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A B S T R A C T   

This study assessed the optimal nitrogen (N) fertilizer rate and planting density for the well- 
adapted upland rice cultivar NERICA_4 on the Fogera Plain. The primary objective was to eval
uate the effects of varied planting densities and N-fertilizer rates on upland rice yield and other 
agronomic parameters. A two-year field study (2020 and 2021) was conducted at the Fogera Rice 
Research Field Station, testing nine plant densities (75, 87, and 98; 72, 82, and 91; 70, 79, and 89 
plants per m2 and two N rates (115 and 138 kg N ha− 1). The Crop Simulation Model Crop 
Environment Resource Synthesis (CSM-CERES-Rice) within the Decision Support System for 
Agrotechnology Transfer (DSSAT) framework was calibrated and validated using site-specific 
weather, soil, crop, and agronomic management data from the experiment. Results on the sub
sequent RMSE, RMSEn, and d index values during the calibration phase were 0.074 t ha− 1, 1.82 
%, and 0.86 of grain yield; 0.307 t ha− 1, 3.36 %, and 0.87 of by-product yield; 0.489 t ha− 1, 3.74 
%, and 0.79 of top dry biomass yield; and 0.28, 8.24 %, and 0.63 of leaf area index values, 
respectively. Whereas results on the corresponding RMSE, RMSEn, and d index values during the 
evaluation phase were: 0.58 t ha− 1, 1.33 %, and 0.90 of grain yield; 0.69 t ha− 1, 0.58 %, and 0.99 
of by-product yield; 0.678 t ha− 1, 4.36 %, and 0.67 of top dry biomass yield; and 0.75, 13.92 %, 
and 0.74 of leaf area index, respectively. The findings of the long-term simulation showed that a 
23 % increase in grain yield was achieved with 138 kg N ha− 1 and 87 plants per m2 of planting 
density, as compared to 115 kg N ha− 1 and 75 plants per m2 of plant density. The recommended 
optimum plant density and N fertilizer rate were 138 kg N ha− 1 with PD2 of plant density for 
upland rice production in the Fogera Plain.  
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1. Introduction 

Rice (Oryza sativa L.) is one of the world’s most crucial staple cereal crops, providing over 21 % of the global population’s caloric 
intake and playing a vital role in food security and human nutrition [1,2]. It ranks third among cereal crops, following wheat (Triticum 
aestivum L.) and maize (Zea mays L.) [3]. Since its recent introduction to Ethiopia, rice has become an integral part of the national 
economy and a key component in cereal production, contributing significantly to agricultural output [4]. Often referred to as the 
“millennium crop,” rice is expected to continue being pivotal in maintaining food security [5]. Ethiopia has significant potential for 
rice production, with over 30 million hectares of land suitable for cultivation [6]. Despite the rapid increase in rice production and the 
country’s immense potential, the current average productivity of 2.8 t ha− 1 remains well below the global average of 4.7 t ha− 1 [7]. 

Rice production is influenced by several factors, including the choice of cultivar, planting dates, plant density, fertilizer application, 
and water management [8,9]. Nitrogen fertilization and plant density are particularly important in optimizing rice yield and nutrient 
use efficiency [10]. Research suggests that combining optimal nitrogen application with appropriate plant density is essential to 
minimize nitrogen losses and maximize upland rice yields [11]. Optimal nitrogen fertilization not only boosts yields but also offers 
significant economic benefits [12]. It is crucial to determine a nitrogen application rate that balances crop yield with environmental 
considerations. Studies have shown that wider planting patterns combined with high nitrogen rates are effective management stra
tegies for increasing rice production [13,14]. Optimal planting density is influenced by multiple factors, including plant genetics, the 
length of the growing season, sowing methods, soil fertility, seed size, moisture availability, photoperiod, planting pattern, and weed 
pressure [15]. According to Mohammad et al. [16], planting density is a critical agronomic practice affecting various aspects of rice 
production. Effective crop management strategies can provide valuable insights for enhancing rice production, although traditional 
agronomic research methods often lack the timeliness and specificity required, making them costly and time-consuming [17]. 
Furthermore, typical cropping systems in major rice-growing regions are complex, necessitating the use of a variety of Crop Simulation 
Models (CSMs) and technologies to ensure long-term sustainability [18]. 

Regular, multi-season, and multi-location studies are essential for providing farmers and policymakers with the information needed 
to make informed decisions [19]. These studies, under varying agro-environmental conditions and management strategies, help 
evaluate models effectively [19,20]. Rice yield was simulated under different agronomic management methods and changing climate 
scenarios [21], and more effective rice management systems under irrigated environments were discovered [22]. CSMs and decision 
support systems are a possibility for solving this challenge in modern agriculture, where the integration of biophysical and man
agement factors leads to sustainable practices. In spite of the use of CSMs for plant density, N management practices in the Ethiopian 
rice cropping system have received little attention. Studies have shown that the CSM-CERES (Crop Environment Resource 
Synthesis)-Rice model serves as a useful research and decision-support tool. This model was introduced to enhance decision-making, 
and its effectiveness has been assessed for rice-wheat cropping systems to increase resource and land use efficiency [23,24]. Although 
research has found the efficacy of the CSM-CERES-Rice model in evaluating different plant density and nitrogen fertilizer application 
techniques [8,25], the CSM-CERES-Rice is a parts of the Decision Support System for Agrotechnology Transfer (DSSAT) model, one of 
the latest advanced crop models [26], allows for the integration of crop management and environmental (soil and climate) data, which 
are essential for evaluating yield gaps and optimizing crop management strategies [27,28]. The rapid expansion of rice production in 
Fogera Plain, Ethiopia, requires an inquiry study that will optimize planting density and N management techniques in an integrated 
approach. However, the present studies aim to determine the effects of the CSM-CERES-Rice model to simulate upland rice production 
under various plant density and N management strategies in Fogera Plain. Therefore, the objectives of this study were to (1) evaluate 
the effectiveness of the CSM-CERES-Rice model in estimating upland rice yield and (2) determine the response of upland rice yield to 
different plant densities and nitrogen concentrations under rainfed conditions in the Fogera Plain. 

Fig. 1. Map of study Aeea in Fogera Plain Ethiopia.  
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2. Materials and methods 

2.1. Description of the study area 

The study was carried out in Fogera Plain, Ethiopia, as shown in Fig. 1, which is located within latitudinal and longitudinal ranges 
between 10◦58′N and 12◦47′N and 36◦45′E and 38◦14′E, respectively, at an altitude of 1819 m above sea level, as revealed [29]. The 
averaged annual minimum and maximum air temperatures are 11.5 ◦C and 28.20 ◦C, respectively, and the annual mean temperature is 
18.3 ◦C. Rainfall in the area is unimodal, usually from June to September, and the average annual rainfall is about 1259 mm. The soil’s 
pH is 5.9, with a clay content ranging from 62 to 71 %. Its contents include 0.22 % total available N, 12.64 ppm available P (Olsen), 
0.93 cmol (+) kg− 1 exchangeable K, 3 % organic carbon, and 52.9 cmol (+) kg− 1 CEC, as indicated by Aleminew et al. [4]. 

