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Abstract 

Accurate RNA str uct ure models are cr ucial for designing small molecule ligands that modulate their functions. This study assesses six stan- 
dalone RNA 3D str uct ure prediction methods—DeepF oldRNA, RhoF old, BRiQ, F ARF AR2, SimRNA and Vf old2, e x cluding w eb-based tools due 
to intellectual property concerns. We focus on reproducing the RNA str uct ure existing in RNA-small molecule comple x es, particularly on the 
ability to model ligand binding sites. Using a comprehensive set of RNA str uct ures from the PDB, which includes diverse str uct ural elements, we 
found that machine learning (ML)-based methods effectively predict global RNA folds but are less accurate with local interactions. Con v ersely, 
non-ML-based methods demonstrate higher precision in modeling intramolecular interactions, particularly with secondary str uct ure restraints. 
Importantly, ligand-binding site accuracy can remain sufficiently high for practical use, e v en if the o v erall model quality is not optimal. With the 
recent release of AlphaFold 3, we included this advanced method in our tests. Benchmark subsets containing new str uct ures, not used in the 
training of the tested ML methods, show that AlphaFold 3 ′ s performance was comparable to other ML-based methods, albeit with some chal- 
lenges in accurately modeling ligand binding sites. This study underscores the importance of enhancing binding site prediction accuracy and the 
challenges in modeling RNA–ligand interactions accurately. 
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n recent years, there has been a significant surge in interest
ithin the scientific community regarding RNA molecules,

specially in the context of developing therapeutics target-
ng RNA. To effectively meet this challenge, accurate high-
esolution three-dimensional structures of RNA are essential.
owever, experimental methods for resolving RNA structures
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precision comparable to that achieved for proteins is currently
viewed with skepticism ( 4 ). Generally speaking, this is due
to an insufficient number of known experimentally solved
structures. As of 1 May 2024, there are only 6526 struc-
tures of RNA molecules available in the RCSB database ( 5 ),
including 4688 RNA-protein complexes and excluding the
molecules with DNA and NA-hybrids. For comparison, there
are 212 000 entries with protein structures. 

Many research groups are therefore focusing on the devel-
opment of new bioinformatics methods for the prediction of
RNA tertiary structures with high accuracy. These methods
can be broadly classified into three categories: physics-based,
knowledge-based, and Machine Learning (ML)-based ( 6–8 ).
Physics-based methods, such as Molecular Dynamics (MD)
( 9–20 ), rely on the principles of physics to predict RNA’s 3D
structure. All-atom physics-based approaches are computa-
tionally expensive as they extensively explore folding path-
ways to find stable conformations. Typically, they are applied
to smaller RNA molecules and utilize additional restraints
( 11 ) or coarse-grained models due to the computational de-
mands ( 21 ). One of the key challenges in these methods is the
inherent limitations of the force fields they use, which is an
area of ongoing development in the field ( 22 ,23 ). Knowledge-
based methods make use of tools derived from known RNA
structures, employing templates, fragments, or scoring func-
tions to model RNA 3D structures ( 24–39 ). ML-based meth-
ods utilize a range of artificial intelligence techniques for the
prediction of 3D structures ( 40–46 ). Both knowledge-based
and ML-based approaches depend on existing experimentally
solved RNA structures to derive principles governing RNA’s
3D structure, with their major limitation being the insufficient
number of such experimentally solved structures available for
reference. 

Results from the RNA-Puzzles ( 47–51 ) and Critical Assess-
ment of protein Structure Prediction (CASP) ( 52 ,53 ) compe-
titions have revealed that user experience is a critical factor
in accurately predicting RNA structures. Unfortunately, the
expertise required for high-level RNA structure prediction is
not widely available, as only a few research laboratories have
access to bioinformaticians with extensive experience in this
area. Considering this, our publication focuses on evaluating
the performance of currently available standalone methods
for RNA structure prediction when executed with default set-
tings. These methods rely solely on sequence data and, where
applicable, secondary RNA structure information as inputs.
This evaluation aims to determine the effectiveness of these
methods in the absence of extensive user experience in RNA
structure prediction. Recent studies have demonstrated that
the geometrical accuracy of automatically predicted RNA 3D
models can be significantly enhanced by applying straight-
forward energy minimization routines ( 54 ,55 ). These findings
suggest that while user expertise plays a critical role in the
initial predictions, the correct topology and subsequent refine-
ments via energy minimization also contribute to the accuracy
of computational RNA structure prediction. Our evaluation
excludes the consideration of web-based RNA structure pre-
diction tools, owing to potential intellectual property issues
associated with their use. 

The benchmark dataset employed in our analysis was com-
piled from the Research Collaboratory for Structural Bioin-
formatics Protein Data Bank (RCSB PDB) database ( 56 ). It in-
cludes a diverse array of RNA structural elements, as detailed
in the Methods section. In response to the growing interest
in targeting RNA with small molecules, our test set specifi- 
cally comprises RNAs whose structures have been resolved 

in complexes with small molecules and are available in RCSB.
This selection is crucial, considering that high-resolution RNA 

structures are vital for virtual screening and subsequent com- 
pound development. This is particularly important as RNA 

molecules are quite adaptable, and their structure can change 
upon contact with small molecules. Since docking with flexi- 
ble RNA backbone remains a significant challenge ( 57 ); there- 
fore, the primary aim of our study is to evaluate the efficacy 
of available algorithms not just in predicting the overall 3D 

structure of RNA, but more importantly, in accurately recon- 
structing RNA–ligand binding sites. 

While benchmarking initiatives such as CASP and RNA- 
Puzzles have significantly advanced RNA structure predic- 
tion by focusing on entire RNA molecules, this study narrows 
the scope to RNA–ligand complexes. These complexes often 

exhibit structural variations from their isolated RNA coun- 
terparts, underscoring the necessity of specialized prediction 

models. By concentrating on the ligand binding sites within 

RNA, which are crucial for RNA functionality and the de- 
velopment of RNA-targeted therapeutics, we offer a nuanced 

perspective that complements existing RNA structure model- 
ing efforts. 

In our study, we tested six different RNA structure pre- 
diction methods available as standalone programs in 2022: 
DeepFoldRNA ( 42 ), RhoFold (formerly, E2Efold-3D) ( 41 ),
BriQ ( 38 ), F ARF AR2 ( 26 ), SimRNA ( 37 ) and Vfold2 ( 39 ) (de-
tailed in the Methods section). DeepFoldRNA and RhoFold,
both machine-learning (ML)-based methods, were operated 

without secondary structure restraints. In contrast, the BRiQ 

program, which necessitates secondary structure restraints as 
mandatory input, was run exclusively with these restraints.
The remaining three programs—F ARF AR2, SimRNA and 

Vfold2—are statistical-based methods and were evaluated un- 
der both scenarios: with and without secondary structure re- 
straints. The accuracy of the predicted RNA 3D structures was 
assessed using various metrics, including root mean square de- 
viation (RMSD), template modeling score (TM), and interac- 
tion network fidelity (INF). 

As an exception, we also examine the performance of the 
recently released AlphaFold3 ( 58 ) in predicting RNA struc- 
tures. Although AlphaFold3 is a server with non-commercial 
status, we chose to evaluate its performance due to its poten- 
tial to be a groundbreaking tool in RNA structure prediction.
Our small test set for all machine learning (ML)-based meth- 
ods consists of structures not included in their respective train- 
ing sets, allowing us to assess the generalization capabilities of 
these ML-based approaches. 

Materials and methods 

Dataset of RNA structures 

We curated a dataset of RNA structures from the RCSB PDB 

available until 31 May 2023, with a focus on structures exclu- 
sively containing RNA, excluding those featuring DNA, pro- 
teins, or nucleic acid hybrids. This dataset encompasses struc- 
tures determined through X-ray crystallography (XRD) and 

nuclear magnetic resonance (NMR). In our selection process,
we emphasized RNA structures solved with small-molecule 
ligands, deliberately excluding both metal ions and a vari- 
ety of small molecules commonly present in crystallization 
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uffers, such as buffering agents and stabilizers, which are
ot considered functional ligands in our study. This criterion
as chosen to highlight RNA–ligand interactions of biological

ignificance. Our selection was guided by the need to bench-
ark RNA 3D structure modeling methods, many of which

re optimized for single-chain RNA structures. Consequently,
e included only those structures that align with the capa-
ilities of these methods. Additionally, we excluded structures
ith extensively modified residues, such as glycol nucleic acids

