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Abstract 

The functional diversity of RNAs is encoded in their innate conformational heterogeneity. The combination of single-molecule spectroscopy and 
computational modeling offers new attractive opportunities to map structural transitions within nucleic acid ensembles. Here, we describe a 
frame w ork to harmoniz e single-molecule Förster resonance energy transfer (FRET) measurements with molecular dynamics simulations and de 
no v o str uct ure prediction. Using either all-atom or implicit fluorophore modeling, we recreate FRET experiments in silico , visualize the underlying 
str uct ural dynamics and quantify the reaction coordinates. Using multiple accessible-contact volumes as a post hoc scoring method for fragment 
assembly in R osetta, w e demonstrate that FRET can be used to filter a de no v o RNA structure prediction ensemble by refuting models that are not 
compatible with in vitro FRET measurement. We benchmark our FRET-assisted modeling approach on double-labeled DNA strands and validate 
it against an intrinsically dynamic manganese(II)-binding riboswitch. We show that a FRET coordinate describing the assembly of a f our-w a y 
junction allows our pipeline to recapitulate the global fold of the riboswitch displa y ed b y the cry stal str uct ure. We conclude that computational 
fluorescence spectroscop y f acilit ates the interpret abilit y of dynamic str uct ural ensembles and impro v es the mechanistic understanding of nucleic 
acid interactions. 
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tructural dynamics are intrinsic to many biomolecules, defin-
ng transient structural states and empowering molecular
unction. Integrative structural modeling of nucleic acids and
roteins has surged in recent years owing to an increasing
vailability of experimental restraints obtained by various
iophysical techniques ( 1 ,2 ). Such restraints include electron
ensity maps ( 3 ,4 ), chemical cross-links detected by quantita-
ive mass spectrometry ( 5 ,6 ) and distances measured by elec-
ron paramagnetic resonance with pulsed electron–electron
ouble resonance spectroscopy ( 7 ,8 ) or via Förster resonance
nergy transfer (FRET) ( 9–12 ). In combination with single-
olecule detection, FRET lends itself to hybrid modeling as
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it can resolve short-lived conformational states ( 13–16 ) hid-
den in ensemble-averaged measurements. FRET is measured
in solution and at low concentration, thereby avoiding macro-
molecular aggregation and crystal packing artifacts. With its
high dynamic range, fluorescence spectroscopy therefore ide-
ally complements the spatial resolution of crystallography,
nuclear magnetic resonance (NMR) and cryo-electron mi-
croscopy (cryo-EM) ( 17–20 ). 

Here, we leverage single-molecule FRET for integrated
structural modeling of nucleic acids. Previous work in FRET-
assisted modeling has focused predominantly on proteins ( 9–
12 ,21 ). Nucleic acids and RNA pose particular challenges
with respect to dye labeling ( 22 ) and intrinsic domain dynam-
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ics ( 23 ). With the ribose pucker and six torsion angles in the
sugar–phosphate backbone, RNA molecules sample a vastly
increased conformational space compared to proteins. Even
small RNAs are rarely defined by a single structure but rather
exist as a dynamic structural ensemble ( 23 ,24 ). The distribu-
tion of these conformers changes in response to protein bind-
ing ( 25–27 ), small-molecule interactions ( 28 ,29 ) or metal ion
coordination ( 15 ,30 ). Depending on the size and complexity
of the RNA, the structures resolved by experimental methods
usually represent the most stable conformations. Molecular
dynamics (MD) simulations address this limitation by com-
putationally sampling trajectories, thereby filling the gaps be-
tween experimentally accessible structures ( 31 ). 

Furthermore, de novo structure prediction has matured to
a degree where energetically favorable structures can be com-
puted directly from the nucleic acid sequence, hence bypass-
ing laborious crystallization. Most approaches use fragments
from libraries of annotated RNA motifs ( 32 ,33 ) to iteratively
assemble complex architectures. Series of blind prediction
challenges on various RNA structures have repeatedly ranked
fragment assembly methods among the top scoring algorithms
for RNA de novo modeling ( 34 ,35 ). These competitions have
also highlighted that spatial restraints by chemical footprint-
ing ( 36 ) or electron densities ( 3 ) help to guide and refine the
predicted structures considerably. Incorporating dynamic in-
formation, such as FRET-based distance distributions, has re-
mained challenging though ( 10 , 11 , 17 , 37 ). 

To quantitatively connect the readouts of single-molecule
FRET measurements to conformational changes, a dye model
is required that maps the coordinates of the fluorescence emit-
ters relative to the biomolecule. Here, we compare two mod-
eling strategies, both designed to link FRET measurements
with conformational ensembles. The first approach uses all-
atom dyes that are covalently linked to the nucleic acid of in-
terest, thus describing the dye dynamics as part of the MD
simulation. While providing atomic level resolution, inclusion
of explicit fluorophores is impractical, if not impossible in
the case of de novo structure prediction. Therefore, we pro-
pose a post hoc calculation of the spatial fluorophore distri-
bution for each timestep in an MD trajectory or for each can-
didate model in a de novo structural ensemble. This strategy
builds upon our recently introduced implementation of the
accessible-contact volume (ACV) in FRETraj ( 38 ). The ACV
models the dye probe implicitly via a geometrical grid search
and delineates the maximally accessible dye space given the
spatial constraints imposed by the host biomolecule ( 9 ,39–
41 ). FRET distributions are then derived from a time series
or a de novo ensemble and validated against single-molecule
FRET measurements. 