2.2. Description of the CERES-Rice model 

The CERES-Rice model, part of the Decision Support System for Agrotechnology Transfer (DSSAT), is a sophisticated simulation 
tool designed to predict the growth, development, and yield of rice crops under various environmental conditions and management 
practices [19,30]. This model integrates data on weather, soil characteristics, crop management practices, and genetic factors to 
simulate the complete life cycle of rice from planting to harvest. By employing a detailed understanding of physiological processes, the 
CERES-Rice model can analyze the impact of variables such as water availability, nutrient levels, and climate conditions on rice 
productivity [17]. This enables the model to provide valuable insights into how different management strategies can optimize rice 
yield and sustainability. Additionally, the model allows for the adjustment of cultivar-specific genetic coefficients, ensuring that 
simulated outputs can be accurately calibrated and validated against observed data from specific study areas. 

In this study, the DSSAT version 4.7 (DSSATv4.7) tool was utilized to investigate the effects of varying plant densities and nitrogen 
fertilizer rates on upland rice yield in the Fogera Plain. The model inputs included detailed information from the experimental setup, 
such as soil properties, crop management practices, and daily climate data (precipitation, minimum and maximum temperatures, and 
solar radiation). Key information regarding planting dates, planting methods, plant distribution, population density, row spacing, 
planting depth, cultivar selection, and fertilizer application was sourced from the nearby Fogera National Rice Research and Training 
Centre. For a deeper understanding of the model’s capabilities. 

2.3. Field experiment 

A field experiment was conducted at the Fogera National Rice Research Training Centre on the field station during the 2020 and 
2021 cropping seasons using a well-adapted upland rice cultivar (NERICA_4) in the Fogera Plain area [31], Phenological development 
and yield component data were collected throughout the growing season. Direct sowing was done by hand at 20, 25, and 30 cm of row 
spacing, with 80, 100, and 120 kg ha− 1 seed rates applied concurrently. 

A factorial experiment consisted of nine levels of plant density of 75, 87, and 98; 72, 82, and 91; 70, 79, and 89 per m2, combined 
with two levels of N fertilizer rates (115 and 138 N kg ha− 1), using a randomized complete block design (RCBD) replicated three times. 
All phenological and biophysical parameters were collected from a respective net plot area of 4.2, 3.9, and 3.6 m2. Plant harvesting was 
done at physiological maturity, and all plots were made into soil bunds and separated by 0.5-m-wide strips of bare soil to avoid lateral 
movement of water and nutrients within plots. 

2.4. Model inputs 

The model’s required inputs concerning the suggested crop management, soil physical and chemical properties, and weather data 
were described as follows: 

2.4.1. Crop data 
Leaf area index: The leaf area index of functioning leaves was measured at a maximum tillering phase. Data for the leaf area index 

was collected using the leaf area index calculator Hemisphere software tool reported by Jiangui et al. [32]. Which captures photo
graphs of the vegetation ground cover over agricultural crops using top-of-canopy digital photography. 

Tops dry weight (g): The total top dry weight was taken after harvesting and measured by weighing after the sun-dried total top 
weight (by-product + grain) of the net plot, and it’s reported as converted into tons per hectare. 

By-product weight (g): Total by-product yield was taken from the deducted total of dry biomass yield and converted into tons per 
hectare. 

Grain Yield (t ha¡1): Grain yields were harvested at a net plot area of 4.2, 3.9, and 3.6 m2, and they were first dried in the sun for 
up to 3 days in the field, then threshed manually and cleaned, and then the final weights were taken by digital balance. The grain yield 
per hectare was computed for each treatment from the yield of the net plot area. A digital moisture meter was used to record the 
moisture percentage of the grain. Finally, grain yields were adjusted at 11 % moisture using a digital tool as indicated by Singh et al. 
[33]. 

2.4.2. Soil data 
A soil sample was taken before seeds were sown at the experimental site in 2020, and its required physicochemical characteristics 
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were determined in the Amhara Design and Supervision Enterprise Laboratory Service, as indicated in Table 1. Between 0 and 30 cm 
depth, the soil’s CEC is 44.26 (meq/100g− 1soil); the average field capacity (FC) and permanent wilting point (PWP) are 33.46 and 
23.02 %, respectively; the average total nitrogen is 0.12 %, and the available phosphorus is 18.4 ppm. Table 2 shows the results of the 
soil study at the experimental site where the rice experiment was carried out and the reported data for three depths of layers (0–5, 
5–15, and 15–30 cm) (Table 1). 

2.4.3. Climate data 
For the study area, daily weather data for the baseline period of 33 years, from 1988 to 2021, were obtained from the National 

Meteorological Agency of Ethiopia, as indicated in Fig. 3. The Weatherman climate data management tool integrated into the DSSAT 
model was used to estimate solar radiation, this tool uses inputs such as sunshine hours, longitude, and latitude data specific to the 
study area. As indicated in Fig. 4, weather output analyses were displayed in the validation simulation process. Furthermore, as 
depicted in Fig. 2, the mean air temperature (Tmax and Tmin), solar radiation, and total rainfall for the 2020 cropping season were 
28.4 and 15.8 ◦C, 17.28 MJm− 2 day− 1, and 1308.2 mm, respectively, throughout the rainy season (June to September). The similar 
averages for temperature, solar radiation, and rainfall for the 2021 cropping season were 26.5 and 14.5 ◦C, 20.52 MJm− 2 day− 1, and 
1351.56 mm, respectively. Fig. 2 reveals the inverse relationship between temperature and rainfall data collected during the 2020 and 
2021 cropping seasons in the Fogera Plain. 

