.3 20.5
Forest loss (km2) 23.7 28.2 7.8 28.6
Net Change (+/-) −9.7 −16.5 −1.5 −8.09

The average LST for that year was 25.2 ◦C. Nevertheless, the temperature has risen by
approximately 6 ◦C by 2022, reaching a minimum of 24.5 ◦C and a maximum of 38.8 ◦C,
with an average of 26 ◦C (Table S5). Areas that are not covered by forests exhibit elevated
LST, particularly in built-up and residential areas. Specifically, in the year 2022, new
residential areas and deforested areas in Marichchakattu, Kondachchi plantation, and
Alakaddu are indicated as prominent hot spots in Fig. 7D. Nevertheless, the areas with high
LST in the northern part experienced a significant decrease in LST by 2022 compared to
the years 1988, 1996, and 2009. However, the LST in the areas that were deforested between
1988 and 1996 in the northern boundary showed a rise after 2009.

Figure 8 illustrates the regression results for the correlation between NDVI and
LST for the years 1988, 1996, 2009, and 2022. The scatter plots demonstrate a strong
inverse relationship between LST and NDVI across three time points. The coefficient
of determination (R2) values for the years 1988, 1996, and 2009 are indeed quite high.
Furthermore, there was a noticeable upward trend in the data, indicating the strong
predictive ability of NDVI in explaining the spatial changes in LST throughout the three
time points, except for 2022 that shows the low R2 value as 0.339.

Variation of VCI 1988–2022
Examination of the VCI values reveals notable spatial and temporal variations in vegetation
health within the DSD across four periods. In 1988, the average VCI value stood at 93.4,
yet it plummeted to a mean of 15.2 by 2022. Over the span of 34 years, the standard
deviation has escalated from 17.7 to 31.8. Figure 9 depicts the spatial distribution trends
of vegetation health at four distinct period. In 1988, vegetation health was good, as most
areas of the DSD experienced non-drought or mild drought conditions (Fig. 9A). However,
by 1996, vegetation stress had increased significantly due to extreme and severe drought
conditions, particularly impacting the northwestern region (Fig. 9B). Although extreme
and severe drought conditions were not as prevalent as in 1996, the areas experiencing
non-drought and mild drought conditions had further decreased by 2009 (Fig. 9C). In
2022, the vegetation health shows an improvement compared to 2009, with non-drought
vegetation coverage expanding once more, except in areas of extreme and severe drought
in the northwestern region (Fig. 9D). This phenomenon can be ascribed to the favorable
climatic conditions prevalent in year 2022. By 2022, there was a notable increase in
vegetation stress observed in the northwestern and southern boundaries compared to the
levels recorded in 2009.
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Figure 5 Forest cover change inMusali DSD: 1988; 1996; 2009; 2022.Maps were created by authors us-
ing United States Geological Survey Earth Explorer Landsat images (https://earthexplorer.usgs.gov/) and Sri
Lanka Survey department hard copy maps of DSD and Sri Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-5

ECI in 1988, 1996, 2009, and 2022
Figures 10A–10D displays the ECI of the DSD for the years 1988, 1996, 2009, and 2022.
The analysis reveals a steady increase in the ECI value by 2022. Initially recorded at 7.74
in 1988, the ECI has progressively climbed to 9.3, 12.8, and 15.5 in 1996, 2009, and 2022,
respectively. According to the distribution maps, the areas with the highest ECI values
were primarily situated within the settlements and built-up areas in the DS across all four
time points. Generally, dense forested regions exhibiting low ECI values suggest minimal
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Figure 6 Spatial changes of NDVI inMusali DSD: (A) 1988; (B) 1996; (C) 2009; (D) 2022.Maps
were created by authors using United States Geological Survey Earth Explorer Landsat images
(https://earthexplorer.usgs.gov/) and Sri Lanka Survey department hard copy maps of DSD and Sri
Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-6
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Figure 7 Spatial changes of LST inMusali DSD: (A) 1988; (B) 1996; (C) 2009; (D) 2022.Maps
were created by authors using United States Geological Survey Earth Explorer Landsat images
(https://earthexplorer.usgs.gov/) and Sri Lanka Survey department hard copy maps of DSD and Sri
Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-7

impact on the ecosystem. However,built-up areas along the northwestern boundary, such
as Arippu, consistently displayed a notable concentration of ECI values across all four
time points, including 1988 (Fig. 9A). Moreover, new concentrations of ECI have emerged
in recently deforested regions such as Marichchakattu, Alakaddu, and the Kondachchi
plantation area, as illustrated in Fig. 9D.
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Figure 8 Regression results between NDVI and LST inMusali DSD: (A) 1988; (B) 1996; (C) 2009; (D)
2022.