Using a helical DNA fragment as a common and well-
characterized FRET standard, we first illustrate how the
molecular context is factored into ACV calculations. Herein,
we characterize the influence of the relative ACV orienta-
tion, linker and dye dimensions as well as the accessibility of
the labeled residues on the calculated FRET efficiency. This
molecular -ruler -type cross-validation is complemented by a
real-world use case where we model a structurally dynamic
riboswitch de novo . We demonstrate the feasibility of includ-
ing an experimentally derived FRET coordinate into model
selection. Inclusion of a single experimental constraint ratio-
nally dissects the conformational space, filters out inconsistent
conformers and results in a sub-ensemble of folded states com-
patible with FRET experiments. 
Materials and methods 

In silico pipelines for FRET-assisted structural modeling de- 
scribed herein are logically separated into three stages that 
involve (i) constructing a DNA / RNA starting structure or 
de novo ensemble, (ii) labeling the candidate model with dye 
probes and (iii) predicting FRET and / or dye anisotropy on a 
series of static structures or a short MD trajectory . Finally , the 
structural ensemble is validated against single-molecule FRET 

experiments. 

Nucleic acid structure preparation 

DNA double strands were prepared with canonical B-form 

parameters derived from fiber diffraction data ( 42 ) included 

in PyMOL. De novo models of the Mn 

2+ riboswitch ap- 
tamer were generated using the Fragment Assembly of RNA 

with Full Atom Refinement (F ARF AR2) protocol ( 32 ), which 

is part of the Rosetta modeling suite. The RNA sequence 
and secondary structure annotation were provided as inputs 
( Supplementary Methods ). The top 500 models (10% of all 
predicted structures) were ranked by Rosetta energy ( 33 ) and 

used for downstream labeling and FRET predictions. 

In silico dye labeling 

All-atom model 
All-atom fluorophores were attached in silico to C5-amino- 
modified deoxythymidines on the DNA donor (T19, T23 

and T31) and acceptor strand (T31) or to the phosphate at 
the 5 

′ ends of a two-stranded Mn 

2+ riboswitch construct us- 
ing the PyMOL plugin FRETlabel ( github.com/rna-fretools/ 
fretlabel ; Supplementary Figure S1 ). The plugin automates 
the task of fusing PDB structures of the dye, linker and nu- 
cleic acid of interest. It uses a library of pre-configured dye–
linker constructs that reproduce the most common labeling 
chemistries for nucleic acids ( Supplementary Table S1 ). Force 
field parameters of the dyes were taken from the AMBER- 
DYES package ( 43 ) and expanded to the nucleic acid linkers 
( Supplementary Methods and Supplementary Figure S2 ). 

ACV model 
Dye accessible contact volumes (ACVs) were computed using 
a grid search, based on Dijkstra’s algorithm ( Supplementary 
Figure S3 ) ( 39 ,44 ), and implemented by the Python pack- 
age FRETraj ( github.com/ rna-fretools/ fretraj ) ( 38 ). The AV 

is the unweighted accessible space that a bioconjugated flu- 
orophore can explore. It is constructed within a rectangular 
grid spanned around the fluorophore attachment site. A grid 

node is assigned to the AV given that (i) the node does not 
clash with the biomolecule surface and (ii) the node is reach- 
able within a distance L linker by a walk on the grid starting at 
the attachment site. 

In the ACV model, the AV is additionally divided into two 

separate subvolumes: the contact volume (CV) is defined as a 
rim around the biomolecule with a diameter d CV 

(set here to 

match the middle dye radius R 2,dye ; Supplementary Table S2 ),
while the free volume (FV) is the complement volume equaling 
AV − CV. The CV accounts for the tendency of the dye to 

interact with the host biomolecule. The fractional occupancy 
of the CV ( χCV 

) was calibrated by the ratio of residual and 

fundamental anisotropy: 

χCV 

= 

r ∞ 

r 
. (1) 
0 
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y counting the number of grid nodes in the CV and the FV
ith weights ω CV 

and ω FV 

, respectively, we get 

χCV 

= 

k ω CV 

k ω CV 

+ 

(
n − k 

)
ω FV 

, (2)

here n is the total number of nodes and k is the number of
odes in the CV. 
After rearrangement and defining w FV 

= 1 , each node in the
V was assigned a weight 

w CV 

= 

( n − k ) χCV 

k ( 1 − χCV 

) 
. (3)

RET prediction 

ransfer efficiencies between donor and acceptor fluorophores
ere calculated in two ways: (i) with all-atom dyes or (ii) from
airs of ACVs. 

ll-MD simulations 
n inter-dye distance and a κ2 value were extracted for each

rame of an MD trajectory (e.g. every picosecond). The time-
ependent κ2 ( t ) was computed from the orientation of the
ransition dipole vector of the donor and acceptor dye. The
nstantaneous (per frame) transfer efficiency E ( t ) was then cal-
ulated as 

E ( t ) = 

1 

1 + 

R DA ( t ) 
6 ( 2 / 3 ) 

R 0 
6 κ2 ( t ) 

. (4)

ext, a time-averaged transfer efficiency Ē and associated
tandard deviation σE were calculated from a Markov pro-
ess that simulates fluorescence emission events. This allowed
s to compare the in silico FRET histograms directly against
xperimental distributions. The photons were sampled from
 Markov chain defining the time-dependent transfer and flu-
rescence emission probabilities based on the dye distance
 DA 

( t ) (Figure 1 , Supplementary Table S3 and Supplementary 
ethods ). Each emitted photon was additionally annotated
ith a polarization (p = parallel, s = perpendicular) depend-

ng on the orientation of the fluorophore dipole. 