GNAs) and locked nucleic acids (LNAs), to maintain a fo-
us on more typical RNA sequences. This meticulous selec-
ion process resulted in a dataset comprising 139 RNA struc-
ures ( Supplementary Table S1 ). Of the 139 structures in our
ataset, 107 were resolved using XRD with a resolution of 4
or better. Among these, 93 structures have a resolution finer

han 3 Å, and 24 structures are within 2 Å. The remaining
tructures were determined using NMR. The secondary struc-
ures were extracted from the 3D structures using the x3dna-
ssr program v1.9.10 ( 59 ). All secondary structures under-
ent manual inspection and cleaning to eliminate artefacts

ntroduced by x3dna-dssr. 
The dataset comprises of RNAs with diverse structural

eatures such as simple hairpins (HP), HPs with pseudo-
nots (PK), multi-way junctions (MWJ), MWJs with PKs, G-
uadruplexes (G4) and HPs with G4 ( Supplementary Table 
1 , Figure 1 A). It includes 45 simple HPs characterized by
he presence of bulges or internal loops without additional
tructural elements. The dataset also contains 64 structures
ith MWJs: 26 with three-way junctions (3WJ), 32 with four-
ay junctions (4WJ), and 3 with five-way junctions (5WJ).
mong these, 61 cases feature a single type of junction, while

he remaining three cases exhibit a combination of both 3WJs
nd 4WJs (Figure 1 B). Furthermore, there are 81 cases with
Ks, out of which 58 include MWJs, and 23 consist solely of
Ps. Additionally, the dataset includes seven cases with G4s,

ne of which is a short sequence containing only the G4 ele-
ent, and the remaining six cases have the G4 as a part of HP

tructure. 
Based on the complexity of structural elements present in

he RNA, we classified the dataset into three distinct cate-
ories: ‘simple’, ‘moderate’, and ‘difficult’. The ‘simple’ cat-
gory consists of 45 HPs that feature only bulges or internal
oops without additional structural elements. The ‘moderate’
ategory comprises 29 structures: 6 are MWJs with HPs, and
3 are HPs with PKs. The ‘difficult’ category encompasses
5 structures, which include 58 MWJs with PKs, and seven
NAs with G-quadruplexes. An example from the ‘simple’
ategory is the 16S RNA fragment (PDB ID: 1BYJ), which
onsists of two bulges and a tetraloop (Figure 1 C, left) ( 60 ).
he c-di-GMP-II riboswitch RNA (PDB ID: 3Q3Z) is a rep-
esentative of the ‘moderate’ category, featuring an HP with
oops interconnected with PKs (Figure 1 C middle). In 3D, this
NA forms a PK helix with a kink-turn motif ( 61 ). From the

difficult’ category, the adenosylcobalamin riboswitch (PDB
D: 4GMA), which showcases both MWJs and PKs form-
ng a complex structure, stands as an exemplary case (Figure
 C, right) ( 62 ). 
The distribution of RNA lengths across different structural

lasses shows overlap (Figure 1 D). Importantly, every RNA in
ur dataset exceeding 120 nucleotides, characterized by their
omplex structural elements, is categorized as ‘difficult’ (Fig-
re 1 E). Additionally, this classification encompasses a notable
xception: a short RNA comprising 23 nucleotides, uniquely
distinguished by the presence of a G-quadruplex (G4) as its
sole structural element. 

During the final stages of preparing this publication, Al-
phaFold 3 was released ( 58 ). To benchmark the performance
of all ML-based methods (AlphaFold 3, DeepFoldRNA, and
RhoFold), we developed two new datasets: Blind set 1 (B1)
and Blind set 2 (B2) (see Supplementary Table S2 ). 

AlphaFold 3 was last trained with data available up to Oc-
tober 31, 2021. DeepFoldRNA and RhoFold were last up-
dated in March 2022 and October 2022, respectively. 

Blind set 1 (B1) includes structures from the Protein Data
Bank (PDB) released after November 1, 2022. This ensures
that none of the structures in B1 were available during the
training of AlphaFold 3, DeepFoldRNA, or RhoFold, provid-
ing an independent evaluation of these models. Verification
was done using RNACentral’s sequence search tool to con-
firm that no similar RNAs were released before 31 October
2022. 

Blind set 2 (B2) includes everything in B1 plus additional
structures released after 31 October 2021. These additional
structures were also not used in the training of AlphaFold 3
but have homologous structures in the training sets of Deep-
FoldRNA, or RhoFold. This could slightly reduce the robust-
ness of the comparisons by making the test set less challenging
to DeepFoldRNA and RhoFold compared to B1. The purpose
of B2 is to extend the evaluation of AlphaFold 3 by including
a broader range of data. 

Modeling of RNA 3D structures 

We analyzed the performance of DeepFoldRNA, RhoFold,
BRiQ, F ARF AR2, SimRNA and Vfold2 programs with the se-
quence of RNA as a standard input for all methods. 

DeepFoldRNA utilizes deep self-attention-based neural net-
works to predict spatial restraints, including distance maps
and inter-residue orientations, which are converted into nega-
tive log-likelihood potentials ( 42 ). These potentials guide the
L-BFGS folding simulations that generate full-length RNA
structure models by minimizing with respect to backbone
pseudo-torsion angles. Following initial folding simulations,
DeepFoldRNA employs SimRNA to refine the generated RNA
structure models. Despite DeepFoldRNA’s integration of Sim-
RNA for model refinement, the core predictive mechanisms
of DeepFoldRNA—especially its use of deep learning for re-
straint generation—are distinct from SimRNA’s simulation
methods. 

RhoFold generates MSA, processs it through a dual
transformer-based model setup, comprising RNA Foundation
Model (RNA-FM) and RhoFormer, to generate refined se-
quence embeddings ( 40 ). These embeddings are fed into an 8-
layer structure module that iteratively predicts and refines the
three-dimensional spatial configuration of RNA molecules.
The system cycles predictions to enhance accuracy, ultimately
outputting high-confidence, detailed RNA structures. 

SimRNA is a Monte Carlo simulation tool for RNA struc-
ture prediction, uses a coarse-grained representation of RNA
molecules to dynamically model their 3D structures ( 37 ). It
includes several simulation modes, such as isothermal sim-
ulations, simulated annealing, and Replica Exchange Monte
Carlo (REMC), to explore the RNA conformational space
by overcoming energy barriers and sampling a diverse set of
structural configurations. The SimRNA supports various re-
straints and constraints, such as secondary structure restraints

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 1. Dataset of reference and models of RNA str uct ures. Venn diagrams showing the distribution of str uct ural elements of RNA in the dataset: ( A ) 
hairpins, multiw a y junctions (MWJ), pseudoknots (PK) and G-quadruple x (G4) str uct ures; ( B ) three-w a y junctions (3WJ), f our-w a y junctions (4WJ) and 
fiv e-w a y junctions (5WJ). Categories based on difficulty of modeling are ‘simple’, ‘moderate’, and ‘difficult’, with ( C ) example cases (PDB IDs: 1BYJ, 
3Q3Z and 4GMA) and ( D ) RNA length distribution, and ( E ) RNA distribution in 30-nucleotide length bins. ( F ) Successful cases of modeling the RNA 3D 

str uct ure. Each RNA 3D str uct ure prediction method is represented in a distinct color. The models from simulations without and with using secondary 
str uct ure restraints are shown in light and dark shades of the same color, respectively. 
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nd pairwise atom-atom distance constraints, which tailor the
nergy function ( 63 ). 

F ARF AR2 can construct detailed models of medium-sized
NAs and assembles RNA structures either de novo or from
nown segments ( 26 ). It features a fragment assembly proto-
ol for modelling. This method offers various customization
ptions such as user provided input template files, used of ex-
erimental data such as chemical shift and MOHCA-Seq ( 64 ).
BRiQ is an RNA structure prediction and refinement tool

hich leverages a nucleobase-centric sampling algorithm cou-
led with knowledge-based potential ( 38 ). This method fo-
uses on enhancing the accuracy of RNA structural models
y refining both local and global conformations around pre-
icted or known base pairs. 
Vfold2 pipeline offers an automated approach to predict

NA 3D structures from given sequences, leveraging a two-
tep modeling process ( 39 ). Initially, the pipeline uses the
fold2D model ( 65 ) to predict the RNA’s 2D structure, setting
 structural foundation that informs subsequent 3D model-
ng. For 3D structure prediction, the pipeline utilizes Vfold3D
 32 ,66 ) and VfoldLA ( 33 ) models, which assemble A-form he-
ices with loops and motif templates derived from existing
NA 3D structures, although predictions can be limited by

he current scope of the template library. 
Certain methods (F ARF AR2, SimRNA and Vfold2) al-

owed for the incorporation of a given secondary structure,
nd these were tested both with and without this additional
nput. BRiQ, on the other hand, was run only with secondary
tructure restraints, as they are mandatory. The inclusion of
econdary structure as an auxiliary input was decided upon
ecause its prediction is relatively straightforward – there are
ell-established methods available as standalone and web-

ervers (RNAFold ( 67 ), RNAStructure ( 68 ), IPKnots ( 69 ))
hat forecast secondary structure with commendable accuracy
 ∼70%) ( 70 ,71 ). In the subsequent text, results for SimRNA,
 ARF AR2, and Vfold2, when run without incorporating sec-
ndary structure, will be denoted by their respective method
ames. However, in cases where these methods include sec-
ndary structure as an additional input, ‘_ss’ will be appended
o the method name (for example SimRNA_ss). For modeling
ith secondary structures, ideal secondary structures based on

he reference structure were employed. 
For both DeepFoldRNA and RhoFold programs, we used

nly sequence as input for the modelling. The programs were
et up locally along with the sequences from Rfam ( 72 ), RNA-
entral ( 73 ) and NCBI nucleotide ( 74 ) databases. Both pro-
rams generate multiple sequence alignments (MSA) to per-
orm the prediction of secondary structures and other re-
traints used in the simulations. We also set up locally the ex-
ernal dependencies necessary to run the DeepFoldRNA pro-
ram: PETfold ( 75 ), rMSA ( 76 ), SimRNA ( 37 ), QRNAS ( 77 )
nd Spot-RNA-1D ( 78 ). The DeepFoldRNA program gener-
ted up to six models for each simulation while RhoFold pro-
uced a single model for each RNA. 
The SimRNA method was run with and without secondary

tructure restraints. For each RNA, the program was run with
ight independent REMC simulations starting with different
andom seeds, and with ten replicas per simulation. Each sim-
lation was run for 16 million iterations. The simulations
ere performed following the protocols described in the book

hapter on SimRNA ( 63 ) and the lowest energy structures
rom the top three clusters were selected for further analy-
is. This selection approach follows the study by Manfredonia
et al. ( 79 ), which used SimRNA to investigate RNA binding
sites, identifying these conformations as likely the most stable
and biologically relevant within each cluster. 