2.5. Model calibration and validation 

The model calibration process involved running the model with these coefficients in a Generalized Likelihood Uncertainty Esti
mation (GLUE) of 10,000 iterations for development and growth. Four biophysical attributes were used for calibration purposes in the 
2020 cropping season. The 2021 main cropping season data sets were used for model validation, following a similar calibration 
process. The sensitivity analysis tool was also used to further refine the coefficients. This iterative process included running the model 
with each relevant genetic coefficient, comparing outputs with measured data, adjusting the coefficients, and repeating until satis
factory fits were achieved. The calibrated genetic coefficient values of P and G parameters for the upland rice cultivar (NERICA_4) are 
presented in Table 2. The CERES-Rice model was run under the normal conditions measured in the field experiment. All the calibrated 
traits were used to simulate each of the treatments in the study area. Then, graphical analysis and statistical measurements were 
carried out, as reported by Confalonieri et al. [34]. Simulated and measured values of total dry biomass yield, by-product yield, leaf 
area index, and grain yield were graphically compared using the Easy Grapher tool in the DSSAT model, and the values of physiological 
parameters were compared to those measured and simulated values. The performance of the CERES-Rice model to simulate the effects 
of upland rice traits was carried out during calibration, and evaluation was assessed using the following statistical indices: Abera [35], 
Gijsman and Ritchie [36], Fayed et al. [37], Wilmot et al. [38]. The root mean square error (RMSE) is the “best” measure as it 
summarizes the mean difference in the units of measured and simulated values [39]. In the case of RMSEn, a simulation can be 
considered excellent if it is smaller than 10 %, good between 10 and 20 %, fair between 20 and 30 %, and poor if it is larger than 30 % 
[40]. D values range between 0 and 1, where 0 indicates no agreement and 1 indicates perfect agreement between predicted and 
measured data, according to Akhter et al. [41]. In addition, the deviations in phenology and growth yields were presented as follows: 

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Pi − Oi

N

)

2

√

(1) 

The residuals measure how far the data points are apart from the regression line. It tells us how concentrated the data is around the 
line of best fit. RMSE values that are close to 0 indicate perfect fits between simulated and observed data. 

RMSEn=
100
O

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Pi − Oi

N

)

2

√

(2) 

Table 1 
Physical and chemical soil properties in Fogera Plain, Ethiopia.  

Parameter Soil depth (cm)  

0–5 5–15 15–30 
Clay (%) 62 62 64 
Silt (%) 23 21 21 
Sand (%) 15 17 15 
Bulk density (g cm− 3) 1.18 1.14 1.13 
Organic carbon 1.30 1.27 1.04 
Total available N (%) 0.12 0.13 0.10 
Av. P (ppm) 20.11 17.87 16.74 
Soil pH(H2O) 1; 1.25 6.35 6.26 6.16 
Field capacity (FC) (%) 37.48 33.15 29.76 
Permanent wilting point(PWP) (%) 22.64 22.77 23.66 
CEC (meq/100g− 1 soil) 41.2 46.4 45.2 

CEC= Cation exchange capacity. 
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where N is the mean of the observed variables. RMSEn gives the measure (%) of the relative difference between simulated and observed 
data. Less value indicates a good fit for the model. Normalized RMSE: a simulation can be considered excellent if RMSEn is less than 10 
%, good between 10 and 20 %, fair between 20 and 30 %, and poor if it is greater than 30 % [41]. 

Table 2 
Calibrated Genetic-coefficients of rice cultivar using CERS-Rice model in Fogera plain.  

GC Genetic coefficient description Tested cultivar (NERICA_4) 

P1 Juvenile phase coefficient (growth degree day in ◦C) 463 
P2O Critical photoperiod (hour length) 11.71 
P2R Photoperodism coefficient (growth degree day in ◦C) 138.84 
P5 Grain filling duration coefficient (growth degree day in ◦C) 465.35 
G1 Spikelet number coefficient 76.0 
G2 Single grain weight (g) 0.023 
G3 Tillering coefficient 1 
G4 Temperature tolerance coefficient 83  

Fig. 2. Mean monthly rainfall. Maximum, minimum temperature, and solar radiation in Fogera Plain.  

Fig. 3. Observed weather data (1988–2021) in Fogera Plain.  
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d=1 −

⎡
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(Pi − Oi)

2
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(|Pi + Oi|)

2

⎤

⎥
⎥
⎦ (3)  

where n is the number of observations, Pi is the calculated value for the ith measurement, and Oi is the observed value for the ith 
measurement. 

ΔX(%)=
XSimulated − XObserved

XObserved
× 100 (4)  

where, X = any variable of interest. 

3. Results and discussion 

3.1. Results 

3.1.1. Calibrtion and evaluation 
Grain Yield: Table 3 displays the results of the CERES-Rice model’s calibration and evaluation in grain yield simulation. During the 

Fig. 4. Weather output analysis for the evaluation simulation model in 2021 in Fogera Plain.  

Table 3 
Model evaluation under the effects of plant density and N fertilizer rates in Fogera Plain.  

Model evaluation Crop characteristics Sample numberr Mean values Standard deviation 
(SD) 

RMSE RMSEn (%) D index 

SIM OBS SIM OBS 

Calibration (2020) Top dry biomass yield (t ha− 1) 18 13.532 13.069 0.464 0.477 0.489 3.74 0.79 
By-product yield (t ha− 1) 18 9.400 9.139 0.390 0.437 0.307 3.36 0.87 
LAI max 18 3.60 3.41 0.002 0.003 0.280 8.24 0.63 
Grain Yield (t ha− 1) 18 4.131 4.075 0.103 0.091 0.074 1.82 0.86 

Validation (2021) Top dry biomass (t ha− 1) 18 16.182 15.541 0.516 0.469 0.678 4.36 0.67 
By-product yield (t ha− − 1) 18 11.812 11.854 0.423 0.461 0.690 0.58 0.99 
LAI max 18 6.14 5.41 0.001 0.002 0.750 13.92 0.74 
Grain Yield (t ha− 1) 18 4.370 4.334 0.101 0.084 0.580 1.33 0.90 

Key: SIM = simulated, OBS = observed, and SD = standard deviation. 
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calibration phase, the grain yield’s absolute root mean square error (RMSE) was 0.074 t ha⁻1, while the evaluation phase exhibited an 
RMSE of 0.58 t ha− 1. The data in Table 3 indicate noticeable differences between the absolute RMSE, normalized RMSE (RMSEn), and 
the D index in the calibration and evaluation phases of the model. Specifically, the RMSEn for grain yield was 1.82 % during calibration 
and 1.33 % during evaluation. The model’s D index, a measure of agreement between the observed and simulated values, was 0.86 
during calibration and 0.90 during evaluation. Table 3 demonstrates a significant agreement between the simulated and measured 
grain yield values. This agreement is further supported by Fig. 5, where a regression coefficient of 0.81 indicates a strong and close 
correlation between the simulated and measured values. 