Full-size DOI: 10.7717/peerj.17714/fig-8
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Figure 9 Vegetation Condition Index in DSD: (A) 1988; (B) 1996; (C) 2009; (D) 2022.Maps
were created by authors using United States Geological Survey Earth Explorer Landsat images
(https://earthexplorer.usgs.gov/) and Sri Lanka Survey department hard copy maps of DSD and Sri
Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-9

DISCUSSION
The trends and Drivers of forest cover change
To sum up, our research indicates that over the course of 34 years, there has been a
steady rate of deforestation occurring in an area adjacent to the northern boundary of the
Vilpattu National Park. This deforestation appears to stem from the establishment and
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Figure 10 Environmental Criticality Index in DSD: (A) 1988; (B) 1996; (C) 2009; (D) 2022.Maps
were created by authors using United States Geological Survey Earth Explorer Landsat images
(https://earthexplorer.usgs.gov/) and Sri Lanka Survey department hard copy maps of DSD and Sri
Lankan boundary.

Full-size DOI: 10.7717/peerj.17714/fig-10

expansion of human settlements in the vicinity. Ranagalage et al. (2020) also found that the
deforestation rate in dry zone regions from 2009 to 2020 stood at 3.4%. The gradual pace
of deforestation observed in the examined area could have influenced the dynamics of the
civil conflict spanning from 1988 to 2009, potentially leading to fewer new settlements and
limited expansion of agricultural lands. Furthermore, they found that the civil war resulted
in swift forest regeneration across the northern and eastern province. This resurgence can
be attributed to the abandonment of human settlements and other disruptions caused by
Chena cultivation. Due to the civil war, a considerable portion of the population moved
from the study area to different districts within the country. The main factors driving the
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decline in forest cover in the study area after 2009 were resettlement efforts following the
war, infrastructure development, and various rural development projects (Fernando
et al., 2015; Fernando & Edirisuriya, 2016; Wickramagamage, 1998; Forest Department
Government of Sri Lanka, 2009). Rathnayake, Jones & Soto-Berelov (2020) also observed
that LULC changes have affected protected areas in Sri Lanka. They noted that many
protected areas situated near district capitals have experienced significant impacts due to
rising human population pressure and urbanization. Following 2009, a notable portion of
the forested areas in the dry zone underwent conversion into settlements and agricultural
lands. This transformation occurred as a result of the majority of displaced individuals
returning to their native residences, leading to encroachments on the forest buffer zone
within the study area (Fig. S3). Since 2009, certain locations within the study area, such as
Karadikkuli, Kondachchi, and Silawatura, situated in close proximity to the Vilpattu forest
buffer zone, have experienced encroachment by resettled individuals who have established
residences and cultivated agricultural land.

Relationship between changing LST, NDVI, and ECI
While the deforestation rate hasn’t been alarmingly high over the past 34 years, its ongoing
pace has still considerably harmed forest health and environmental conditions. Moreover,
there’s a noticeable upward trend in this degradation. The distribution of LST is closely
associated with the distribution of NDVI, suggesting a strong inverse correlation between
LST and NDVI for the years 1988, 1996, and 2009, with an upward trajectory. Jaafar et
al. (2020) reported analogous findings in their research conducted in Perak and Kedah,
Malaysia. They also uncovered a robust correlation between LULC and LST. In this study,
it was noted that as the NDVI values increase, the LST decreases. Ranagalage, Estoque &
Murayama (2017) andDissanayake et al. (2019) have both demonstrated that the expansion
of built-up areas and barren lands contributes to an elevation in LST. Our research findings
suggest a notable impact on ECI when LST rises. This is evident as the majority of areas
exhibiting high LST also correspond to areas with high ECI in the study area. The regression
analysis unveiled a consistently robust positive correlation between ECI and LST across all
four time points, as evidenced by the R2 values ranging from 0.8607 to 0.9640 (Fig. S4). In
contrast to this pattern, the results revealed a significant inverse relationship between ECI
and NDVI, with reported R2 values ranging from 0.4029 to 0.8421.