F ARF AR2 was executed for one million cycles of Monte
Carlo simulations, both with and without secondary struc-
ture restraints. It generated up to five representative models
for benchmarking studies. 

For the BRiQ method the simulations were only performed
with secondary structure restraints. This method generated
only one model per simulation and was used in further
analysis. 

The Vfold2 pipeline was run with and without secondary
structure restraints. Without secondary structures, Vfold2 in-
ternally utilizes Vfold-2D to generate multiple alternative sec-
ondary structures, each leading to ensembles of 3D models
labelled as npk1, npk2, pk1, pk2, etc., where ‘pk’ and ‘npk’
denote secondary structures generated with and without PK
prediction, respectively. Up to five models from these ensem-
bles were selected for further analysis. With secondary struc-
ture restraints, Vfold2 generated a single ensemble of models,
from which up to the first five models were chosen. 

We have provided the runtime and CPU information for one
example case from each length bin in Supplementary Table S3 .
We performed all the simulations on CPUs. Unfortunately, we
were unable to estimate the runtime for DeepFoldRNA and
Vfold2 simulations from the available log files. 

For both B1 and B2 datasets, we ran the AlphaFold 3 server
( http:// alphafoldserver.com/ ) with default settings. The predic-
tions were run without any secondary structure restraints as
the server does not support them. All other methods were run
for all three datasets as described above in this section. 

All models selected from each method underwent refine-
ment using QRNAS, which was run with default settings for
5000 steps to optimize the structural geometry, including mea-
sures such as the clashscore. This refinement ensures that the
quality of geometry is addressed and optimized as part of our
pipeline. 

Model evaluation metrics 

The structural similarity between the native and the predicted
3D structures was measured using RMSD. Models were super-
imposed on the native structure using PyMOL (Schrödinger,
Inc.) ( 80 ), and root mean square deviation values were cal-
culated for all heavy atoms. In cases where reference struc-
tures solved by XRD had multiple biological assemblies in the
asymmetric unit, superpositions were performed for all the as-
semblies. The reference assembly with the minimum RMSD to
the model was selected for calculating other measures. For co-
ordinates solved by NMR, all conformers were used for one-
to-one comparison with the models. The reference conformer
with the minimum RMSD to the model was then used for cal-
culating other evaluation metrics. When RNA structure pre-
diction programs generated more than one model, only the
model with the lowest RMSD was retained for further calcu-
lation of performance measures, as described in this section. 

The TM-score metric is used to assess the topological simi-
larity of the model to the reference coordinates. The TM score
is more sensitive to the global fold similarity than to the local
structural variations and is length independent. The score has
values in the range (0,1], where 1 indicates a perfect match be-
tween the model and reference structure. TM scores were cal-
culated using the RNA-align program ( 81 ). For smaller RNAs

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
http://alphafoldserver.com/
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the TM scores are unreliable ( 81 ), and based on our analysis,
the threshold of RNA length at which the TM score accurately
describes the predicted structures’ accuracy is approximately
60 nt. Consequently, we excluded TM scores for RNAs below
60 nucleotides ( Supplementary Figure S1 ) from our analysis. 

The Interaction Network Fidelity (INF) is defined as the
Matthews correlation coefficient (MCC) between the interac-
tions of the reference structure and the predicted model, and it
quantifies the overall agreement of a model with respect to the
reference structure ( 82 ). A perfect model would have an INF
value of 1, indicating an ideal match to the reference structure.
Conversely, an INF value of 0 suggests a substantial deviation
from the reference structure or a complete mismatch in the
interactions in the predicted models. The INF_all values are
used to assess the overall agreement of interactions between
the predicted model and reference structure. The specific types
of interactions can be assessed by INF_stack for stacking inter-
actions, INF_wc for Watson-Crick interactions and INF_nwc
for non-Watson-Crick interactions.INF values were calculated
using the rna-tools program ( 83 ). 

Evaluation of ligand binding interface 

In this study, we employed the NACCESS ( 84 ), which is
based on the Lee and Richards algorithm ( 85 ), to calculate
the solvent accessible surface area (S AS A) of RNA, and the
complexes. Alternative methods to calculate S AS A, such as
AREAIMOL ( 86 ), FreeS AS A ( 87 ), Surface Racer ( 88 ), and
PDBASA (part of PDBREMIX https:// github.com/ boscoh/
pdbremix ), could be used and are reviewed in a book chapter
on tools for analyzing protein-RNA interfaces, applicable to
RNA-Ligand complexes ( 89 ). The structures of the unbound
forms of RNA, used in this calculation, were taken from the
complex. Atoms that lose S AS A of at least 0.01 Å2 upon com-
plexation were designated as interface atoms. The residues
containing these interface atoms were designated as interface
residues ( 90 ). Furthermore, the list of interface residues was
expanded to incorporate their pairing partners, based on the
secondary structure derived from the native RNA structure. 

For the models generated by various methods, the interface
RMSD (I-RMSD) values were calculated to assess their ac-
curacy. Interface residues were extracted from both the native
structures and the models and were then superposed using Py-
MOL (Schrödinger, Inc.) ( 80 ). The superposed structures were
then used to calculate the I-RMSD for all heavy atoms. 

Results and discussion 

Overview of performance of RNA 3D modeling 

methods 

Among the six methods tested, Vfold2 was the only one that
failed to generate a model for some RNA molecules. The
Vfold2 and Vfold2_ss generated models for 90 and 123 out of
139 cases, respectively (Figure 1 F). To evaluate available stan-
dalone programs, we utilized RMSD value which is one of
the widely used measures to quantify the differences between
the superposed coordinates of reference and model structures.
Among all the methods tested, the models generated by ML-
based method DeepFoldRNA have the lowest median (2.96
Å) and spread (Interquartile range, IQR 1.60 Å) of RMSD
values (Figure 2 A). Another ML-based method RhoFold has
slightly higher RMSDs (median 3.32 Å) with a larger spread
of values (IQR 3.17 Å). For F ARF AR2_ss, SimRNA_ss and
Vfold2_ss, the RMSD values are better than without intro- 
ducing the secondary structural restraints into the modeling 
pipeline. Among all the non-ML based methods tested in this 
study, the lowest median RMSD value (4.56 Å) is observed for 
models generated by the Vfold2_ss. It is noteworthy that the 
models exhibiting the lowest RMSD values (0.70 Å) among 
all tested methods were generated by Vfold2_ss. 

Among all the methods tested in this study, the DeepFol- 
dRNA method has the highest TM values with median 0.81 

(Figure 2 B). RhoFold has slightly lower TM values than Deep- 
FoldRNA with median 0.64, however, the values are higher 
than all non-ML based methods tested in this study. Among 
the non-ML methods, the highest median values are observed 

for Vfold2 (0.59) and Vfold2_ss (0.43). Incorporating sec- 
ondary structural restraints does not have a big impact on 

the median TM scores of F ARF AR2 (0.30 vs 0.21), SimRNA 

(0.30 vs 0.24). 
Despite achieving the lowest RMSD values and the high- 

est TM values, the DeepFoldRNA method shows relatively 
low values for INF_all (median: 0.40, Figure 2 C). However,
the RhoFold method exhibits second best results of the me- 
dian RMSD and TM values has the second highest INF_all 
median value (0.70) among all tested methods. Among all 
the programs tested, Vfold2_ss has the highest median value 
(0.71) INF_all. The models generated by BRiQ program have 
INF_all (median = 0.60) comparable to other non-ML meth- 
ods run with secondary structures. Introduction of secondary 
structure restraints improves the INF_all for all methods. The 
median values do not change significantly for F ARF AR2 (0.45 

to 0.58) and SimRNA (0.53 to 0.63). However, the third quar- 
tile (Q3) values increase significantly for F ARF AR2 (0.54 to 

0.75). In contrast, Vfold2_ss outperforms Vfold2, with a me- 
dian INF_all value of 0.71 compared to Vfold2’s 0.47. The 
results for INF_stack are very similar to those obtained for 
INF_all ( Supplementary Figure S2 A). 

The INF_wc median values close to zero are observed for 
models generated using the DeepFoldRNA and F ARF AR2 

methods ( Supplementary Figure S2 B). Additionally, the mod- 
els generated by both DeepFoldRNA and F ARF AR2 show the 
lowest values for IQR for INF_wc indicating inferior qual- 
ity of the Watson-Crick interaction predicted by these meth- 
ods. Among the ML-based methods tested in this study, Rho- 
Fold has higher median INF_wc values (0.77) and shows 
significantly better prediction of Watson-Crick interactions 
compared to the DeepFoldRNA. Introducing secondary struc- 
ture restraints in the modeling pipelines improves the median 

INF_wc values for all three methods, F ARF AR2 (0.0 to 0.63),
SimRNA (0.26 to 0.74) and Vfold2 (0.25 to 0.90). The mod- 
els generated by BRiQ program have INF_wc (median = 0.76) 
comparable to other non-ML methods run with secondary 
structures. Among all the methods tested, the best median 

of INF_wc values are observed for the models generated by 
Vfold2 pipeline with secondary structure restraints. 