CV simulations 
n the second case, FRET is calculated from the distance
etween donor and acceptor ACVs. The position-averaged
ransfer efficiency Ē ACV 

of a single ACV pair is computed as 

Ē ACV 

= 

1 

n 

n ∑ 

i =1 

1 

1+ ‖ R A ,i − R D ,i ‖ 6 /R 

6 
0 

, (5)

here R D, i and R A,i are the coordinate vectors of n = 10 

6 grid
odes sampled randomly from the donor and acceptor vol-
mes while taking into account the respective weights of the
rid points in either the CV or the FV ( 38 , 39 , 44 ). The uncer-
ainty of the position-averaged FRET value scales with the size
f the ACV and is estimated by the standard deviation of the
ootstrap sample as 

σE DA = 

√ 

E 

[
E 

2 
DA 

] − E [ E DA 

] 2 , (6)

here E[ E DA 

] is the expected value of the transfer efficiency
istribution computed by the dot product of the E DA 

vector
nd the grid point weight vector W DA 

such that E[ E DA 

] =
¯
 ACV 

. 
In multi-ACV trajectories, a new ACV was calculated
every 100 ps. The time interval was chosen on the ba-
sis of the rotational correlation time of the dyes bound to
DNA ( τ r, Cy3 / 5 = 1.1–1.5 ns; Supplementary Figure S4 ) and
their fluorescence lifetime ( τCy3 / 5 = 1.2–1.5 ns). Here, we
computed about a dozen ACVs within the fluorescence life-
time, which is sufficient for subsequent sampling of pho-
ton events from the Markov chain ( 45 ,46 ). Similarly to the
all-atom MD simulations, a time-averaged transfer efficiency
Ē ACV 

and standard deviation σE , ACV 

were computed, with
the only difference being the time-invariant orientation fac-
tor ( κ2 = 2 / 3) since the dye orientation is conformationally
averaged in the ACV. 

Multi-ACV benchmark and riboswitch model 
selection 

The all-atom and multi-ACV-based FRET predictions were
compared to fully corrected single-molecule FRET measure-
ments. To this end, a thorough photophysical characteriza-
tion of the donor and acceptor fluorophores was performed
by measuring fluorescence lifetimes, quantum yields, dynamic
anisotropies and burst sizes for the Cy3–Cy5 and Atto550–
Atto647N pairs ( Supplementary Figure S4 ). Gamma factors
were determined from FRET stoichiometry ( E –S ) histograms
( 47 ). Computation of multi-ACVs along the MD trajectory re-
veals the bending flexibility of the nucleic acid on the timescale
of the simulation (1 μs). The computed energy transfer distri-
bution of E ACV 

reflects the distance dynamics without addi-
tional broadening by shot noise. 

Riboswitch models were selected by Rosetta energy and fil-
tered by an experimentally informed FRET threshold. The
best models were validated against the crystal structure by
root mean square deviation (RMSD) and assessed by interac-
tion network fidelity and deformation index ( 48 ) analogously
to quality assessments in RNA puzzles. Additional details are
given in the Supplementary Methods . 

Results 

All-atom dye simulations recapitulate 

single-molecule FRET distributions 

MD simulations are a powerful companion approach to struc-
turally interpret single-molecule FRET experiments. To cal-
ibrate our in silico FRET predictions, we first used a well-
established FRET standard, a canonical DNA double he-
lix. Specifically, we computationally and experimentally la-
beled a 38-nt double-stranded DNA at three distinct donor
sites and a single acceptor position with sCy3 and sCy5
(Figure 1 A and B). Three FRET distributions with low
( ̄E low 

= 0.09 ± 0.06), intermediate ( ̄E mid = 0.36 ± 0.16)
and high transfer efficiencies ( ̄E high = 0.55 ± 0.14) were
measured by confocal, single-molecule microscopy (Table 1 ,
Supplementary Figure S4 and Supplementary Methods ) ( 49 ).
Next, we simulated 1 μs FRET-MD trajectories for each dye
pair to obtain an ensemble of structures and dye positions
(Figure 1 C). This point cloud depicts the motion of both the
DNA and the fluorophore. From the time-dependent inter-
dye distance R DA 

( t ) and orientation factor κ2 ( t ), we derived
instantaneous transfer efficiencies E DA 

( t ). As this quantity is
not accessible experimentally, we recalculated E DA 

( t ) with a
time-averaged κ2 = 2 / 3. This reduces the noise in transfer ef-
ficiency distribution but does not yet account for dye photo-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Figure 1. Explicit all-atom fluorescence labeling enables in silico FRET prediction on a DNA molecular ruler ( 49 ). ( A ) The double-stranded DNA is labeled 
at residue T19, T23 or T31 with Cy3 and on the acceptor strand at T31 with Cy5. The FRET pairs are indicated as Cy-high (12 nt apart), Cy-mid (16 nt 
apart) and Cy -lo w (24 nt apart), respectively. ( B ) In silico labeling of the DNA helix via amino-modified deoxythymidines using the PyMOL plugin 
FRE Tlabel. ( C ) Str uct ural ensemble from a 1 μs MD simulation showing point clouds of T23-Cy3 and T31-Cy5. Represented are the central carbon atoms 
of the polymethine chain of Cy3 and Cy5, respectively. The dye distance R DA , orientation factors κ2 and instantaneous FRET efficiency E DA (with either 
time-dependent κ2 ( t ) and time-a v eraged κ2 = 2 / 3) are monitored o v er the time course of the simulation. ( D ) Experimentally derived parameters 
(fluorescence lifetimes, quantum yields and burst sizes) define the relaxation rates in the Markov chain. ( E ) Donor and acceptor emission events after 
donor e x citation (D|D and A|D) or b y direct e x citation of the acceptor (A|A) are simulated b y Monte Carlo sampling and are assigned a polarization 
depending on the angle θ between the dye transition dipole at the time points of excitation and emission. ( F ) Shot-noise limited FRET distribution 
calculated by averaging over bursts from the 1 μs MD trajectory (all dynamics in the trajectory are fast compared to the burst duration; i.e. there are no 
slo w conf ormational transitions). T he polarization-resolv ed fluorescence lifetime and the deriv ed dynamic anisotrop y suggest some interactions of the 
dyes with the nucleic acid. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