For each crop variable in the calibration and evaluation simulations, as detailed in Table 3, the grain yields were accurately fitted 
and compared with the standard deviation (SD) and root mean square error (RMSE). Tables 4 and 5 illustrate the percentage deviations 
of grain yields during calibration and evaluation. The simulated and measured values for nitrogen fertilizer rates of 115 kg N ha− 1 and 
138 kg N ha− 1, and plant densities (PD1 to PD9) showed deviations ranging from − 0.98 % to 3.27 % and 0.14 %–2.82 %, and from 
− 1.62 % to 1.55 % and 0.34 %–2.50 %, respectively. The findings indicate that grain yield increases with higher plant densities and 
increased nitrogen fertilization, as reflected in the calibration and evaluation values using 138 kg N ha⁻1 and a plant density corre
sponding to PD2. Significant impacts on grain yields under different plant densities and nitrogen fertilizer levels are evident in Tables 4 
and 5, highlighting the effectiveness of the CERES-Rice model in simulating upland rice yields under varying agronomic conditions. 

Top dry biomass yield: Table 3 presents the impact of the CERES-Rice model on the top dry biomass yield in relation to plant 
density and nitrogen (N) fertilizer rates. The results indicate that for the upland rice cultivar NERICA_4, the RMSE values for the top dry 
biomass yields during calibration and evaluation were 0.489 t ha− 1 and 0.678 t ha− 1, respectively. Under various planting densities 
and nitrogen fertilizer rates, the normalized RMSE (RMSEn) for top dry biomass yields was 3.74 % during calibration and 4.36 % 
during evaluation. The D index values were 0.79 and 0.67 for the calibration and evaluation phases, respectively, indicating a 
reasonable fit between the simulated and observed values on the harvest dates. A comparison of the simulated and measured top dry 
biomass yield values, as detailed in Table 5, shows that the model provides a satisfactory representation of actual biomass production. 
Regression analysis, as shown in Fig. 6, yielded a coefficient of determination (R2) of 0.81, suggesting a strong correlation between the 
simulated and measured values. 

The percentage differences between the simulated and measured top dry biomass yields during the calibration and evaluation 
phases varied by nitrogen application rates (N115 and N138 kg ha⁻1) and plant densities (PD1 to PD9). The disparities ranged from 1.1 
% to 5.2 % during calibration and 2.9 %–6.7 % during evaluation. Additionally, the percentage differences ranged from − 4.41 % to 
10.31 % during calibration and from − 1.15 % to 18.82 % during evaluation, reflecting the model’s sensitivity to changes in nitrogen 
rates and plant densities (Tables 4 and 5). 

Leaf area index (LAI): The effects of plant density and nitrogen (N) fertilizer rates on the leaf area index (LAI) of upland rice 
(NERICA_4) were evaluated using the CERES-Rice model, as presented in Table 3. The results indicate that the RMSE values for LAI 
during calibration and evaluation were 0.28 and 0.75, respectively. The normalized RMSE (RMSEn) and D index at the maximum 
tillering stage were 8.24 % and 13.92 %, and 0.63 and 0.74, respectively, as shown in Table 3. Fig. 7 demonstrates a regression co
efficient (R2) of 0.95, indicating a very close relationship between the simulated and measured LAI values. The results suggest that an 
increase in plant density, particularly the densely planted density (PD3), and an increase in the N fertilizer rate to 138 kg N ha⁻1 both 
contribute to a higher LAI in the studied areas of the Fogera Plain. 

The deviations between the simulated and measured LAI values under different N fertilizer rates (115 and 138 kg N ha⁻1) and plant 
densities (PD1 to PD9) during calibration and evaluation ranged from − 1.15 % to 18.82 %, − 4.41 %–10.31 %, 12.59 %–23.16 %, and 
7.38 %–13.47 %, respectively, as presented in Tables 4 and 5 These deviations illustrate the model’s ability to capture the effects of 
varying N rates and plant densities on LAI, although some differences between simulated and measured values remain, reflecting the 
inherent variability and complexity of crop-environment interactions. 

By-product yield: The effects of nitrogen (N) fertilizer rates and plant density on the by-product yield of upland rice, as evaluated 

Fig. 5. Comparison of grain yield between simulated and measured values during the evaluation model in the 2021 cropping season in Fogera Plain.  
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using the CERES-Rice model, are detailed in Table 3. The calibration and evaluation phases showed that the absolute root mean square 
error (RMSE) for by-product yield was 0.307 t ha− 1 and 0.69 t ha− 1, respectively. The normalized RMSE (RMSEn) and D index values 
for both phases indicated significant agreement between the simulated and measured by-product yields, with RMSEn values of 3.36 % 
for calibration and 0.58 % for evaluation, and D index values of 0.87 and 0.99, respectively. The regression analysis, as illustrated in 
Fig. 8, demonstrates a high degree of correlation between the simulated and measured data, with a regression coefficient (R2) of 0.99, 
indicating a very close match. This suggests that the CERES-Rice model is highly accurate in predicting by-product yields under 
varying N fertilizer rates and plant densities. Table 4 indicates that an increase in the N fertilizer rate to 138 kg N ha− 1 and a dense 
plant population density at PD2 resulted in higher by-product yields. The deviations between the simulated and measured values for 
both N fertilizer rates (115 and 138 kg N ha− 1) and plant densities (PD1 to PD9) were − 1.70 %–5.94 % for calibration and 0.34 %–4.68 
% for evaluation, as detailed in Tables 4 and 5 These deviations illustrate the model’s sensitivity to changes in nitrogen rates and plant 
densities, affirming its reliability in simulating by-product yields under different agronomic conditions. 

Table 4 
Measured and simulated data for top dry biomass, by-product yield, leaf area index, and grain yield during calibration model in 2020 under different 
plant density and N rates in Fogera Plain.  

Nitrogen Rates Plant Density Top dry biomass (t ha− 1) By-product (t ha− 1) LAIX Grain Yield (t ha− 1) 

SIM OBS Dev (%) SIM OBS Dev (%) SIM OBS Dev (%)) SIM OBS Dev (%) 

N1 (115) PD1 13.221 12.627 4.70 9.111 8.755 4.07 3.37 3.06 10.31 4.110 4.022 2.19 
PD2 13.426 13.101 2.48 9.214 8.945 3.01 3.47 3.56 − 2.50 4.212 4.106 2.58 
PD3 13.560 13.436 0.92 9.300 9.461 − 1.70 3.54 3.39 4.39 4.260 4.125 3.27 
PD4 12.938 12.327 4.96 8.912 8.412 5.94 3.26 3.01 8.20 4.025 4.065 − 0.98 
PD5 13.208 12.614 4.71 9.084 8.719 4.19 3.38 3.54 − 4.41 4.123 4.045 1.93 
PD6 13.314 12.788 4.11 9.154 8.773 4.34 3.47 3.39 2.42 4.160 4.165 − 0.12 
PD7 12.684 12.482 1.62 8.747 8.677 0.81 3.15 3.19 − 1.16 3.937 3.955 − 0.46 
PD8 12.880 12.376 4.07 8.876 8.563 3.66 3.26 3.18 2.52 4.004 3.963 1.03 
PD9 13.144 12.614 4.20 9.041 8.705 3.86 3.39 3.23 4.99 4.103 4.059 1.08 