Recommendation and future research direction
Deforestation emerges as a critical issue throughout the Mannar district, as evidenced
by previous research conducted by Rajendran (2019), Luxmini et al. (2020), Ranagalage
et al. (2020), and Fernando & Edirisuriya (2016). However, our study was confined to the
Musali DSD due to constraints in resources and time. However, it is imperative to monitor
alterations in forest cover and vegetation quality in other areas in the district, like Madu
DSD, employing high-resolution remote sensing data. Since most dry zone districts like
Vavuniya, Mullaitivu, Jaffna and Kilinochchi were resettled following the civil war after
2009, studies on LULC change and deforestation analysis become increasingly important
for making decisions related to the conservation of dry evergreen forests in those regions.
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This is attributed to a notable surge in resettlement and infrastructure development in
those areas rapidly. Additionally, it is advisable to conduct a comparative study of various
classification methods, such as support vector machine, k-mean algorithm, random
forest, LandTrendr change detection algorithm, and neural networks, as demonstrated
by Dissanayake et al. (2019), Rathnayake, Jones & Soto-Berelov (2020) in future research
endeavors. This could enhance accuracy and aid in selecting the most reliable method for
analysis. Although our study did not exclude water bodies and vegetation areas in ECI
calculation, it is recommended to exclude them to obtain more reliable results, following
similar approaches as those adopted in studies by Senanayake, Welivitiya & Nadeeka
(2013), Ranagalage, Estoque & Murayama (2017), and Saputra, Jamadi & Sari (2023). VCI,
is a widely utilized drought index for assessing vegetation drought stress. However, it
may not be ideal for evaluating long-term trends in drought impacts on vegetation as
emphasized by Yin et al. (2024) since VCI can inadvertently inherit the greening trend
observed in NDVI. Therefore, it is advisable to conduct comparison studies on multi-
source indicators of vegetation greenness and drought. Specifically, focusing on indices
like Leaf Area Index (LAI), Palmer Drought Severity Index (PDSI), and Standardized
Precipitation-Evapotranspiration Index (SPEI) as proposed by Yin et al. (2024). Given
the inherent limitations of Landsat data in NDVI calculation, it is advisable to explore
alternative methods and datasets, such as deep learning-based approaches and Synthetic
Aperture Radar (SAR) data as highlighted byMalik, Shukla & Mishra (2019).

CONCLUSIONS
In our study, we endeavored to assess the dynamics in forest cover, vegetation health,
and environmental conditions in Musali DSD utilizing Landsat time series data. The
results obtained through supervised classification reveal a relatively moderate pace of
deforestation spanning 34 years, with a total forest cover loss of 8.52 km2 primarily
linked to the expansion of settlements and paddy fields. The conversion had a significant
impact on the health of the vegetation in the area, as indicated by a notable decline in
NDVI and a subsequent rise in LST. Vegetation stress has escalated due to the increasing
environmental vulnerability, particularly in deforested areas over the past two decades.
The findings suggest a noteworthy impact on ECI growth across the four time periods
due to the rise in LST. The regression analysis revealed that the degradation of vegetation
conditions contributed to the increase in ECI. Given time and resource limitations, the
study exclusively concentrated on Musali DSD. The reliability of our LULC findings is
influenced by the inherent drawbacks of the MLC algorithm, such as its vulnerability to
the distribution of categories in feature space and the sampling selection. Additionally,
calculating NDVI using Landsat data encounters challenges arising from atmospheric
conditions, sunlight and cloud cover. These factors limit the efficacy of multispectral bands
in accurately capturing land characteristics. Moreover, NDVI is constrained by its capacity
to solely capture linear relationships between NIR and red spectral bands, thereby limiting
its ability to account for higher-order relationships between spectral channels. Because,
VCI might unintentionally incorporate the prolonged greening pattern detected in NDVI,
it could potentially compromise the reliability of our results.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 21/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.17714