The distribution of INF_nwc values across the models gen- 
erated by all methods indicates a general shortfall in ac- 
curately predicting non-Watson-Crick interactions, as evi- 
denced by the pervasive presence of median values at or 
near 0 ( Supplementary Figure S2 C). This suggests that there 
is room for significant improvement in this area for all the 
methods evaluated. Incorporating secondary structures into 

the prediction workflows slightly increases the Q3 values of 
INF_nwc across the three methods that were evaluated: FAR- 
FAR2 (0.09 to 0.27), SimRNA (0.17 to 0.36), and Vfold2 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://github.com/boscoh/pdbremix
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 2. Performance of RNA 3D modeling methods. Performance measures for RNA 3D str uct ure prediction methods are displayed across the overall 
dataset: ( A ) RMSD, ( B ) TM and ( C ) INF_all. Logarithmic scale is used for the ordinates for RMSD. TM scores for below 60 nucleotides are not included. 
Each method is represented by a unique color. Models generated without secondary str uct ure restraints are shown in lighter shades, while those with 
restraints are in darker shades of the same color. 
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0.44 to 0.62). Moreover, highest Q3 values are observed for
fold2_ss (0.62) and RhoFold (0.55). Furthermore, the data
oints above the third quartile (Q3) for the RhoFold clus-
er range between 0.55 and 1 (median 0.67), whereas for
fold2_ss, they are distributed between 0.62 and 1 (median
.82). This indicates that among the models with the highest
NF_nwc values, the results from Vfold2 are slightly superior.

The overview of RNA 3D modeling methods illuminates
he varied capabilities and limitations of different computa-
ional approaches in RNA structure prediction. Both ML-
based methods, DeepFoldRNA and RhoFold, consistently
show superior performance in RMSD and TM score metrics
(Figure 2 A,B), demonstrating their strength in structural accu-
racy and global fold similarity. However, DeepFoldRNA lags
in Interaction Network Fidelity, particularly in INF_all and
INF_stack, where RhoFold and Vfold2_ss exhibit stronger
results (Figure 2 C, Supplementary Figure S2 A-C). The anal-
ysis of INF_wc and INF_nwc further underscores the ne-
cessity for improvements, especially in accurately predicting
non-Watson-Crick interactions. We should also point out that

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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ML-based methods may show artificially inflated results due
to the presence of same or homologous structures in the train-
ing sets. Therefore, we constructed blind test set B1 to evalu-
ate the DeepFoldRNA and RhoFold methods and is detailed
in a subsequent section. Overall, this study not only high-
lights the strengths of ML-based methods in certain aspects
of RNA modeling but also identifies critical areas for en-
hancement. Among the non-ML-based methods, the Vfold2
method predicts models with lower RMSD (Figure 2 A), higher
TM scores (Figure 2 B) and better INF values (Figure 2 C,
Supplementary Figure S2 A-C), making the models more re-
liable in terms of global fold and local structures. The con-
trasting performances across various metrics and methods un-
derscore the importance of selecting the appropriate tool for
specific modeling challenges and pave the way for future ad-
vancements in RNA 3D structure prediction. Additionally, it
is important to note that, results of template-based methods
like Vfold2 and F ARF AR2 can be dependent on the avail-
ability of appropriate templates. This underscores the impor-
tance of utilizing well-curated templates to enhance prediction
accuracy. 

Performance across different difficulty classes 

Based on the complexity of structural elements present in the
RNA, we classified the dataset into three distinct categories:
‘simple’, ‘moderate’, and ‘difficult’ (see Materials and Meth-
ods section). Across ‘moderate’ and ‘difficult’ categories, the
models generated by ML-based methods exhibit the lowest
median and IQR RMSD values (Figure 3 A). Among them
DeepFoldRNA has slightly lower median values than Rho-
Fold in ‘moderate’ and ‘difficult’ categories (3.25 Å and 2.66
Å versus 4.00 Å and 3.03 Å, respectively). In addition, in ‘sim-
ple’ category, models generated by Vfold2_ss (median 2.76 Å)
exhibit better results to ML-based methods (medians of 3.11
Å and 3.25 Å for DeepFoldRNA and RhoFold, respectively).
Moreover, among the non-ML-based methods, Vfold2_ss also
has the lowest median values in ‘moderate’ (7.38 Å) and ‘dif-
ficult’ (6.21 Å) categories. It is noteworthy that the models
with the lowest RMSD across all categories were generated
using Vfold2 in ‘simple’ category (1.10 Å) and Vfold2_ss in
both ‘moderate’ and ‘difficult’ categories (0.70 Å and 1.04 Å,
respectively). In all three categories, the TM values are high-
est for the models generated by ML-based methods, how-
ever DeepFoldRNA slightly outperformed RhoFold in ‘sim-
ple’, ‘moderate’ and ‘difficult’ categories (medians median
0.79, 0.73 and 0.81 versus 0.63, 0.62 and 0.64, respectively)
(Figure 3 B). This difference between ML-based and non-ML-
based methods is more profound in the ‘moderate’ and ‘diffi-
cult’ categories, compared to the ‘simple’ category. Unexpect-
edly, for the ‘difficult’ category, both ML-based methods and
Vfold2 (including Vfold2_ss) exhibit significantly better re-
sults compared to the ‘moderate’ category, considering both
median RMSDs (2.66, 3.03, 7.65 and 6.21 Å versus 3.25,
4.00, 9.32 and 7.38 Å, respectively) and TM scores (0.81,
0.64, 0.61 and 0.44 versus 0.73, 0.62, 0.39 and 0.34, respec-
tively). While the improved performance of ML-based meth-
ods could be attributed to overtraining, this explanation ap-
pears less plausible for the results observed with Vfold2 and
Vfold2_ss. 

Similar to the observations for the overall dataset, the
DeepFoldRNA method performs poorly in all categories
for INF_all, INF_stack, INF_wc and INF_nwc (Figure 3 C,
Supplementary Figure S3 A–C), while RhoFold has still quite 
good results among all methods in all categories, considering 
both IQR and median. The models from Vfold2_ss pipeline 
have the highest INF_all median values in ‘simple’ and ‘mod- 
erate’ categories (0.87, 0.78, respectively), while for ‘difficult’ 
categories all methods have relatively low medians of INF_all 
(Figure 3 C). In general, it can be observed that methods incor- 
porating secondary structure as an additional input yield supe- 
rior performance compared to those without secondary struc- 
ture. In the ‘simple’ category for models generated by the FAR- 
FAR2_ss method, we observe a slight decrease in the median 

values from 0.49 to 0.46, while the Q3 values increase from 

0.62 to 0.76. The methods with the highest INF_all scores 
in the ‘simple’ category include Vfold2_ss, BriQ, SimRNA_ss,
SimRNA and RhoFold (medians 0.87, 0.76, 0.74, 0.71 and 

0.70, respectively). Notably, incorporating a secondary struc- 
ture in SimRNA does not significantly impact the results here.

The highest median INF_stack values in the ‘simple’ (0.85) 
and ‘moderate’ (0.78) categories are observed in models gener- 
ated by Vfold2_ss pipeline ( Supplementary Figure S3 A). In the 
‘moderate’ categories, models generated by Vfold2_ss, Rho- 
Fold and exhibit similarly high INF_stack median value (0.75 

and 0.78, respectively). For ‘difficult’ category RhoFold, FAR- 
FAR2_ss, SimRNA_ss, SimRNA and Vfold2_ss slightly out- 
perform other methods with median INF_stack around 0.6.
However, RhoFold has highest Q3 value (0.83), while models 
with the highest INF_stack were generated by Vfold2 (0.95) 
and Vfold2_ss (0.94), followed by RhoFold (0.89). 

Unlike INF_stack, which shows minimal variation across 
methods, INF_wc values significantly differ between meth- 
ods ( Supplementary Figure S3 B). In the ‘simple’ category,
Vfold2_ss, BRiQ, SimRNA_ss, SimRNA, and RhoFold exhibit 
high median values—above 0.85. In contrast, DeepFoldRNA 

and F ARF AR2 display unexpectedly low results, with medians 
around zero. The scenario is similar in ‘moderate’ category, ex- 
cept that F ARF AR2_ss’s median increases to 0.93, while Sim- 
RNA’s median decreases to 0.44. In the ‘simple’ and ‘moder- 
ate’ categories, the highest median values of INF_wc are ob- 
served for Vfold2_ss (1.0) and F ARF AR2_ss (0.93), respec- 
tively. However, in the ‘difficult’ category, models generated 

by all methods have median values close to zero for INF_wc. 
Across all ‘difficulty’ classes, INF_nwc values are consis- 

tently low for each method ( Supplementary Figure S3 C).
These results are unsurprising given that one of the foremost 
challenges in both secondary and tertiary RNA structure pre- 
diction is the accurate prediction and reconstruction of non- 
canonical base pairs ( 91 ,92 ). 