N2 (138) PD1 13.940 13.262 5.11 9.769 9.332 4.68 3.80 3.38 12.49 4.171 4.080 2.23 
PD2 14.174 13.536 4.71 9.904 9.508 4.16 3.90 3.58 9.00 4.270 4.178 2.20 
PD3 14.412 13.871 3.90 10.067 9.782 2.91 4.04 3.40 18.82 4.345 4.339 0.14 
PD4 13.640 13.162 3.63 9.569 9.291 2.99 3.69 3.73 − 1.15 4.071 4.021 1.24 
PD5 13.904 13.649 1.87 9.759 9.684 0.77 3.83 3.56 7.74 4.145 4.115 0.73 
PD6 14.061 13.623 3.22 9.838 9.666 1.78 3.90 3.41 14.47 4.223 4.107 2.82 
PD7 13.461 13.017 3.41 9.462 9.182 3.05 3.63 3.51 3.54 3.999 3.985 0.35 
PD8 13.688 13.111 4.40 9.624 9.303 3.45 3.77 3.67 2.81 4.064 3.966 2.47 
PD9 13.918 13.649 1.97 9.777 9.741 0.37 3.90 3.55 9.92 4.142 4.058 2.07 

Key: SIM = simulated, OBS = observed, Dev = deviation, Plant density per m2 (PD1–9) (1 = 75, 2 = 87, 3 = 98, 4 = 72, 5 = 82, 6 = 91, 7 = 70, 8 = 79, 
and 9 = 89) and N1 and N2 (nitrogen rates), respectively. 

Table 5 
Measured and simulated data for top dry biomass, by-product yield, leaf area index, and grain yield during evaluation model in 2021 under different 
plant densities and N rates in Fogera Plain.  

Nitrogen Rates Plant Density Top dry biomass (t ha− 1) By-product (t ha− 1) LAIX Grain Yield (t ha− 1) 

SIM OBS Dev (%) SIM OBS Dev (%) SIM OBS Dev (%) SIM OBS Dev (%) 

N1 (115) PD1 15.674 15.127 3.6 11.404 11.430 − 0.23 5.61 4.55 23.16 4.270 4.244 0.61 
PD2 15.766 15.601 1.1 11.426 11.438 − 0.10 5.58 5.06 10.30 4.340 4.328 0.28 
PD3 15.833 15.436 2.6 11.468 11.486 − 0.16 5.63 4.89 15.11 4.365 4.347 0.41 
PD4 15.597 14.827 5.2 11.344 11.310 0.30 5.57 4.51 23.42 4.253 4.287 − 0.79 
PD5 15.691 15.114 3.8 11.416 11.424 − 0.07 5.67 5.04 12.59 4.275 4.267 0.19 
PD6 15.740 15.288 3.0 11.424 11.353 0.63 5.63 4.89 15.18 4.316 4.387 − 1.62 
PD7 15.516 14.982 3.6 11.308 11.339 − 0.27 5.65 4.69 20.55 4.208 4.177 0.74 
PD8 15.575 14.876 4.7 11.326 11.390 − 0.56 5.57 4.68 19.02 4.250 4.185 1.55 
PD9 15.670 15.114 3.7 11.398 11.389 0.08 5.67 4.73 19.90 4.272 4.281 − 0.21 

N2 (138) PD1 16.681 15.762 5.8 12.219 12.279 − 0.49 6.67 5.88 13.47 4.462 4.402 1.36 
PD2 16.793 16.036 4.7 12.286 12.393 − 0.86 6.66 5.98 11.41 4.508 4.470 0.85 
PD3 16.850 16.371 2.9 12.300 12.289 0.09 6.55 6.23 7.49 4.550 4.461 2.00 
PD4 16.616 15.662 6.1 12.218 12.333 − 0.93 6.70 6.10 7.38 4.398 4.383 0.34 
PD5 16.692 16.149 3.4 12.225 12.355 − 1.05 6.68 6.05 10.32 4.466 4.387 1.80 
PD6 16.743 16.123 3.8 12.237 12.314 − 0.63 6.61 5.91 11.90 4.506 4.429 1.74 
PD7 16.55 15.517 6.7 12.184 12.243 − 0.48 6.73 6.01 12.05 4.366 4.307 1.37 
PD8 16.607 15.611 6.4 12.212 12.319 − 0.87 6.70 6.17 8.64 4.395 4.288 2.50 
PD9 16.675 16.149 3.3 12.214 12.295 − 0.66 6.68 6.05 10.45 4.461 4.380 1.85 

Key: SIM = simulated, OBS = observed, Dev = deviation, Plant density per m2 (PD1–9) (1 = 75, 2 = 87, 3 = 98, 4 = 72, 5 = 82, 6 = 91, 7 = 70, 8 = 79, 
and 9 = 89) and N1 and N2 (nitrogen rates), respectively. 

S. Tefera et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33556

9

Fig. 6. Comparison of top dry biomass yield between simulated and measured values during the evaluation model in the 2021 cropping season in 
Fogera Plain. 

Fig. 7. Comparison of leaf area index between simulated and measured values during evaluation in the 2021 cropping season in Fogera Plain.  

Fig. 8. Comparison of by-product yield between simulated and measured values during evaluation in the 2021 cropping season in Fogera Plain.  
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3.2. Discussion 

In this study, we used the GLUE (Generalized Likelihood Uncertainty Estimation) and sensitivity analysis tools within the CERES- 
Rice model to evaluate the effects of different plant densities and nitrogen fertilizer rates on the growth and yield of upland rice in the 
Fogera Plain. For the upland rice cultivar NERICA_4, the model accurately simulated grain yield, top dry biomass yield, by-product 
yield, and leaf area index (LAI). Chisanga et al. [42] demonstrated that the soil and genetic coefficient traits of the CERES-Maize 
model were accurately estimated using the GLUE technique. Similarly, we estimated growth and developmental parameters by iter
ating through GLUE and sensitivity analysis events, confirming the reliability of our findings for upland rice in the Fogera Plain. We 
calibrated the genetic coefficients for each growth and development parameter across eight categories, following the model’s 
guidelines [41]. 