ACKNOWLEDGEMENTS
The authors express gratitude to the anonymous reviewers and editors for their valuable
comments provided on improving the quality of the manuscript. The authors are grateful
to the U.S. Geological Survey (USGS) for providing open source Landsat data relevant to
the study.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Researchers Supporting Project number (RSP2024R351),
King Saud University, Riyadh, Saudi Arabia (financial support for APC of this article). The
funders contributed to the conceptualization, data analysis, preparation of the manuscript.
The funders did not have a role in data collection or decision to publish.

Grant Disclosures
The following grant information was disclosed by the authors:
Researchers Supporting Project number (RSP2024R351), King Saud University, Riyadh,
Saudi Arabia.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Neel Chaminda Withanage conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.
• Prabuddh Kumar Mishra conceived and designed the experiments, analyzed the data,
prepared figures and/or tables, and approved the final draft.
• Kamal Abdelrahman performed the experiments, authored or reviewed drafts of the
article, and approved the final draft.
• Rajender Singh performed the experiments, authored or reviewed drafts of the article,
and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The raw data and additional tables and figures are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.17714#supplemental-information.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 22/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.17714#supplemental-information
http://dx.doi.org/10.7717/peerj.17714#supplemental-information
http://dx.doi.org/10.7717/peerj.17714#supplemental-information
http://dx.doi.org/10.7717/peerj.17714


REFERENCES
Alawamy JS, Balasundram SK, Hanif AMH, Sung CTB. 2020. Detecting and analyz-

ing land use and land cover changes in the region of Al-Jabal Al-Akhdar, Libya
using time-series landsat data from 1985 to 2017. Sustainability 12(11):4490
DOI 10.3390/su12114490.

Alqurashi AF, Kumar L. 2014. Land use and land cover change detection in the Saudi
Arabian desert cities of Makkah and Al-Taif using satellite data. Advanced Remote
Sensing 3:106–119 DOI 10.4236/ars.2014.33009.

Anbazhagan S, Paramasivam CR. 2016. Statistical correlation between land surface
temperature (LST) and vegetation index (NDVI) using multi-temporal landsat
TM data. International Journal of Earth Sciences and Engineering 5:333–346
DOI 10.23953/cloud.ijaese.204.

Athauda S, Wang Y, Hao Z, Indika S, Yapabandara I, Weragoda SK, Liu J, Wei Y.
2024. Geochemical assessment of the evolution of groundwater under the im-
pact of seawater intrusion in the Mannar district of Sri Lanka.Water 16:1137
DOI 10.3390/w16081137.

Culf AD, Esteves JL, Filho AOM, Da Rocha HR. 1996. Radiation, temperature and
humidity over forest and pasture in Amazonia. In: Amazonian Deforestation and
Climate. Chichester: John Wiley & Sons, 175–192.

Deng Y,Wang S, Bai X, Tian Y,Wu L, Xiao J, Chen F, Qian Q. 2018. Relationship
among land surface temperature and LUCC, NDVI in typical karst area. Scientific
Reports 8(1):641 DOI 10.1038/s41598-017-19088-x.

Department of Census and Statistics. 2022.District statistical handbook. Colombo:
Department of Census and Statistics, Colombo, Sri Lanka.

Dissanayake D, Morimoto T, Ranagalage M, Murayama Y. 2019. Land-use/land-cover
changes and their impact on surface urban heat islands: case study of Kandy City, Sri
Lanka. Climate 7(8):99 DOI 10.3390/cli7080099.

Dutta D, Kundu A, Patel N, Saha S, Siddiqui A. 2015. Assessment of agricultural drought
in Rajasthan (India) using remote sensing derived vegetation condition index (VCI)
and standardized precipitation index (SPI). Egyptian Journal of Remote Sensing and
Space Sciences 18:53–63.