physics. For a direct comparison to the single-molecule exper-
iment, we therefore computed a series of photon bursts in-
corporating burst sizes, fluorescence lifetimes and dye quan-
tum yields (Figure 1 D and E). The resulting FRET histogram
describes a shot-noise limited distribution with fast bend-
ing dynamics compared to the burst duration (Figure 1 F).
The computed anisotropy decays of sCy3 and sCy5 indi-
cate weak sticking of the fluorophores to the DNA strands
consistent with time-correlated single-photon counting (TC-
SPC) measurements (Figure 1 F and Supplementary Figure S4 )
( 41 ,50–52 ). 

ACVs are a lightweight model for anisotropic dye 

distributions 

All-atom MD simulations with fluorophores explicitly in-
cluded in the force field are arguably the most faithful ap-
proach to model FRET experiments in silico (Figure 2 A).
However, the atomistic precision comes with a few signifi-
cant constraints: First, explicit dyes and their linkers need to 

be parameterized a priori for the particular force field (see 
Supplementary Methods ). Dye packages for the most com- 
mon force fields and modeling suites have been published 

( 43 , 53 , 54 ), but the list of available fluorophores and adaptors 
is nonexhaustive, thus often requiring manual modification of 
PDB structures and topologies. Second, each new dye position 

typically needs its own simulation. Only if all relevant label- 
ing sites are known beforehand and the dyes are spaced suf- 
ficiently apart can multiple FRET pairs be run together in a 
single simulation. Depending on the size of the biomolecule 
of interest and the density of labeling sites, unwanted 

dye interference, however, often precludes such multiplexed 

simulations. 
Post hoc dye models, which can be applied upon an exist- 

ing MD simulation, are thus an attractive alternative to miti- 
gate the shortcomings of all-atom simulations. Different mod- 
els have been proposed to describe dye diffusion around an 

attachment site ( 9 , 39–41 , 55 ). As dyes tend to interact with 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Table 1. Comparison of experimental and computational FRET measurements 

Construct Parameter 
Single-molecule 
spectroscopy a 

All-atom MD 

simulation b 
Single-ACV 

simulation c 
Multi-ACV 

simulation d 
Multi-laboratory 
benchmark study e 

Cy-low: R DA (Å) 89 ± 8 87 ± 9 86 ± 10 (2) 83.4 ± 2.5 
T31(Cy3)–T31(Cy5) E DA 0.09 ± 0.06 0.06 ± 0.03 0.07 ± 0.05 0.06 ± 0.03 
Cy-mid: R DA (Å) 66 ± 7 60 ± 9 60 ± 9 (2) 60.3 ± 1.3 
T23(Cy3)–T31(Cy5) E DA 0.36 ± 0.16 0.26 ± 0.07 0.39 ± 0.20 0.35 ± 0.07 
Cy-high: R DA (Å) 58 ± 7 50 ± 10 49 ± 10 (1) 51.7 ± 0.9 
T19(Cy3)–T31(Cy5) E DA 0.55 ± 0.14 0.42 ± 0.08 0.60 ± 0.22 0.64 ± 0.08 
a E DA in the single-molecule experiments is determined as the mean ± σ of a Gaussian mixture model. 
b R DA in the all-atom MD is calculated as the mean ± σ of the inter-dye distance (central carbon atom of the polymethine chain) along the trajectory. E DA is 
computed from sampling photon events along the trajectory. σE DA is the standard deviation of the distribution after shot-noise broadening. 
c R DA in single simulations is calculated by random sampling of distances from the donor and acceptor volumes considering the relative weights of the grid 
points and is given as mean ± σ. E DA is computed from Equation ( 5 ) and errors are propagated. 
d The multi-ACV R DA is a time average of all R DA computed along the trajectory. On average, the multi-ACV distances equal the single ACV corresponding 
to a straight double helix. The standard deviation of the dynamics is given in parentheses. Shot noise broadened E DA is computed by sampling photon events 
along the trajectory in analogy to all-atom MD. 
e R DA calculated from experimental transfer efficiencies measured with Atto550–Atto647N in a multi-laboratory benchmark study ( 49 ). The comparison with 
our measured FRET efficiencies is given in Supplementary Table S4 . 
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he host molecule to different degrees, we have previously ex-
anded the widely used AV model (Figure 2 B) by treating the
mmediate environment around the biomolecule as a separate
olume with higher weight (Figure 2 C) ( 38 ,41 ). This reweight-
ng of the AV by the dynamic anisotropy repositions the dye
entroid closer to the biomolecule, which influences FRET un-
er certain constellations (Figure 2 D and E). In fact, the effect
n FRET is expected to be maximal if the ACV clouds are
ositioned on opposite sides of the helix and minimal when
ligned on the same side (collaterally). To quantify the change
n FRET by the CV, we calculated donor and acceptor ACVs
t different sites on a poly-GC DNA strand (Figure 2 F). If the
CVs are on opposite sides of the helix ( trans ), inclusion of the
V increases the predicted mean FRET value by 0.13 FRET
nits ( ̄E ACV 