This study integrated the GLUE method with a systematic approach to model calibration. The calibration and evaluation simu
lations for the upland rice (NERICA_4) cultivar showed acceptable grain yield values, with RMSE of 0.074 t ha− 1, RMSEn of 1.82 %, 
and a D index of 0.86 for calibration, and RMSE of 0.58 t ha− 1, RMSEn of 1.33 %, and a D index of 0.90 for evaluation. Calibration and 
evaluation results for dry biomass yield, by-product yield, and LAI were similarly satisfactory. The simulation results for the following 
variables were shown: by-product yield (RMSE of 0.307 t ha⁻1, RMSEn of 3.36 %, D index of 0.87 for calibration; RMSE of 0.69 t ha− 1, 
RMSEn of 0.58 %, D index of 0.99 for evaluation); dry biomass yield (RMSE of 0.489 t ha− 1, RMSEn of 3.74 %, D index of 0.79 for 
calibration; RMSE of 0.678 t ha− 1, RMSEn of 4.36 %, D index of 0.67 for evaluation); and LAI (RMSE of 0.28, RMSEn of 8.24 %, D index 
of 0.63 for calibration; RMSE of 0.75, RMSEn of 13.92 %, D index of 0.74 for evaluation). These findings align with previous research 
by Mohammed and Misganaw [43], and Chisanga et al. [42], which reported similar levels of model accuracy. Findings confirmed by 
Tari et al. [44] found that the grain yield model evaluation showed an RMSE of 0.58 t ha⁻1, RMSEn of 11.9 %, and a D index of 0.92. 
Similarly, Mirakhori et al. [45] reported that the CERES-Rice model simulated rice grain yield with RMSEn values of 8.0 % and 6.0 %, 
and biological yield with RMSEn values of 10.0 % and 9.0 %, with R2 values of 0.82 and 0.95 for various nitrogen levels (0, 90, 120, 
and 150 kg N ha− 1). Akhter et al. [41] noted an RMSE of 1.3 t ha− 1 for grain yield, with observed yields ranging from 2.9 to 6.7 t ha⁻1 

and simulated yields ranging from 2.6 to 7.3 t ha− 1. Akinbile [28] reported that the CERES-Rice model simulated grain yield, leaf and 
stem biomass yield, and total above-ground biomass yield with slightly higher values than observed field values. 

The findings of the present study indicated excellent accuracy in measured grain yields compared to simulated dry biomass yield 
and LAI, particularly when using the method shown in Fig. 5. The deviations in grain yield across various nitrogen fertilizer rates (115 
and 138 kg N ha− 1) and plant densities (PD1 to PD9) ranged from − 0.98 % to 3.27 %, 0.14 %–2.82 %, − 1.62 %–1.55 %, and 0.34 %– 
2.50 % for calibration and evaluation simulations, respectively. The by-product yields varied from − 1.70 to 5.94 %, 0.37–4.68 % 
during calibration and − 0.56 to 0.63 % and − 1.05 to 0.09 % for evaluation; the variations for top dry biomass yields were 0.92–4.96 
%, 1.87–5.11 % during calibration and 1.1–5.2 %, and 2.9–6.7 % during evaluation. The LAI’s variations were as follows: 10.30–23.42 
%, 7.38–13.47 %, − 1.15 to 18.82 %, and − 4.41 to 10.31 % during calibration and evaluation, respectively. Similar results confirmed 
the findings of Akhter et al. [41], who indicated that the reported deviation ranges for biomass (− 4.3 to 14.6 %), teff (− 0.10 to 8.70 %), 
and barley grain yield (− 13 to 15.1 %) were found in the validation data. Tari et al. [44] found that the Aqua Crop model replicated 
above-ground biomass yield more closely than grain yield, with validation errors ranging from 0.4 to 5.8 %. According to Hsiao et al. 
[46], the Aqua Crop model’s estimation of maize biomass yield ranged from − 0.4 to 21.9 %. Depending assumptions made about soil 
water intakes, the model may have overstated grain and biomass yields, or the actual values may have been lower than expected results 
based on the input of weather and soil parameters. The observed values for the essential calibration and evaluation simulation results 
showed that grain yield produced in tandem with dense plant population patterns and increasing nitrogen fertilizer rates. These 
increased grain yield the results were obtained with plant densities of PD3 (4.34 t ha− 1) and PD2 (4.47 t ha− 1) and nitrogen fertilizer 
rates of N138 kg ha− 1. 

3.3. Conclusions 

This study underscores the significance of integrating field experiments with simulation models like CERES-Rice to determine 
optimal planting densities and nitrogen (N) fertilizer rates for upland rice under varying conditions. Despite unpredictable factors such 
as weather and soil fertility, the CERES-Rice model, calibrated with extensive soil, weather, and crop management data, effectively 
identified the best combination of 138 kg N ha− 1 and 87 plants m2 for maximizing grain yield in the Fogera Plain, resulting in a 23 % 
increase in yield. This model’s accuracy in simulating grain yield, biomass, and LAI demonstrates its value in optimizing resource use 
and guiding agricultural practices. Future research should focus on further calibration and validation of the CERES-Rice model across 
diverse agro-ecological zones to enhance its robustness and provide precise recommendations. Integrating the model with other 
decision-support systems and real-time data will improve predictive accuracy and support adaptive management strategies. Adopting 
the recommended N fertilizer rates and planting densities can significantly increase rice yields and resource efficiency, contributing to 
sustainable agricultural development in Northwest Ethiopia and similar regions. 

Data availability statement 

The data that supports this study’s findings is available from the corresponding author upon reasonable request. 

S. Tefera et al.                                                                                                                                                                                                          



Heliyon 10 (2024) e33556

11

CRediT authorship contribution statement 

Sisay Tefera: Writing – original draft, Visualization, Validation, Software, Project administration, Methodology, Investigation, 
Formal analysis, Data curation, Conceptualization. Kindie Tesfaye: Writing – review & editing, Supervision, Conceptualization. 
Tilahun Tadesse: Writing – review & editing, Supervision. Teferi Alem: Writing – review & editing, Supervision. Dereje Ademe: 
Writing – review & editing, Validation, Software, Methodology, Supervision, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgements 

The authors thank the University of Gondar, Debre Tabor University, the Fogera National Rice Research Training Center, Ethiopia’s 
National Meteorology Agency (NMA), and the Amhara Regional State Agricultural Research Institute (ARARI), which have provided 
the technical and necessary facilities for the excellence and quality of this work. 