Estoque RC, Murayama Y. 2017.Monitoring surface urban heat island formation
in a tropical mountain city using Landsat data (1987–2015). ISPRS Journal of
Photogrammetry and Remote Sensing 133:18–29 DOI 10.1016/j.isprsjprs.2017.09.008.

FAO. 2014. Global forest land-use change 1990–2010. An update to FAO forestry paper
(169) the food and agricultural organization of the united nations (FAO) with the
E.U. joint research centre (JRC). Rome: FAO.

FAO. 2022. The State of the World’s Forests 2022. Forest pathways for green recovery
and building inclusive, resilient and sustainable economies. Rome: FAO.

Fernández-Alonso FJ, Hernández Z, Torres-Costa V. 2023. A cost-effective portable
multiband spectrophotometer for precision agriculture. Agriculture 13:1467
DOI 10.3390/agriculture13081467.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 23/26

https://peerj.com
http://dx.doi.org/10.3390/su12114490
http://dx.doi.org/10.4236/ars.2014.33009
http://dx.doi.org/10.23953/cloud.ijaese.204
http://dx.doi.org/10.3390/w16081137
http://dx.doi.org/10.1038/s41598-017-19088-x
http://dx.doi.org/10.3390/cli7080099
http://dx.doi.org/10.1016/j.isprsjprs.2017.09.008
http://dx.doi.org/10.3390/agriculture13081467
http://dx.doi.org/10.7717/peerj.17714


Fernando GMTS, Edirisuriya CH. 2016. Identification of forest cover changes in
Polonnaruwa District of Sri Lanka. In: Proceedings of the 37th Asian conference remote
sensing (ACRS 2016), Colombo, Sri Lanka.17–21 2016; Volume 1. 224–228.

Fernando S, Senaratna A, Pallewatta N, Lokupitiya E, Manawadu L, Imbulana U,
De Silva I, Ranwala S. 2015. Assessment of key policies and measures report on
drivers of deforestation and forest degradation in Sri Lanka. Colombo: UN-REDD
Programme.

Forest Department Government of Sri Lanka. 2009.Working paper no. APFSOS
II/WP/2009/19 PAPUA New Guinea forestry outlook study. Bangkok, Sri Lanka:
Forest Department Government of Sri Lanka.

Ha TV, Uereyen S, Kuenzer C. 2023. Agricultural drought conditions over mainland
Southeast Asia: spatiotemporal characteristics revealed from MODIS-based
vegetation time-series. International Journal of Applied Earth Observation and
Geoinformation 121:103378 DOI 10.1016/j.jag.2023.103378.

JaafarWS, Abdul Maulud KN, Muhmad Kamarulzaman AM, Raihan A, Sah SMd,
Ahmad A, Saad SNM,Mohd Azmi AT, Jusoh Syukri NKA, Razzaq KhanW. 2020.
The Influence of Deforestation on Land Surface Temperature—A Case Study of
Perak and Kedah, Malaysia. Forests 11(6):670 DOI 10.3390/f11060670.

Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, StefanovWL. 2006. Re-
gional relationships between surface temperature, vegetation, and human set-
tlement in a rapidly urbanizing ecosystem. Landscape Ecology 22:353–365
DOI 10.1007/s10980-006-9032-z.

Kayet N, Pathak K. 2015. Remote sensing and GIS based land use/land cover change
detection mapping in Saranda forest, Jharkhand, India. International Research
Journal of Earth Sciences 3(1):2321–2527.

Kitić G, Tagarakis A, Cselyuszka N, Panić M, Birgermajer S, Sakulski D, Ma-
tović J. 2019. A new low-cost portable multispectral optical device for precise
plant status assessment. Computers and Electronics in Agriculture 162:300–308
DOI 10.1016/j.compag.2019.04.021.

Koellner T, Sell J, Gähwiler M, Scholz RW. 2008. Assessment of the management of or-
ganizations supplying ecosystem services from tropical forests. Global Environmental
Change 18:746–757 DOI 10.1016/j.gloenvcha.2008.07.009.

Kogan FN. 1990. Remote sensing of weather impacts on vegetation in non-homogeneous
areas. International Journal of Remote Sensing 11:1405–1419
DOI 10.1080/01431169008955102.