= 0.61 ± 0.28 versus Ē AV 

= 0.48 ± 0.26). How-
ver, if the ACVs are collaterally aligned ( cis ), the CV has little
o no effect ( ̄E ACV 

= 0.54 ± 0.3 versus Ē AV 

= 0.52 ± 0.28).
n globular biomolecules such as many proteins, ACVs are
sually facing away from each other; thus, the CV raises the
alculated FRET value. This is consistent with the outcome
f two independent FRET modeling campaigns targeting the
roteins atlastin-1 and lysozyme, where the ACV model has
hown to improve the accuracy of the predicted FRET values
ompared to the unweighted AV ( 9 ,14 ). 

Not only the relative orientation but also the shape of the
ye AV can affect FRET calculations. The form of the ACV
epends on the topology of the biomolecule’s van der Waals
urface. Globularly shaped proteins such as lysozyme, which
re devoid of deep cavities, produce ACVs that appear as half
omes (Figure 2 G). Helical structures, on the other hand, lead
o concave volumes as the ACV wraps around the spiraling
tem. To further evaluate how the accessibility of the labeled
esidue determines the ACV and FRET, we compared a dT-
5 situated in the wide and shallow major groove of DNA

o a U-C5 facing the narrow and deep major groove of RNA.
he ACV around the heavily buried uridine in RNA contracts,

eading to a shorter distance between the dyes and a higher
RET efficiency (Figure 2 H). 
Next, we asked whether intrinsic factors of the model,

amely the length of the linker or the dye radius, have an im-
act on FRET. While the linker length barely affects the trans-
er efficiency (Figure 2 I), increasing the smallest dye radius
revents the dye from intercalating in the groove and results
n a lower FRET efficiency (Figure 2 J). We conclude that both
intrinsic parameters of the model such as the dye radius or the
CV fraction and extrinsic factors (structural context) modu-
late FRET. 

Folded RNA molecules often feature intertwined helices ex-
posing cavities where fluorophores tend to get trapped. This
is exemplified here by a metal-sensing riboswitch, labeled at
the 5 

′ end and at an internal loop. The ACV is compressed
between adjacent stem loops, increasing the fraction of CV
nodes within the entire AV and reflecting the increased like-
lihood for dye–RNA interactions (Figure 2 K). The degree of
AV compaction and the relative contribution of the CV were
shown to correlate with the extent of photoisomerization-
related fluorescence enhancement ( 41 , 56 , 57 ). Surface inter-
actions of dye and RNA are further enhanced by coordi-
nated metal ions ( 41 ) as they bring together distant RNA
domains to form tertiary contacts ( 46 , 52 , 58 ) like in the
present Mn 

2+ riboswitch. Like with all-atom dye simulations,
it is therefore recommended to visually inspect the resulting
ACVs. 

Multi-ACVs predict structural dynamics without 
explicit all-atom labeling 

Having our post hoc dye model characterized in various struc-
tural contexts, we next asked whether the ACV model can
fully substitute an all-atom FRET-MD simulation. To address
this, we recalculated an ACV every 100 ps along an MD trajec-
tory of the 38-nt DNA helix (Figure 3 A and B). At each ACV
timestep, a mean dye distance R DA 

was derived, monitoring
DNA bending ( 59 ) on a sub-microsecond timescale. The bend-
ing angles show a positively skewed normal distribution with
a maximum around 13 

◦. Alignment of the DNA backbone
produces coalescent volumes (multi-ACVs, Figure 3 C) from
which we extracted mean dye positions for each frame (Fig-
ure 3 D). The resulting point cloud represents DNA dynamics,
broadening the FRET distribution in the single-molecule ex-
periment along with photon noise (Figure 3 E). To incorporate
the latter and to correct for quantum yield differences between
the dyes, we again simulated photon emission events akin to
all-atom dye simulations but with a time-invariant κ2 = 2 / 3
(Figure 3 F and G). The assumption of isotropic rotational av-
eraging is justified by the observation that the mean κ2 in the
explicit dye simulations indeed converges to precisely 0.66
( Supplementary Figure S5 ). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Figure 2. The ACV represents an anisotropic dye model incorporating free and surface-interacting fluorophores. ( A ) Comparison of the distance R at tac h 

and R mp from explicit dye simulations on a DNA helix. R at tac h is the distance between the at tac hment sites (here C5 of dT). R mp represents the distance 
between the centers of the dye point clouds sampled in the MD simulation. Because the dyes are coupled to the biomolecule via flexible linkers 
pointing outward, it holds that R at tac h < R mp . ( B ) The dye point cloud is modeled by AVs after parameterizing the dye probe as an ellipsoid ( 9 , 39 , 41 ). ( C ) 
The ACV incorporates a rim around the DNA denoted as the CV, which is occupied when the dye sticks to the molecular surface. ( D ) Grid nodes in the 
CV are re w eighted to account for the 62% occupancy of the CV as determined by time-resolved anisotropy (Equations 1 –3 ). ( E ) The CV fraction χCV 