In summary, our comparative analysis across different com- 
plexity categories demonstrates a consistent trend in the su- 
perior performance of ML-based methods, particularly Deep- 
FoldRNA, in terms of RMSD and TM values, across ‘simple’,
‘moderate’, and ‘difficult’ classes of RNA structures. Despite 
this, DeepFoldRNA exhibits limitations in accurately predict- 
ing interactions, as evidenced by its lower INF metrics in 

all categories. RhoFold, while trailing slightly behind Deep- 
FoldRNA in RMSD and TM scores, shows a notably better 
performance in INF metrics, indicating a more balanced ap- 
proach between structural accuracy and interaction fidelity.
The Vfold2 method, particularly when augmented with sec- 
ondary structure restraints, not only stands out among non- 
ML based methods but also demonstrates competitive perfor- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 3. Performance of RNA 3D modeling methods across difficulty classes. Performance measures for RNA 3D str uct ure prediction methods are 
displa y ed across the different difficulty classes: ( A ) RMSD, ( B ) TM and ( C ) INF_all. Logarithmic scale is used for the ordinates for RMSD. TM scores for 
below 60 nucleotides are not included. Each method is represented by a unique color. Models generated without secondary str uct ure restraints are 
shown in lighter shades, while those with restraints are in darker shades of the same color. 
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ance in TM scores and INF metrics, rivaling that of ML-
ased approaches across various levels of structural complex-
ty. Furthermore, SimRNA and SimRNA_ss demonstrate high
recision in predicting interaction fidelity, which diminishes as
he complexity of the RNA structure increases. These findings
ighlight the nuanced trade-offs inherent in different RNA
odeling methods and underscore the importance of select-

ng appropriate tools based on the specific requirements of
he structural complexity being addressed. 
Performance across different lengths of RNA 

To investigate the impact of RNA length on the qual-
ity of model predictions, we divided the test set into in-
tervals, each differing by 30 nucleotides. The distribution
of RNA structures across these intervals is detailed in
Supplementary Table S1 . Notably, the final interval comprises
only one structure (Figure 1 E). 

The length of the RNA has a significant effect on the qual-
ity of the models generated. This phenomenon is both natu-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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ral and predictable, as the increase in RNA length leads to a
higher proportion of complex structures. In the initial length
interval of RNA (1–30 nt), predominantly ‘simple’ structures
are observed. And in this category, all methods have the best
results. In the subsequent interval (30–40 nt), the prevalence
of ‘simple’ and ‘moderate’ structures becomes equal, accom-
panied by a minor presence of ‘difficult’ structures. Here all
methods, except for ML-based methods and Vfold2_ss, signif-
icantly increase RMSD. In the later categories, the majority are
classified as ‘difficult’ structures (Figure 1 E). As expected, the
general trend observed in this study is that the RMSD values
increase as the length of the RNA increases (Figure 4 A). This
increase is more pronounced for non-ML based methods than
for ML-based methods. Furthermore, for lengths below 60 nu-
cleotides, a lot of models generated by Vfold2_ss have reason-
able RMSD values (median 3.3 Å). In the length range 151–
180, there only three cases and both Vfold2 and Vfold2_ss
generated models only for two of them. No method accurately
predicted the structure of the longest RNA molecule, from the
category 181–210 nt. 

The TM score displays values akin to those anticipated,
considering the RMSD: methods characterized by a low
median RMSD, including both ML-based approaches and
Vfold2_ss, exhibit higher median TM score values (Figure
4 A,B). Across all length bins, models from the DeepFol-
dRNA method have the highest TM score ( > 0.7) in all
length categories. These differences observed in TM scores
between models from DeepFoldRNA and other methods are
higher for longer RNAs (Figure 2 C). Both ML-based meth-
ods tested in this study outperform non-ML-based methods
for longer RNAs. Among the non-ML-based methods tested,
models from the Vfold2_ss program has the highest TM
scores. 

For the DeepFoldRNA program, the INF_all values are
poor across all the length bins tested in this study, while Rho-
Fold performs much better (Figure 4 C). Regarding the INF
metrics, it is difficult to observe trend correlating INF_all,
INF_stack and INF_wc values with the length of the RNA
modeled (Figure 4 C, Supplementary Figure S4 A–C). However,
it appears that for all methods, models generated for RNA
within the range of 60–90 nucleotides exhibit the poorest INF
values, whereas those within the 1–30 nucleotides range dis-
play the highest INF values. The trend of low INF_nwc values
persists irrespective of RNA length (Figure 3 C). 

To summarize, our analysis reveals a clear influence of RNA
length on the quality of structural models generated by var-
ious computational methods. A key observation is the in-
creasing RMSD values with RNA length, more so for non-
ML based methods, indicating a decline in model accuracy
for longer RNA sequences. While ML-based methods, par-
ticularly DeepFoldRNA, maintain better performance across
all RNA lengths, their limitations become more apparent in
longer RNAs, as reflected in the higher RMSD values. In
terms of interaction network fidelity metrics, such as INF_all,
INF_stack, INF_wc and INF_nwc, the absence of a consistent
trend across varying RNA lengths suggests that these aspects
of model quality are less dependent on RNA length. Overall,
these findings underscore the need for continued refinement
of RNA modeling methods, particularly for longer RNA se-
quences, to improve both structural accuracy and interaction
fidelity. 
Performance across different structural classes 

We also examined the performance of methods predicting dif- 
ferent types of RNA structures. We divided the dataset into the 
following groups: simple HPs, HP + PK, MWJs, MWJ + PK,
G4 and HP + G4 (see Materials and methods section). 

For all structural categories except simple G4, ML-based 

algorithms achieved quite good results with median RMSDs 
ranging between 2.60 and 4.04 Å (Figure 5 A). Among non- 
ML methods, Vfold2_ss demonstrated the best performance 
across all categories. Notably, in categories such as simple 
HP and HP + G4, Vfold2_ss exhibited the lowest median 

RMSD value (2.76 Å and 1.50 Å, respectively). Short RNA 

with only G4 structure was incorrectly modeled either as a 
HP or a single-stranded structure by all tested methods. How- 
ever, when G4 is part of a HP RNA, Vfold2 and RhoFold 

generally model it correctly. The iMango-III aptamer, an RNA 

structure incorporating a G4 in an HP ( 93 ), is a case in point 
( Supplementary Figure S5 ). If we examine different types of 
MWJs separately, we observe that, for simpler structures, ML- 
based methods, especially DeepFoldRNA, frequently propose 
reasonable models (RMSD < 6 Å) (Figure 6 A). However,
very complex structures consisting of a combination of 3WJ 
and 4WJ are not well-modeled by any of the tested meth- 
ods. Non-ML-based methods struggle to predict the struc- 
tures of MWJs, as evident in Figure 6 A, where their medians 
significantly exceed those obtained with ML-based methods.
For 4WJs, among non-ML methods, the lowest RMSD me- 
dians are observed for Vfold2_ss (4.42), Vfold2 (4.82), FAR- 
FAR2_ss (7.73) followed by SimRNA_ss (8.33). Notably, all 
methods achieved their best results in the 4WJ category. For 
the structures with 4WJ + 3WJ, Vfold2 did not produce any 
models. 

In all the categories, models generated by ML-based meth- 
ods attain reasonable TM values (Figure 5 B). In Simple 
HP, MWJ, and MWJ + PK categories, in addition to ML- 
based methods, TM score medians achieved by Vfold2 and 

Vfold2_ss are reasonable. Specifically, Vfold2_ss shows medi- 
ans of 0.59 for Simple HP, 0.55 for MWJ, and Vfold2 posts 
a median of 0.44 in the MWJ + PK category. DeepFoldRNA 

demonstrates superior performance, producing models with 

higher TM scores than all other methods across all types of 
MWJs modeled in this study followed by RhoFold and Vfold2 

with Vfold2_ss in the mentioned categories (Figure 6 B). None 
of the models generated by non-ML-based methods attain a 
TM-score above 0.75. The TM score values for the G4 and 

HP + G4 categories are not considered as the RNAs are less 
than 60 nucleotides. 

For all categories except MWJ + PK, the highest median 

INF_all scores are seen in models generated by Vfold2_ss (Fig- 
ure 5 C). For MWJ + PK, medians for all methods are very 
similar, lying within the range of 0.3 to 0.5. RhoFold, FAR- 
FAR2_ss, SimRNA_ss, Vfold2, Vfold2_ss and BRiQ consis- 
tently demonstrate significantly higher INF_all medians for 
3WJ (0.83, 0.75, 0.71, 0.67, 0.71, and 0.64, respectively) and 

5WJ (0.77, 0.81, 0.80, 0.87, 0.74 and 0.72, respectively) cate- 
gories when compared to other methods. For the 4WJ + 3WJ 
category, RhoFold the best median INF_all values are ob- 
served for RhoFold (0.75), F ARF AR2_ss (0.75), SimRNA_ss 
(0.70) and BriQ (0.68). For the 4WJ all methods yield very 
similar results, characterized by low medians (0.27 to 0.35) 
(Figure 6 C). 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 4. Performance of 3D modeling methods across RNA lengths. Performance measures for RNA 3D str uct ure prediction methods are displayed 
according to RNA sequence length. Metrics include ( A ) RMSD, ( B ) TM and ( C ) INF_all, organized into sets of box plots representing 30-nucleotide length 
bins. T he TM scores f or RNAs belo w 60 nucleotides are not included. Logarithmic scale is used for the ordinates for RMSD . Eac h method is represented 
by a unique color. Models generated without secondary str uct ure restraints are shown in lighter shades, while those with restraints are in darker shades 
of the same color. 
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For simple HPs, Vfold2_ss has the highest median
NF_stack values (0.85), followed by SimRNA_ss (0.73), BriQ
0.72), SimRNA (0.70), Vfold2 (0.68), RhoFold (0.67) and
 ARF AR2 (0.62) ( Supplementary Figure S6 A). For HPs with
Ks, MWJ and HPs with G4s, Vfold2_ss again has the high-
st INF_stack median (0.78) but is followed by F ARF AR2_ss
0.73), RhoFold (0.72), SimRNA_ss (0.68), Vfold2 (0.63) and
riQ (0.63). For MWJ + PK category the highest median