Land Use Policy Planning Department. 2016. Land use plan Mannar district. Colombo:
Ministry of lands, Sri Lanka.

Luxmini KPAMK, Kishoran S, Sivanantharajah S, Gunatilake J. 2020. Identification of
forest cover variation in Mannar district, Sri Lanka using GIS and remote sensing
techniques. International Journal of Applied Science and Technology 5(2):69–77.

Malik MS, Shukla JP, Mishra S. 2019. Relationship of LST, NDBI and NDVI using
landsat-8 data in kandaihimmat watershed, Hoshangabad, India. Indian Journal of
Geo-Marine Sciences 48:25–31.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 24/26

https://peerj.com
http://dx.doi.org/10.1016/j.jag.2023.103378
http://dx.doi.org/10.3390/f11060670
http://dx.doi.org/10.1007/s10980-006-9032-z
http://dx.doi.org/10.1016/j.compag.2019.04.021
http://dx.doi.org/10.1016/j.gloenvcha.2008.07.009
http://dx.doi.org/10.1080/01431169008955102
http://dx.doi.org/10.7717/peerj.17714


MohajaneM, Essahlaoui A, Oudija F, Mohammed EH, Abdellah EH, Abdelhadi EO,
Randazzo G, Teodoro AC. 2018. Land use/land cover (LULC) using landsat data
series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of
Morocco. Environments 5(12):1–16 DOI 10.20448/journal.505.2018.51.1.7.

Olofsson P, Foody GM, HeroldM, Stehman SV,Woodcock CE,Wulder MA. 2014.
Good practices for estimating area and assessing the accuracy of land change. Remote
Sensing of the Environment 148:42–57 DOI 10.1016/j.rse.2014.02.015.

Padilla FM, GallardoM, Peña Fleitas MT, De Souza R, Thompson RB. 2018. Proximal
optical sensors for nitrogen management of vegetable crops: a review. Sensors
18(7):2083 DOI 10.3390/s18072083.

Peng S, Piao S, Zeng Z, Ciais P, Zhou L, Li L, Myneni R, Yin Y, Zeng H. 2014. Af-
forestation in China cools local land surface temperature. Proceedings of the
National Academy of Sciences of the United States of America 111(8):2915–2919
DOI 10.1073/pnas.1315126111.

Rajendran N. 2019. An assessment of drought in Mannar district, Sri Lanka. Interna-
tional Journal of Humanities and Applied Social 4(11):1–13
DOI 10.33642/ijhass.v4n11p1.

Ranagalage M, GunarthnaMHJP, Surasinghe TD, Dissanayake D, SimwandaM,Mu-
rayama Y, Morimoto T, Phiri D, Nyirenda VR, Premakantha KT, Satharasinghe
A. 2020.Multi-decadal forest-cover dynamics in the tropical realm: past trends
and policy insights for forest conservation in dry zone of Sri Lanka forests. Forest
11(8):836 DOI 10.3390/f11080836.

Ranagalage M, Estoque RC, Murayama Y. 2017. An urban heat island study of the
Colombo Metropolitan Area, Sri Lanka, based on Landsat data (1997–2017). ISPRS
International Journal of Geo-Information 6(7):189 DOI 10.3390/ijgi6070189.

Rathnayake CW, Jones S, Soto-BerelovM. 2020.Mapping land cover change over a 25-
year period (1993–2018) in Sri Lanka using landsat time-series. Land 9(1):1–19.

Rawat JS, KumarM. 2015.Monitoring land use/cover change using remote sensing and
GIS techniques: a case study of Hawalbagh block, district Almora, Uttarakhand,
India. The Egyptian Journal of Remote Sensing and Space 18:77–84.

Saputra LIA, Jamadi , Sari DN. 2023. Analysis of environmental criticality index (ECI)
and distribution of slums in yogyakarta and surrounding areas using multitem-
poral landsat imagery. In: Proceedings of the international conference of geography
and disaster management (ICGDM 2022). Dordrecht: Atlantis Press, 407–420
DOI 10.2991/978-2-38476-066-4_26.