References 

[1] M.A. Fitzgerald, S.R. McCouch, R.D. Hall, Not just a grain of rice: the quest for quality, Trends Plant Sci. 14 (2009) 133–139 [CrossRef] [PubMed]. 
[2] H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, C. Toulmin, Food security: the challenge of feeding 9 billion people, Science 327 

(5967) (2010) 812–818. 
[3] M.W. Gardi, E. Memic, E. Zewdu, S. Graeff-Hönninger, Simulating the effect of climate change on barley yield in Ethiopia with the DSSAT-CERES-Barley model, 

Agron. J. 114 (2) (2022) 1128–1145, https://doi.org/10.1002/agj2.21005. 
[4] A. Aleminew, G. Alemayehu, E. Adgo, T. Tadesse, Influence of nitrogen on the growth and use efficiency of rainfed lowland rice in northwest Ethiopia, J. Plant 

Nutr. 43 (15) (2020) 2243–2258. 
[5] T. Belayneh, J. Tekle, “REVIEW ON adoption, TREND, POTENTIAL, AND CONSTRAINTS 5 (2017) 644–658. 
[6] N. Teshome, A. Dawit, An overview of the national rice research and development strategy and its implementation, Challenges and Opportunities of Rice in 

Ethiopian Agricultural Development (2011) 1–16. 
[7] FAO World Rice Statistics, 2019. http://ricestat.irri.org:8080/wrsv3/about.html. 
[8] H. Ebrahimirad, E. Amiri, H. Babazadeh, H. Sedghi, Calibration and evaluation of the CERES-Rice model under different density and water managements, Appl. 

Ecol. Environ. Res. 16 (5) (2018) 6469–6482, https://doi.org/10.15666/aeer/1605_64696482. 
[9] F. Hameed, J. Xu, S.F. Rahim, Q. Wei, R. Khalil, Optimizing Nitrogen Options for Improving Nitrogen Use Efficiency of Rice under Different Water Regimes, 

2019, https://doi.org/10.3390/agronomy9010039. 
[10] B. Clerget, C. Bueno, A.J. Domingo, H.L. Layaoen, L. Vial, Leaf emergence, tillering, plant growth, and yield in response to plant density in a high-yielding 

aerobic rice crop, Field Crops Res. 199 (2016) 52–64 [CrossRef]. 
[11] N.K. Fageria, Nutrient management for improving upland rice productivity and sustainability, Commun. Soil Sci. Plant Anal. 32 (2001) 2603–2629 [CrossRef]. 
[12] K. Zhang, D. Yang, D.J. Greenwood, C.R. Rahn, K. Thorup-Kristensen, Development and critical evaluation of a generic 2-D agro-hydrological model (SMCR_N) 

for the responses of crop yield and nitrogen composition to nitrogen fertilizer, Agric. Ecosyst. Environ. 132 (2009) 160–172 [CrossRef]. 
[13] S. Chen, M. Yin, X. Zheng, S. Liu, G. Chu, C. Xu, D. Wang, X. Zhang, Effect of dense planting of hybrid rice on grain yield and solar radiation use in southeastern 

China, Agron. J. 111 (2019) 1229–1238 [CrossRef]. 
[14] Anwari, A.A. Moussa, A.B. Wahidi, J. Nasar, M. Gamal, M. Abd, Effects Of Planting Distance on Yield and Agro-Morphological Characteristics of Local Rice (Bara 

Variety) in Northeast Afghanistan, vol. 7, 2019, pp. 3–10, 3. 
[15] A. Faraji Bozorgi, R.K. Danesh, Effect of Plant Density on Yield and Yield Components of Rice 12 (11) (2011) 2053–2057. 
[16] A. Muhammad, I. Amin, M. Jan, I. Munir, K. Nawab, N. Kkhan, K. Marwat, Effects of plant population, nitrogen levels, and methods of application on ea 

characters and yield on maize, 1959–1967, nitrogen-limited conditions. Agricultural Systems 87, Pak. J. Bot. 42 (3) (2010), https://doi.org/10.1016/j. 
agsy.2004.09.011, 249–73. 

[17] J. Ritchie, P. Wilkens, J. Jones, W. Batchelor, K. Boote, G. Hoogenboom, U. Singh, C. Porter, L. Hunt, A. Gijsman, The DSSAT cropping system model, Eur. J. 
Agron. (2003), https://doi.org/10.1016/S1161-0301(02)00107-7. 

[18] S. Vilayvong, P. Banterng, A. Patanothai, K. Pannangpetch, CSM-CERES-Rice model to determine management strategies for lowland rice production, Sci. Agric. 
72 (3) (2015) 229–236, https://doi.org/10.1590/0103-9016-2013-0380. 

[19] H. Singh, K.N. Singh, B. Hasan, Evaluation of the CERES-rice model (V. 4.0) under temperate conditions in the Kashmir Valley, India, Cereal Res. Commun. 35 
(2007) 1723–1732. 

[20] P. Banterng Vilayvong, A. Patanothai, K. Pannangpetch, Evaluation of CSM-CERES-Rice in simulating the response of lowland rice cultivars to nitrogen 
application 6 (11) (2012) 1534–1541. 

[21] A. Lamsal, L.P. Amgain, Simulation of growth and yield of rice under varied agronomic management and changing climatic scenarios by using the DSSAT ver. 
4.0 crop model in Chitwan, Nepal, Journal of Hill Agriculture 1 (2010) 114–123. 

[22] S. Ahmad, A. Ahmad, C.M. Tojo Soler, H. Ali, M. Zia-Ul-Haq, J. Anothai, A. Hussain, G. Hoogenboom, M. Hasanuzzaman, Application of the CSM-CERES-Rice 
model for evaluation of plant density and nitrogen management of fine transplanted rice in an irrigated semiarid environment, Precis. Agric. 13 (2012) 
200–218. 

[23] R. Sarkar, S. Kar, Evaluation of management strategies for sustainable rice-wheat cropping systems using DSSAT seasonal analysis, J. Agric. Sci. 144 (2006) 
421–434. 

[24] J. Timsina, E. Humphreys, Performance of CERES-rice and CERES-wheat models in rice-wheat systems: a review, Agric. Syst. 90 (2006) 5–31. 
[25] J. Zhang, Y. Miao, W.D. Batchelor, Evaluation of the CERES-rice model for precision nitrogen management for rice in Northeast China, Advances in animal 

biosciences 8 (2) (2017) 328–332. 
[26] W. Yan, W. Jiang, X. Han, W. Hua, J. Yang, P. Luo, Simulating and Predicting Crop Yield and Soil Fertility under Climate Change with Fertilizer Management in 

Northeast China Based on the Decision Support System for Agrotechnology Transfer Model, 2020. 
[27] J. Timsina, E. Humphreys, Performance and Application of CERES and SWAGMAN Destiny Models for Rice-Wheat Cropping Systems in Asia and Australia: a 

Review, CSIRO Land and Water, Australia, 2003, p. 57. Griffith, NSW 2680. 
[28] Akinbile, Assessment of the CERES-Rice model for rice production in Ibadan, Nigeria 15 (1) (2013) 19–26. http://www.cigrjournal.org. 
[29] S. Addisu, Y.G. Selassie, G. Fissha, B. Gedif, Time series trend analysis of temperature and rainfall in Lake Tana Sub-basin, Ethiopia, Environmental Systems 

Research 4 (1) (2015), https://doi.org/10.1186/s40068-015-0051-0. 