influences the mean dye position (sphere) in the volume. ( F ) The ACV orientation affects the predicted FRET efficiency Ē ACV only when ACVs are 
oriented in trans , i.e. on opposite sides of a poly-GC DNA helix (case 2). The Förster radius is set to R 0 = 38 Å (C y3–C y7), thus yielding transfer 
efficiencies around 0.5 and maximizing sensitivity. Bootstrapped standard deviations of the single ACVs in all bar charts are omitted for clarity. ( G ) The 
biomolecular topology modulates both the ACV shape and the mean position of the dye. The low curvature of globular proteins like lysozyme (PDB: 
2lzm) results in a dome-shaped ACV. On the contrary, the ACV wraps around double-stranded DNA with the conca v e shape shifting the mean position 
closer to the molecular surface. ( H ) The surface accessibility of the at tac hment site (here dT / U-C5) shapes the ACV and FRET prediction as a result of 
the different major groo v e dimensions of the B-form DNA and A-form RNA. ( I ) The linker length has little effect on the FRET value (the selected linker is 
outlined). ( J ) The smallest dye radius determines whether the fluorophore can intercalate in the groove and in return affect FRET. ( K ) The Mn 2+ 

riboswitch (PDB: 6n2v) features a complex architecture where ACVs in P2 and P4 highlight potential interaction sites for the dyes in the major groove. 

 

 

 

 

 

 

 

 

 

 

 

 

Next, we measured FRET distributions of the three cyanine
dye pairs in equal stoichiometries by single-molecule confo-
cal spectroscopy. The measurements were additionally cross-
validated with a separate pair of rhodamine-derived Atto flu-
orophores, confirming the transfer efficiencies reported in a
multi-laboratory benchmark study ( Supplementary Figure 
S4 B and Supplementary Table S4 ) ( 49 ). A comparison of
the experiments with single- and multi-ACV calculations
shows remarkable agreement of the FRET populations (Figure
3H and I, and Table 1 ). Deviations in the relative abundances
are explained by varying dye labeling efficiency. We note that
the all-atom dye simulation underestimates the transfer effi-
ciency of the Cy-mid and Cy-high species. We attribute this to 

a disproportionate fraction of stacked versus free dye in the 
MD simulation, resulting from imperfections of the force field 

and its water model ( 41 ). 
Altogether, we conclude that the ACV dye model is an 

appropriate alternative to a full-fledged, all-atom treatment 
of the fluorophores. ACV calculations provide an intuitive 
visualization of the dye positions on the biomolecule and help 

interpret abstract FRET coordinates especially when labeling 
sites are surface exposed. Buried attachment sites and nearby 
cavities pose some more challenges as they contract the ACV,
consistent with the concept of photoisomerization-related flu- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Figure 3. Multi-ACVs simulate FRET-based conformational dynamics without the need of explicit dyes. ( A ) Schematic representation of distance metrics 
and their uncertainties in (multi)-ACV calculations. ( B ) Bending dynamics of the DNA FRET ruler are sampled by MD. ( C ) Serial ACVs are computed along 
the trajectory to define an R DA time trace with selected snapshots illustrating the bending motions of the DNA. ( D ) By aligning the DNA, the ACV 
isosurfaces coalesce (CVs were calculated but omitted for clarity in panels C and D). ( E ) Dye point clouds representing the mean position of the 
fluorophore are projected onto the idealized DNA helix. ( E ) Distribution of R DA distances sampled over the converged 1 μs MD trajectory. ( F ) Distances 
are con v erted to FRET efficiencies using Equation ( 5 ) (black line). ( G ) A Mark o v chain photon simulation (gra y bars) accounts f or additional broadening 
due to shot noise and dye quantum yields. ( H, I ) Comparison of the predicted FRET histograms from multi-ACV and single-molecule experiments. Single 
ACVs from ideal helices are indicated as spheres. The mean FRET efficiencies of the three subpopulations are recapitulated well by the simulations. 
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rescence enhancement ( 57 ). We postulate that the implicit
CV model proves particularly useful in the following two

cenarios: First, FRET predictions on a single structure can
e performed very fast without running an MD simulation
rst. Second, multi-ACVs can effectively score hundreds of de
ovo modeled candidate structures using experimentally de-
ived FRET restraints. 

RET selects de no v o predictions of an intrinsically 

ynamic riboswitch 

ecent RNA puzzle and CASP challenges have demonstrated
hat current RNA de novo prediction algorithms can gener-
te models with remarkable similarity to crystal structures
 34 , 35 , 60 ). Their scoring metrics still struggle though in pre-
icting noncanonical base pairs and unambiguously ranking
he top models. Orthogonal assessment methods, particularly
easurements at a single-molecule level, may assist in model

election by invalidating structures that are inconsistent with
xperimental restraints. Here, we apply a single FRET coor-
inate to filter de novo modeled riboswitch aptamers consist-
ng of two sets of coaxially stacked stem loops interconnected
y a four-way junction (Figure 4 A). We aim to reproduce the
olded state of the riboswitch that is characterized by a mean
ransfer efficiency above 0.4 (Figure 4 B) ( 20 ). 

We first predicted 5000 candidate structures from the
ucleotide sequence and secondary structure annotations
 Supplementary Figure S6 A and B) using Rosetta’s F ARF AR2
 32 ). Among the top 10% lowest energy models scored by
 ARF AR2’s energy function ( Supplementary Methods ), we
ound a variety of stem loop architectures that were broadly
ategorizable into three main classes: class A corresponds
o models with slightly twisted but parallel oriented loops
nd class B represents structural intermediates where one of
he helices is rotated by ∼90 

◦, while class C includes fully
flipped models with loops pointing in opposite directions. In-
terestingly, not only the orientation of the loops but also the
coaxial stacking of the P1–P4 helices can be swapped. This
leads to two sets of conformers (type 1 and type 2), each con-
taining the three classes A, B and C and forming a conforma-
tional cycle (Figure 4 C and D). 