Senanayake IP, WelivitiyaWDDP, Nadeeka PM. 2013. Remote sensing based analysis of
urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7
ETM+ data. Urban Climate 5:19–35 DOI 10.1016/j.uclim.2013.07.004.

Sobrino JA, Jiménez-Muñoz JC, Paolini L. 2004. Land surface temperature re-
trieval from landsat TM 5. Remote Sensing of the Environment 90:434–440
DOI 10.1016/j.rse.2004.02.003.

United State Geological survey. 2023. Earth explorer Landsat images. 1988, 1996, 2009
and, 2022. (public domain). Available at https://earthexplorer.usgs.gov/.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 25/26

https://peerj.com
http://dx.doi.org/10.20448/journal.505.2018.51.1.7
http://dx.doi.org/10.1016/j.rse.2014.02.015
http://dx.doi.org/10.3390/s18072083
http://dx.doi.org/10.1073/pnas.1315126111
http://dx.doi.org/10.33642/ijhass.v4n11p1
http://dx.doi.org/10.3390/f11080836
http://dx.doi.org/10.3390/ijgi6070189
http://dx.doi.org/10.2991/978-2-38476-066-4_26
http://dx.doi.org/10.1016/j.uclim.2013.07.004
http://dx.doi.org/10.1016/j.rse.2004.02.003
https://earthexplorer.usgs.gov/
http://dx.doi.org/10.7717/peerj.17714


Weng Q. 2002. Land use change analysis in the Zhujiang Delta of China using satellite
remote sensing, GIS and stochastic modelling. Journal of Environmental Management
64:273–284 DOI 10.1006/jema.2001.0509.

Wickramagamage P. 1998. Large-scale deforestation for plantation agriculture in the
hill country of Sri Lanka and its impacts. Hydrological Processes 12:2015–2028
DOI 10.1002/(SICI)1099-1085(19981030)12:13/14<2015::AID-HYP716>3.0.CO;2-3.

WijesingheWMDC,WithanageWKNC. 2021. Detection of the changes in land use
and land cover using remote sensing and GIS in Thalawa DS Division. Prathimana
Journal 14:72–86.

WithanageWKNC,Mishra PK, Jayasinghe BC. 2024. An assessment of spatio-temporal
land use/land cover dynamics using landsat time series data (2008-2022) in Kuliyapi-
tiya West Divisional secretariat division in Kurunagala district, Sri Lanka. Journal of
Geospatial Surveying 4(1):12–23 DOI 10.4038/jgs.v4i1.52.

WuC,Murray AT. 2003. Estimating impervious surface distribution by spectral mixture
analysis. Remote Sensing of the Environment 84:493–505
DOI 10.1016/S0034-4257(02)00136-0.

Yin G, HeW, Liu X, Xia Y, Zhang H. 2024.Wetting or greening? Probing the global
trends in vegetation condition index (VCI). International Journal of Applied Earth
Observation and Geoinformation 129:1–11.

Yuan X,WangW, Cui J, Meng F, Kurban A, DeMaeyer P. 2017. Vegetation changes and
land surface feedbacks drive shifts in local temperatures over Central Asia. Scientific
Reports 7:3287 DOI 10.1038/s41598-017-03432-2.

Yuh YGW, Tracz H, Matthews D, Turner SE. 2023. Application of machine learning
approaches for land cover monitoring in northern Cameroon. Information Ecology
74:101955 DOI 10.1016/j.ecoinf.2022.101955.

Withanage et al. (2024), PeerJ, DOI 10.7717/peerj.17714 26/26

https://peerj.com
http://dx.doi.org/10.1006/jema.2001.0509
http://dx.doi.org/10.1002/(SICI)1099-1085(19981030)12:13/14<2015::AID-HYP716>3.0.CO;2-3
http://dx.doi.org/10.4038/jgs.v4i1.52
http://dx.doi.org/10.1016/S0034-4257(02)00136-0
http://dx.doi.org/10.1038/s41598-017-03432-2
http://dx.doi.org/10.1016/j.ecoinf.2022.101955
http://dx.doi.org/10.7717/peerj.17714