NF_stack is observed for SimRNA_ss (0.63), followed by
F ARF AR2_ss (0.62) and RhoFold (0.61). No methods exhibit
reasonable INF_stack values for the simple G4 structure (0.12
to 0.24). However, the highest median INF_stack value is ob-
served in HP + G4 category for Vfold2_ss (0.92). Among ML-
based methods, DeepFoldRNA exhibits poorer INF_stack val-
ues compared to RhoFold in all categories. Among the differ-
ent MWJs modeled in this study, 3WJs, 5WJ and 4WJ + 3WJ
have better median INF_stack values (0.54 to 0.83, 0.43 to
0.86, and 0.52 to 0.77, respectively) than 4WJ (0.36 to 0.47)

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 5. Performance of 3D modeling methods across RNA str uct ural classes. Performance measures for RNA 3D str uct ure prediction methods are 
displa y ed according to str uct ural classes where HP, PK, MWJ and G4 stand for hairpins, pseudoknots, multi-way junctions and G-quadruplexes, 
respectively. Metrics include ( A ) RMSD, ( B ) TM and ( C ) INF_all. Logarithmic scale is used for the ordinates for RMSD. TM scores for below 60 
nucleotides are not included and hence the HP + G4 category is not shown in TM plot. The simple G4 category is also excluded from the plot as there is 
only one case. Each method is represented by a unique color. Models generated without secondary str uct ure restraints are shown in lighter shades, 
while those with restraints are in darker shades of the same color. 

 

 

 

 

 

 

 

 

 

for all methods ( Supplementary Figure S7 A). DeepFoldRNA
consistently has the lowest INF_stack medians values across
all types of MWJs modeled. 

Across all structural classes of RNAs, DeepFoldRNA ex-
hibits poor INF_wc values compared to other methods
( Supplementary Figure S6 B). For simple HPs, HPs with
PKs, and MWJs, models generated by Vfold2_ss, BriQ, Sim-
RNA_ss, and RhoFold have high INF_wc values (medians
above 0.85). In the case of HPs with G4 structures, Vfold2_ss,
BRiQ, RhoFold and F ARF AR2_ss, produce models with sim- 
ilarly high INF_wc values (medians above 0.9). However, for 
MWJs with PKs, while these methods show a broader range of 
INF_wc values, the median values are close to zero. Notably,
the INF_wc median values for 3WJs (above 0.82) and 5WJs 
(above 0.88) obtained by BriQ, RhoFold, F ARF AR2_ss, Sim- 
RNA_ss and Vfold2_ss are reasonable compared to all meth- 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 6. Performance of 3D modeling methods for different multiway junctions. Performance measures for RNA 3D str uct ure prediction methods are 
displa y ed f or v arious MWJs, where 3WJ, 4WJ and 5WJ stands f or three-w a y, f our-w a y and fiv e-w a y junctions, respectiv ely. Metrics include ( A ) RMSD, 
( B ) TM and ( C ) INF_all. Logarithmic scale is used for the ordinates for RMSD. TM scores for RNAs below 60 nucleotides are not included. Each method 
is represented by a unique color. Models generated without secondary str uct ure restraints are shown in lighter shades, while those with restraints are in 
darker shades of the same color. 
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ds for 4WJs. These methods also have reasonable median
NF_wc for 4WJ + 3WJs modeled in this study (above 0.8)
xcept for Vfold2_ss which did not generate any models in
his category ( Supplementary Figure S7 B). 

For INF_nwc, the results are consistently poor across all
ethods. However, the models generated by Vfold2_ss and
fold2 in the MWJ category, as well as the Vfold2_ss and
hoFold models in the HP + G4 category, exhibit INF_nwc
edians above 0.5. ( Supplementary Figure S6 C). In the analy-
sis of different MWJs within this study, RhoFold for 3WJ has
a median of 0.58. For 5WJs, RhoFold, BRiQ, F ARF AR2_ss,
SimRNA_ss, and Vfold2 register median INF_nwc values ex-
ceeding 0.5 ( Supplementary Figure S7 C). 

In summary, this comprehensive analysis of RNA struc-
tural classes reveals distinct patterns in the performance of
various modeling methods. DeepFoldRNA consistently shows
strong capabilities in generating models with low RMSD val-
ues across most classes, particularly excelling in simple HPs

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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and various MWJ structures. However, its performance in
terms of INF metrics, notably INF_wc and INF_nwc, is less
robust compared to other methods. Vfold2, especially when
supplemented with secondary structure restraints, emerges
as a robust performer in both RMSD and TM score eval-
uations, particularly for HPs with G4 structures and in the
INF metrics across several classes. RhoFold, while showing
a broader range in some metrics, consistently ranks high in
INF_stack values. Utilizing their default configurations, both
SimRNA and F ARF AR2 methodologies demonstrate higher
RMSD metrics and reduced TM scores. Nonetheless, they ex-
hibit a notable capacity for modeling local interactions with
quite high precision, as evidenced by INF values. In addi-
tion, these methods provide a comprehensive array of options
for the advanced user. Significantly, the integration of sec-
ondary structure data consistently enhances the quality of out-
comes produced by SimRNA and F ARF AR2. This enhance-
ment suggests that the incorporation of experimental data into
RNA structure modeling significantly augments the robust-
ness of the resulting models. This enhancement is reflected
in the CASP ( 52 ,94 ) and RNA-Puzzles ( 49 ,50 ) results, where
the outputs from experienced groups significantly outperform
those from servers ( http:// www.rnapuzzles.org/ results/ ). These
findings highlight the nuanced strengths and limitations of
each method, underscoring the importance of method selec-
tion based on the specific structural characteristics of the RNA
being modeled. These insights into the diverse performance
across methods not only highlight their individual strengths
and weaknesses but also underscore the critical aspects to con-
sider when selecting an appropriate modeling approach for
specific RNA structures. 

Ligand binding interfaces 

The quality of the binding site is crucial for the efficacy of
virtual screening processes. Therefore, we evaluate the preci-
sion of predicting the binding pocket using various methods.
The ligand binding interfaces were calculated as described in
the Materials and Methods section. Analysis of the RNA–
ligand interface size, as illustrated in Figure 7 A, uncovers a
bimodal distribution with two significant peaks represent-
ing interface sizes of nine and twenty-one nucleotides, re-
spectively. The primary peak at nine nucleotides signifies the
most prevalent interface size, while the secondary peak at 21
nucleotides highlights a distinct subset of RNA–ligand com-
plexes, suggesting a broad structural diversity within RNA–
ligand interactions. This diversity, underscored by the distri-
bution’s right-skewness (0.6597) and slight negative kurtosis
(–0.3724), hints at varying levels of specificity and affinity
across different binding interfaces. 

Further delving into the complexities of RNA–ligand inter-
action structures, Supplementary Figure S8 offers a detailed
visualization of six diverse RNA–ligand complexes. These ex-
amples span a range of interface sizes from minimal contacts
to extensive binding surfaces, providing a visual testament to
the variability inherent in RNA–ligand complexes. Such in-
sights are indispensable for understanding the nuanced mech-
anisms of RNA functionality and for advancing the design of
RNA-targeted therapeutic interventions. 

The assessment of ligand binding interface modeling
is conducted through interface RMSD (I-RMSD) values.
As the threshold for interface RMSD (I-RMSD) increases
from ≤1 to ≤ 4 Å across different RNA 3D structure pre-
diction methods, there is a general trend of increasing suc- 
cess rates, indicating a higher percentage of models achieving 
the specified accuracy ( Supplementary Figure S9 ). The 2.5 Å
threshold for interface RMSD (I-RMSD) is chosen to strike 
a balance between strict accuracy demands and the realistic 
achievability of model predictions. Across the entire dataset,
a moderate to strong correlation is observed between I-RMSD 

and overall RMSD, as well as between I-RMSD and TM 

scores for most methods, corroborated by significant P -values 
that confirm statistical significance ( Supplementary Table S4 ).
However, this relationship changes when the analysis is re- 
stricted to models with an I-RMSD of 2.5 Å or less. In this sub- 
set, the correlations weaken substantially or disappear, sug- 
gesting that high-fidelity interface modeling may not always 
align with the overall model accuracy or TM scores (Figure 
7 C–K). This divergence suggests that the precision of binding 
site modeling might be influenced by factors not reflected in 

the metrics that assess the accuracy of the entire structure. 
The number of models reaching the I-RMSD threshold 

( ≤2.5 Å) varies considerably among the methods (Figure 7 B).
DeepFoldRNA, RhoFold, BRiQ, F ARF AR2, and SimRNA 

consistently generated models for all 139 cases. In contrast,
Vfold2 produces models for only 90 cases while Vfold2_ss for 
123 cases (Figure 1 F). Among all evaluated methods, Deep- 
FoldRNA yields the highest percentage of models with the 
most accurate interface (47.50%), with Vfold2 and Vfold2_ss 
close behind at 38.9% and 35.8%, respectively. A consid- 
erable number of accurate interfaces were also generated 

by RhoFold (23.7%), and F ARF AR2_ss (17.3%). The in- 
clusion of secondary structure information does not signif- 
icantly enhance the results obtained by SimRNA. However,
both SimRNA and SimRNA_ss successfully reproduced the 
interaction sites for a greater number of RNA-small molecule 
complexes compared to F ARF AR2 (8.63% and 9.35% ver- 
sus 4.32%, respectively). The improvement associated with 

the use of secondary structure is primarily related to global 
folding patterns and Watson-Crick interaction (Figures 2 –6 ,
Supplementary Figures S2 –S4 and S6 –S7 ) rather than to the 
precision of the binding pocket accuracy, which often includes 
unpaired nucleotides. (Figure 7 B). 