Next, we predicted FRET efficiencies for each of the 500 top
candidates using the ACV dye model. Class A models showed
the highest transfer efficiency with values above 0.4, consistent
with the fraction of folded riboswitches in the single-molecule
histograms, whereas class B and C models belong to the en-
semble of unfolded or partially folded RNAs (Figure 4 E). Us-
ing this FRET threshold, we filtered out 70% of the models
leaving a subset of structures that on average have a lower
RMSD to the crystallized conformer (Figure 4 F and G). It is
important to note that a single FRET constraint is not able
to pinpoint a single candidate structure that would represent
the native fold. In other words, our single FRET coordinate
is unable to rank the remaining 30% of the models. How-
ever, candidates with highest similarity to the crystal struc-
ture are featured among them (Figure 4 H). These models re-
capitulate the global topology of the riboswitch with its coax-
ially stacked and twisted helices as demonstrated by fitting
the crystal structure into the envelope of the aligned struc-
tural ensemble (Figure 4 I). The best model approximates the
experimental structure with an RMSD of 8.6 Å after all-atom
superimposition (Figure 4 J). The metal-binding core with the
noncanonical A-minor motif could not be fully reproduced,
which is not unexpected given that divalent metal ions mediat-
ing core contacts are not considered in the F ARF AR2 pipeline
( Supplementary Figure S6 C and D). Still, the overall interac-
tion fidelity is reasonably high (INF all = 0.86, INF WC 

= 0.94,
INF nWC 

= 0.8), suggesting that most Watson-Crick (WC) and
the majority of non-WC contacts that are present in the crys-
tal structure are also formed in the model. Some molecular

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Figure 4. A proof-of-principle FRET-assisted de no v o modeling pipeline selects candidate structures of a dynamic Mn 2+ riboswitch compatible with 
single-molecule FRET experiments. ( A ) Secondary structure of low and high FRET folding states of the riboswitch mediated by Mg 2+ and Mn 2+ binding. 
( B ) FRET histogram illustrating the docking dynamics of the distal helical legs of the riboswitch leading to a high FRET population > 0.4. Data from ( 20 ). 
( C ) To predict the str uct ure of the folded FRET state de novo , 50 0 0 candidate models are generated by Rosetta from the nucleotide sequence 
( Supplementary Figure S6 ). ( D ) Schematic architectural configurations of the stem loops P1–P4 categorized by orientation (classes A, B and C) and 
coaxial stacking (type 1 and type 2; see the text). ( E ) The top 500 models (selected by their Rosetta energy score) encompass candidates of all 
orientation classes and stacking types. A donor and acceptor ACV is computed for each of these candidates. ( F ) Next, models were filtered by applying a 
FRET cutoff at E > 0.4, which reduces the fraction of candidate structures compatible with the folded riboswitch by 70%. ( G ) The ensemble of 
remaining models has a significantly lo w er mean RMSD to the crystal str uct ure, suggesting that a single FRET coordinate can sort out ill-configured 
models while retaining native ones. ( H ) Selection of models with an RMSD < 15 Å to the crystal str uct ure. ( I ) Overlay of the top models represented as 
ribbons. ( J ) Crystal str uct ure aligned into the density map that is computed from the top models. Str uct ural alignment of the best FRET-assisted de no v o 
model to the crystal str uct ure (RMSD = 8.6 Å). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dynamics are expected at the periphery with the stems of P1
and P3 being flexible to reorient, thus broadening the FRET
histogram of the folded state in solution. 

Discussion 

FRET modeling has developed into a versatile tool to re-
solve short-lived structural ensembles ( 11 , 14 , 61–63 ). Here,
we have described two complementary strategies to interface
single-molecule FRET measurements with simulations of nu-
cleic acids: the first uses explicit, all-atom fluorophores, while
the second models dye dynamics implicitly by fluorescence dy-
namic anisotropy-weighted ACVs. 

All-atom MD are considered the de facto gold standard
for simulation of FRET experiments. Tracking the precise lo-
cation of the fluorophore makes both translational and ro-
tational dye components available to compute experimen-
tal properties, including fluorescence anisotropy. Knowledge
about the inhomogeneity of a dye’s orientational distribution
was also factored into the design of the ACV model. Through
a linear combination of reweighted subvolumes delineating
the accessible space of freely rotating and hindered dyes, we
achieve more accurate FRET predictions than with the tra-
ditional AV model, consistent with previous results for pro-
teins ( 9 ). Using helical DNA and RNA fragments as molecu-
lar rulers, we have identified both model intrinsic and contex- 
tual features of biomolecular environment that influence the 
sphericity of ACVs and FRET predictions. Multi-ACVs open 

up new avenues to design and perform in silico FRET screen- 
ings with various applications for de novo modeling, labeling 
site selection or post-processing of MD trajectories. 

Compared to all-atom simulations, ACV screens are 
straightforward to set up, fast to run and simple to visualize 
and interpret. Being equally applicable to both single struc- 
tures and ensembles, amenable to proteins and nucleic acids 
alike, the potential of multi-ACVs lies in the ability to make 
FRET coordinates and trajectories structurally explainable.
For instance, ACV-based FRET predictions can rapidly inform 

about sensitive donor–acceptor sites to be followed up exper- 
imentally. Another key advantage of post hoc dye models is 
their applicability to existing or published datasets such as 
microsecond–millisecond long MD trajectories without pre- 
defined labeling sites. Important extrinsic factors that influ- 
ence ACV-based FRET predictions include the accessibility of 
the labeling site and the presence of structural features such as 
grooves or stretches of exposed single-stranded nucleotides.
Interactions of the fluorophores with these structural ele- 
ments, visualized directly by all-atom MD and measured by 
photoisomerization-related fluorescence enhancement, are ac- 
counted for implicitly by reweighting of the CV. As opposed 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae496#supplementary-data
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Table 2. Comparison of all-atom fluorophores and the ACV model for FRET predictions 

All-atom fluorophores ACVs 

FRET prediction type MD simulation Single PDB structure (crystal or cryo-EM 

structure) or structural ensemble (NMR, MD 

simulation, de novo models) 
Dye position Exact position of central dye atom at time t in 

trajectory 
Average position of dye in sterically accessible 
volume for given structure 

Computed distance Exact distance between dye centers at time t 
in trajectory 

Average distance between (multiple) ACVs for 
given structure or structural ensemble 

Transition dipole Yes No 
κ2 Time-resolved κ2 ( t ) Isotropic ( κ2 = 2 / 3) 
Readouts Instantaneous transfer efficiency E ( t ) and 

time-resolved anisotropy r ( t ) 
Mean transfer efficiency Ē ACV 

Dye labeling during MD setup Trajectory post-processing 
Model Dye / linker force field Geometrical grid search 
Implementation FRETlabel FRETraj 
Photon sampling available 
(Markov process) 

Yes (required) Yes (optional) 

Application scenarios Reproducing single-molecule experiments in 
silico , including FRET, fluorescence lifetimes 
and anisotropy 

Finding optimal FRET label positions, 
filtering de novo candidate models and 
selecting models that are consistent with 
FRET experiments 

Computational expenses a Fluorophore sampling (100–200 ns 
trajectory): hours to days depending on 
infrastructure 

(Multi)-ACV calculation: seconds to minutes 
on personal computer 

a Estimated computational time for sampling the accessible space of the dye around the biomolecule relevant to the choice of the dye model. Time requirement 
for extensive conformational sampling of biomolecule is system dependent (size of biomolecule and the water box) and thus not specified here. 
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o atomistic simulations, the multi-ACV model does not track
he exact fluorophore coordinates at any given time but inte-
rates their dynamics over the simulation time. It is agnostic
f fluorophore orientation and thus cannot be used to calcu-
ate anisotropy decays. Multi-ACV and all-atom MD simula-
ions are thus complementary in many aspects and selecting
ne over the other depends on the specific use case (Table 2 ). 
Finally, we have highlighted present and future challenges

n FRET-assisted modeling. The de novo prediction of a metal-
inding riboswitch nicely illustrates the quest for the prover-
ial hairpin in the haystack. Current state-of-the-art structure
rediction workflows sample native-like folds among many
uboptimal conformers. Validating true hits with high confi-
ence is still a major difficulty though and prompts inclusion
f complementary biophysical methods. Using FRET as a re-
ction coordinate in solution, we here dissected the modeled
onformational ensemble of the riboswitch and were able to
ffectively narrow down the list of structural candidates by
ompatibility with the experimental constraints. However, a
ingle FRET coordinate will not resolve the entire ensemble
or rank the most native-like models unambiguously. Instead,
e demonstrated here the reuse of existing FRET data to aug-
ent de novo RNA modeling. It is encouraging though that

mong the models selected by the FRET filter we do find a
ubset of structures that aligns with subhelical accuracy to the
rystal structure. 

We envision that FRET as a low-dimensional but solution-
ased restraint with scalable time resolution will help to dis-
ntangle the dynamics of large RNAs and their networks, as it
as for proteins ( 9 , 12 , 14 ). To this end, A CV-based screening is
 convenient approach to figuring out which labeling sites to
rioritize. Future studies will address how to include the most
nformative FRET coordinates as active restraints into inte-
rative FRET modeling pipelines of nucleic acids, in order to
ot only select but also direct conformers along their folding

oute. 
Data availability 

The source code of FRETraj (prediction of ACVs, https:
// doi.org/ 10.5281/ zenodo.10898653 ), FRETlabel (labeling
of nucleic acids with all-atom fluorophores, https://doi.
org/ 10.5281/ zenodo.10963145 ) and LifeFit (reconvolution-
based fitting of eTCSPC data, https:// doi.org/ 10.5281/ zenodo.
10966753 ) is available on GitHub ( https:// github.com/ RNA-
FRETools/) and Zenodo under the indicated DOIs. The
PyMOL plugins are available as Docker containers with
bundled open-source PyMOL. The packages are docu-
mented at https:// rna-fretools.github.io/ . The API of FRE-
Traj is described in Jupyter notebooks with stepwise tuto-
rials and examples. Protocols for dye–linker parameteriza-
tion with FRETlabel are available at https:// github.com/ RNA-
FRETools/fretlabel . De novo models of the manganese(II) ri-
boswitch with accompanying Rosetta and F ARF AR2 proto-
cols are available on GitHub and Zenodo ( https:// doi.org/ 10.
5281/zenodo.10963214 and https://doi.org/10.5281/zenodo.
10963197 ). Additional source material is available from the
corresponding author upon request. 

Supplementary data 

Supplementary Data are available at NAR online. 
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