In this study, we delve into the evaluation of modeling meth- 
ods, focusing on their ability to predict interaction sites for 
small molecules accurately. As can be observed in Figure 7 ,
panels C–K, each method yields complexes with poorly pre- 
dicted global RNA folds, yet with precisely predicted interac- 
tion sites for small molecules, as indicated by high RMSD and 

low I-RMSD values. This increases the number of RNA mod- 
els that can be used as starting points for virtual screening.
The 7SK small nuclear RNA (PDB ID: 2KX8), is an exam- 
ple of ‘simple’ category with a simple HP structure, is 42 nu- 
cleotides long. The F ARF AR2 model has an RMSD of 8.12 Å
and an I-RMSD of 1.78 Å, indicating a significant level of ac- 
curacy in the binding region (Figure 7 L). In the case of the ly- 
sine riboswitch (PDB ID: 3D0U), which spans 161 nucleotides 
and falls into the ‘difficult’ class featuring 5WJ structure with 

PKs, the modeling results present an intriguing scenario (Fig- 
ure 7 M). The model generated by Vfold2 shows an RMSD 

of 11.0 Å and a TM score of 0.64. Despite this, the model 
achieves an I-RMSD of 0.69 Å. The yybP-ykoY riboswitch 

(PDB ID: 4Y1M), with a length of 107 nucleotides, falls into 

the ‘moderate’ difficulty class, with a 4WJ. The BRiQ model 
(Figure 7 N) exhibits precise modeling of the binding site, as 
evidenced by an I-RMSD of 0.36 Å, despite facing challenges 

http://www.rnapuzzles.org/results/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 7. Ligand binding interfaces. ( A ) Distribution of ligand binding pocket size. ( B ) Bar plots showing the percentage of successful modeling cases 
achieving an interface RMSD (I-RMSD) of 2.5 Å or below. The percentage of successful modeling cases is also provided as points ( •) on the plots for 
comparison. ( C–K ) Plot of I-RMSD vs RMSD for methods tested in this study. Each method is represented by a unique color in panels C–K. Models 
generated without secondary str uct ure restraints are shown in lighter shades, while those with restraints are depicted in darker shades of the same 
color. Example cases of RNA models include: ( L ) F ARF AR2 model of 7SK small nuclear RNA (PDB ID: 2KX8), ( M ) Vfold2 model of the lysine riboswitch 
(PDB ID: 3D0U), ( N ) BRiQ model of yybP-ykoY riboswitch (PDB ID: 4Y1M), and ( O ) SimRNA model of class III preQ1 riboswitch (PDB ID:4RZD). For 
these models, each panel displa y s tw o images: the upper image sho wing the superpositions of models (red) to the nativ e str uct ure (cy an), and the lo w er 
image highlighting the superpositions of corresponding ligand binding regions (in marine and magenta, respectively). 
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in overall structure representation, with an RMSD of 18.91 Å
and a TM score of 0.32. For class III preQ1 riboswitch (PDB
ID: 4RZD), with a length of 102 nucleotides and categorized
in the ‘difficult’ class, the modeling results offer an interest-
ing perspective. This RNA, characterized by a 3WJ with PKs,
SimRNA model with an RMSD of 12.38 Å and a TM score of
0.29 (Figure 7 O). However, the I-RMSD is recorded at 1.93
Å, indicating less deviations at the local binding site structure
compared to the global structure. 

In the ‘simple’ category and for RNA sequences up to
30 nucleotides, most methods achieved models with an I-
RMSD ≤ 2.5 for over 25% of the RNA samples. Beyond this
category, the 25% threshold was typically surpassed by Deep-
FoldRNA or one of the Vfold2 variants. Specifically, in the
MWJ category, SimRNA_ss and RhoFold successfully mod-
eled the interaction site for over 25% of the structures. Fur-
thermore, RhoFold exceeded the 25% threshold in subsequent
categories: ‘difficult’, 91–120 nt, 121–150 nt, MWJ + PK,
3WJ and 4WJ (Figure 8 A–D). This suggests that, as expected,
most methods are adept at accurately reconstructing the inter-
action site with a small molecule for small RNAs with simpler
structures. However, it is also evident that DeepFoldRNA and
Vfold2 are capable of effectively handling more complex RNA
structures. This variation underscores the need for nuanced
and tailored approaches in RNA structure prediction, cater-
ing to the specific challenges posed by different RNA sizes and
structural complexities. Perhaps incorporating evolutionarily
stabilized regions of RNA could also improve the accuracy of
predicted structures, especially in regions critical to their func-
tion and those that serve as binding sites for small molecules.

In summary, our analysis of ligand binding interfaces un-
derscores the complexity and diversity of RNA–ligand inter-
actions, as evidenced by the bimodal nucleotide frequency
distribution at these interfaces. A disconnect exists between
the overall accuracy of structure prediction and the preci-
sion of binding interface modeling, highlighted by the variable
correlation between interface RMSD (I-RMSD) and global
structural accuracy metrics. Moreover, the varied perfor-
mance across different RNA structure prediction methods—
particularly regarding high-accuracy interface modeling—
underscores the need for tailored approaches and the poten-
tial advantages of incorporating secondary structure restraints
in specific instances. It should be noted that some methods,
such as DeepFoldRNA and Vfold2 models, often yield mod-
els with precise interface surfaces when executed with default
settings. However, it is frequently necessary to supply not only
the secondary structure but probably also to employ more so-
phisticated techniques. For example, as it was found in last
CASP, RNA-Puzzles and other experiments, partial modeling
based on templates, addition of constraints from experimental
methods, like S AXS / S ANS / NMR, CryoEM, combined with
the experienced use of the program, can lead to significantly
improved outcomes ( 50 , 52 , 94–99 ). This analysis illuminates
the intricate nature of RNA–ligand interactions and the chal-
lenges involved in accurately modeling these interfaces for
bioinformatics and drug design applications. 

Performance of ML-based methods on blind 

datasets 

To obtain a more reliable comparison of ML-based methods,
we included all tested methods along with the AlphaFold3
server on smaller test sets of RNA structures which are not 
present in their training data. Our evaluation utilized two 

datasets, B1 and B2 (see Materials and methods). 
In the B1 dataset, which includes seven structures, none 

of the methods displayed outstanding median RMSD val- 
ues (Figure 9 A), indicating a moderate level of performance.
AlphaFold 3 achieved the lowest median RMSD at 8.79 Å,
with other methods showing median RMSDs ranging from 

9.2 to 10.5 Å, except for F ARF AR2 and BRiQ, which recorded 

higher values at 11.95 and 14.7 Å, respectively. Some meth- 
ods, including DeepFoldRNA, RhoFold, and AlphaFold 3,
showed better performance on simpler RNA structures with 

RMSDs below 4 Å. However, AlphaFold 3 

′ s performance 
dipped in the B2 dataset, registering a median RMSD of 11.22 

Å ( Supplementary Figure S12 A). This increase suggests diffi- 
culties in handling more complex RNA structures absent from 

its training data. This dataset includes two additional chal- 
lenging cases (Figures 9 D, Supplementary Figure S12 D), high- 
lighting a disparity in dataset familiarity among the methods,
which may have affected AlphaFold 3 more significantly. 

Regarding INF_all, the B1 dataset showed the highest me- 
dians for Vfold2_ss, SimRNA, AlphaFold 3, SimRNA_ss,
BRiQ, RhoFold and F ARF AR2_ss with scores from 0.65 to 

0.51 (Figure 9 B). The B2 dataset presented similar trends 
( Supplementary Figure S12 B), with AlphaFold 3 maintaining 
consistency across both datasets, suggesting its reliability in 

capturing interaction patterns despite varying structural accu- 
racies. However, it should be noted that these values remain 

insufficient and do not significantly surpass the INF values ob- 
tained by other methods. 

The median INF_stack values ranged from 0.5 to 0.67 for 
all tested methods across both datasets (Figures S10A and 

S13A), showcasing some consistency in the modeling capabil- 
ities of the methods. The highest interaction network fidelity 
involving Watson-Crick interactions (INF_wc) was observed 

in Vfold2_ss, followed by AlphaFold 3, BriQ, SimRNA_ss and 

SimRNA ( Supplementary Figures S10 B, S13 B), reflecting a 
general competence in predicting stacking interactions. The 
median INF_nwc values are below 0.3 for all methods tested 

for both datasets (Figures S10C and S13C). 
In I-RMSD, Vfold2_ss (8.34 Å), Vfold2 (8.63 Å) and FAR- 

FAR2 (8.51 Å) (Figure 9 C) displayed the lowest median val- 
ues in the B1 dataset, indicating their precision in model- 
ing. The lowest I-RMSD values were observed for DeepFol- 
dRNA (1.32 Å) and Vfold2_ss (1.36 Å) for PreQ1 type 1 

(PDB ID: 8FB3) ( 100 ) and PreQ1 type III (PDB ID: 8FZA) 
riboswitches, respectively ( 101 ). AlphaFold 3 and RhoFold 

showed varying degrees of accuracy (median 8.83 Å versus 
8.4 Å), with AlphaFold 3 not performing as well in some cases 
compared to RhoFold (lowest 4.27 Å versus 2.8 Å). For the 
B2 dataset, some methods like RhoFold (6.31 Å) and Deep- 
FoldRNA (7.26 Å) performed better than in B1. AlphaFold3 

has a median I-RMSD of 8.65 Å and a minimum of 3.16 Å,
which is lower than the one observed in the B1 dataset. This 
lowest I-RMSD value is observed for the methyl transferase 
ribozyme with a 3WJ (PDB ID: 7V9E) ( 102 ), even though the 
overall structure is not modeled well (RMSD = 12.42 Å). 

For modeling RNA structures that effectively interact with 

ligands, only DeepFoldRNA and Vfold2_ss managed to model 
one structure within the B1 dataset below the 2.5 Å I-RMSD 

cutoff (Figures 9 C and Supplementary Figure S11 , panels 
A-J), illustrating limited success in highly accurate interface 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 8. Distribution of models with interface RMSD (I-RMSD) of 2.5 Å or below. Bar plots showing the percentage of successful modeling cases 
achieving an interface RMSD (I-RMSD) ≤ 2.5 Å across organized into ( A ) difficulty classes ( B ) 30-nucleotide length bins ( C ) str uct ural classes, and ( D ) 
type of multiw a y junctions. Each method is represented by a unique color. Models generated without secondary str uct ure restraints are shown in lighter 
shades, while those with restraints are depicted in darker shades of the same color. The number of models with I-RMSD ≤ 2.5 Å are shown above the 
bars and the classification with less than five cases are marked by asterisk (*) below the labels on abscissa. 
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odeling. In contrast, the B2 dataset ( Supplementary Figure 
14 , panels A–J) also includes RhoFold among the meth-
ds that achieve interfaces within this cutoff ( Supplementary 
igure S14 , panels A–J). Interestingly, AlphaFold 3 did not
odel any interfaces within this threshold in either dataset,

ndicating specific limitations in accurately modeling ligand
nteraction interfaces. This highlights a broader challenge in
redicting complex RNA structures comprehensively. 
In conclusion, while AlphaFold 3 shows potential in RNA
structure prediction, it did not meet the high expectations
across all tested metrics. The comparative analysis with Deep-
FoldRNA and RhoFold underscores areas for improvement
and sets the stage for future methodological enhancements.
Continuous updates and iterative testing against new RNA
structures will be crucial for refining these models’ predictive
accuracy and advancing our understanding of RNA biology. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae541#supplementary-data
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Figure 9. Performance of 3D modeling methods on blind dataset 1 (B1) containing str uct ures not used in training by the ML methods. Performance 
measures for RNA 3D str uct ure prediction methods are displayed across the B1 dataset: ( A ) RMSD and ( B ) INF_all ( C ) I-RMSD. ( D ) Length distribution of 
RNAs on three difficulty classes of modeling - ‘simple’, ‘moderate’, and ‘difficult’. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusions 

The various methods used in this study exhibit varying per-
formance across distinct structural classes. The performance
of machine learning (ML)-based methods for RNA structure
prediction depends on the composition of the training and
testing sets. For our testing set ML-based methods have been
shown to be more effective than non-ML methods in delin-
eating long and complex RNA structures. This performance
gap indicates a potential for improvement as the training sets
expand with newly solved structures ( 4 ). While the local res-
olution of predictions is not yet on par with ML-based global
predictions, targeted efforts to refine this aspect are crucial.
It is important to mention that as the details of the training
sets used by ML-based methods are not publicly disclosed,
we cannot exclude the possibility that structures from our
test set may also appear in the training sets of the methods
we are evaluating. Hence, the results obtained by ML-based
methods may be overestimated. Currently, there is no uni-
versally reliable method for high-resolution RNA 3D struc-
ture prediction. A breakthrough in the prediction of RNA
structures can be expected, as in the field of protein predic-
tion, but before that several conditions must be met, includ-
ing, above all, the availability of a larger number of known
structures ( 4 ). 

Our study provides valuable insights for selecting and ap-
plying various prediction methods. ML-based methods are
effective for generating models that have good global folds.
Many of these models meet the I-RMSD criterion, making
them suitable for initial models, particularly in drug develop-
ment targeting small molecules. However, for detailed struc-
tural features such as intra-molecular interactions and spe-
cific elements like G-quadruplexes, non-ML-based methods
demonstrate superior accuracy . Consequently , a synergistic
strategy that incorporates machine learning (ML) for global 
structural predictions and non-ML methods for detailed bind- 
ing interface modeling could offer significant advantages. No- 
tably, the inclusion of secondary structure restraints signif- 
icantly improves the performance of non-ML-based meth- 
ods in binding site modeling. The outcomes of recent RNA- 
Puzzles and CASP competitions demonstrate that an expe- 
rienced user, who incorporates the structures of homolo- 
gous RNA molecules and various experimental data, signif- 
icantly enhances prediction accuracy compared to outcomes 
achieved using the default settings of the program ( 50 , 52 , 94–
97 ,103 ). This enhancement may be important for model- 
ing small molecule binding sites, which must be functional 
and, therefore, frequently demonstrate evolutionary conser- 
vation in both sequence and structure. Consequently, it be- 
comes crucial to use an integrated modeling approach, in- 
corporating various biochemical and biophysical data and 

utilizing diverse computational tools for improving the 
models. 

Our findings indicate that models with low RMSD, pre- 
dicted using all methods with default settings, exhibit ac- 
curately predicted binding sites for small molecules (Fig- 
ures 7 C-K). Interestingly, some models with higher RMSD 

(ranging from 8 to 16 Å) also display well-predicted in- 
teraction sites with small molecules, thereby expanding the 
pool of RNA models viable for virtual screening. Given the 
rapid advancements in the precision and capabilities of arti- 
ficial intelligence-based methods, significant progress in RNA 

structure prediction is anticipated shortly. In conclusion, re- 
searchers without access to experienced structural bioinfor- 
maticians can now independently utilize one of the top- 
performing methods, such as Vfold2, DeepFoldRNA, or Rho- 
Fold. Nevertheless, experienced bioinformaticians may prefer 
methods like SimRNA or F ARF AR2, which offer enhanced 
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D488–D508.
exibility for integrating both expertise and experimental data
 63 ,64 ). 

Our evaluation of the newly released AlphaFold 3 on the B1
nd B2 datasets, which are constrained by the limited number
f available structures, reveals that it did not model any RNA
nterfaces within the stringent I-RMSD cutoff of ≤2.5 Å. This
esult, derived from a relatively small data sample, may not
apture the full potential of AlphaFold 3 across varied sce-
arios. In contrast, methods like DeepFoldRNA and RhoFold
ere able to successfully model interfaces in some RNA struc-

ures within this cutoff, highlighting potential specific chal-
enges AlphaFold 3 faces in accurately capturing these crucial
nteraction details, which are vital for a thorough understand-
ng of RNA-small molecule interactions. Nonetheless, the lim-
tations posed by the small size of the datasets suggest that
hese results should be viewed as preliminary. The ongoing
evelopment and integration of more comprehensive datasets
n future evaluations are expected to provide deeper insights
nd may enhance the performance of AlphaFold 3. Such con-
inuous advancements are critical for the progress of computa-
ional methods in RNA biology, indicating that while the tool
hows promise, there is considerable scope for improvement
nd refinement. 

It is crucial to remember that RNA structure prediction ex-
ends beyond foreseeing a singular, static structure. The dy-
amic nature of RNA, characterized by its rapid conforma-
ional shifts, plays a pivotal role in recognition processes,
nd significantly impacts ligand binding affinity. The energy
ifferences between these various conformations can range
rom modest to dramatic, exerting a crucial influence on bind-
ng affinity. Recognizing and precisely quantifying RNA dy-
amics is indispensable for successfully designing RNA-based
tructures and exploring new avenues in RNA-targeted ther-
peutics ( 104 ). The advancement in RNA structure dynam-
cs heavily depends on the customization of MD force fields,
riginally designed for proteins, to suit the distinctive char-
cteristics of RNA. Notably, the aromatic ring stacking in-
eractions, a hallmark of RNA’s molecular recognition, re-
uire the precise adjustment of electrostatic parameters in
hese force fields ( 22 ,104–109 ). Accurate modeling of these
nteractions is vital for a deeper understanding of how small
olecules interact with RNA and for identifying the most

ffective locations for functional groups. Employing molec-
lar dynamics with a force field enabling realistic depic-
ion of RNA dynamics could be crucial in selecting alterna-
ive RNA models for performing virtual screening. In this
cenario, selecting representative structures statistically from
he molecular dynamics (MD) trajectory may substitute for
tructures determined by nuclear magnetic resonance (NMR),
hich represent the conformer binding small molecules. These
re not always depicted by the cluster of the most frequent
onformer ( 109 ). 

While RNA structure prediction methods presently achieve
ufficient accuracy for generating initial global structure mod-
ls, they may fall short of the precision required for high-
esolution modeling crucial in structure-based drug design.
chieving finer details necessary for designing effective small-
olecule therapeutics targeting specific RNA motifs and bind-

ng sites demands a higher level of accuracy than currently ob-
erved. Future research, including comprehensive docking ex-
eriments, will play an important role in determining whether
he accuracy of these methods is sufficient for practical
pplications. 
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