S. Tefera et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(24)09587-2/sref1
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref2
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref2
https://doi.org/10.1002/agj2.21005
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref4
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref4
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref5
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref6
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref6
http://ricestat.irri.org:8080/wrsv3/about.html
https://doi.org/10.15666/aeer/1605_64696482
https://doi.org/10.3390/agronomy9010039
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref10
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref10
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref11
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref12
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref12
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref13
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref13
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref14
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref14
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref15
https://doi.org/10.1016/j.agsy.2004.09.011
https://doi.org/10.1016/j.agsy.2004.09.011
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1590/0103-9016-2013-0380
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref19
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref19
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref20
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref20
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref21
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref21
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref22
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref22
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref22
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref23
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref23
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref24
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref25
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref25
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref26
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref26
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref27
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref27
http://www.cigrjournal.org
https://doi.org/10.1186/s40068-015-0051-0


Heliyon 10 (2024) e33556

12

[30] Z. Tian, Y. Niu, D. Fan, L. Sun, G. Ficsher, H. Zhong, Maintaining rice production while mitigating methane and nitrous oxide emissions from paddy fields in 
China: evaluating tradeoffs by using coupled agricultural systems models, Agricult. Syst. 159 (2018) 175–186, 10.1016/j.agsy.2017.04.006CrossRefFullText| 
GoogleScholar. 

[31] M. Aragaw Tefera, T. Molla, Heliyon Agro-morphological and physiochemical studies of upland rice (Oryza sativa L.) varieties for variability with yield and 
quality-related parameters in south Gondar district, Ethiopia, Heliyon 9 (4) (2023) e15186, https://doi.org/10.1016/j.heliyon.2023.e15186. 

[32] Jiangui Liu, Elizabeth Pattey, Retrieval of leaf area index from top-of-canopy digital photography over agricultural crops, Agricultural and Forest Methodology 
150 (2010) 1485–1490. 

[33] M. Singh, R. Saini, S. Singh, S. Sharma, Potential of integrating biochar and deficit irrigation strategies for sustaining vegetable production in water-limited 
regions, A review of HortScience 54 (2019) 1872–1878, https://doi.org/10.211273/HORTSCI14271-19. 

[34] Confalonieri, A.S. Rosenmund, B. Baruth, R. Confalonieri, A.S. Rosenmund, B. Baruth, C.R.A.S. Roberto, B. Bettina, An Improved Model to Simulate Rice Yield to 
Cite This Version, 2009. HAL ID: hal-00886512. 

[35] E.A. Abera, Calibration and validation of CERES-wheat in the DSSAT model for yield simulation under future climate in Adet, North Western Ethiopia, Afr. J. 
Agric. Res. 14 (2019) 509–518, https://doi.org/10.5897/AJAR2018.13801. 

[36] J.T. Gijsman, Ritchie. The DSSAT cropping system model, Eur. J. Agron. 18 (2003) 235–265, https://doi.org/10.1016/S1161-0301(02)00107-7. 
[37] Fayed, E.I. El-Sarag, M.K. Hassanein, A. Magdy, Evaluation and prediction of some wheat cultivars productivity in relation to different sowing dates under North 

Sinai region conditions, ANNALS OF AGRICULTURAL SCIENCES (2015), https://doi.org/10.1016/j.aoas.2014.12.001. 
[38] C.J. Willmott, Some comments on the evaluation of model performance, Bull. Am. Meteorol. Soc. 63 (1982) 1309–1313. 
[39] A.S. Du Toit, D.L. du Toit. Short description of the model statistical package and weather analogue program. Modeling Temperature Response in Wheat and 

Maize, 2003, 42. 
[40] A. Araya, P.V.V. Prasad, P.H. Gowda, A. Afewerk, B. Abadi, A.J. Foster, Modeling irrigation and nitrogen management of wheat in northern Ethiopia, Agric. 

Water Manag. 216 (2019), https://doi.org/10.1016/j.agwat.2019.01.014. 
[41] S. Akhter, Mm ChoudhuryF, Kalra Ahmed, N. Rahman, Evaluating the CERES-Rice Model under Dry-Season Irrigated Rice in Bangladesh: Calibration and 

Validation, vol. 5, 2017, pp. 96–107. December. 
[42] E. Phiri Chisanga, C. Shepande, H. Sichingabula, Evaluating the CERES-Maize Model Using Planting Dates and Nitrogen Fertilizer in Zambia, vol. 7, 2015, 

pp. 79–97, https://doi.org/10.5539/jas.v7n3p79, 3. 
[43] A. Misganaw Mohammed, Modeling future climate change impacts on sorghum (Sorghum bicolor) production with the best management options in Amhara, 

CABI Agriculture and Bioscience (2022) 1–17, https://doi.org/10.1186/s43170-022-00092-9. 
[44] E. Amiri Tari, J. Daneshian, Simulating the impact of nitrogen management on rice yield and nitrogen uptake in irrigated lowland by the ORYZA2000 model 

simulating the impact of nitrogen management on rice yield and nitrogen uptake in the irrigated low landby ORYZA2000 model, Commun. Soil Sci. Plant Anal. 
48 (2) (2017) 201–213, https://doi.org/10.1080/00103624.2016.1254234. 

[45] M. Mirakhori, B. Mirshekari, E. Amiri, F. Paknejad, M. Yarnia, Evaluation of the CERES-rice model in simulation of rice growth under constraint irrigation and 
nitrogen fertilizer conditions, Ambient Science (2017), https://doi.org/10.21276/ambi.2016.03.sp2.ra03, 03 and 04 (Sp1, Sp2, and 01). 

[46] T.C. Hsiao, L. Heng, P. Steduto, B. Rojas-Lara, D. Raes, E. Fereres, AquaCrop—the FAO crop model to simulate yield response to water: III. Parameterization and 
testing for maize, Agron. J. 101 (3) (2009) 448–459. 

S. Tefera et al.                                                                                                                                                                                                          

http://refhub.elsevier.com/S2405-8440(24)09587-2/sref30
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref30
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref30
https://doi.org/10.1016/j.heliyon.2023.e15186
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref32
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref32
https://doi.org/10.211273/HORTSCI14271-19
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref34
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref34
https://doi.org/10.5897/AJAR2018.13801
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/j.aoas.2014.12.001
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref38
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref39
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref39
https://doi.org/10.1016/j.agwat.2019.01.014
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref41
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref41
https://doi.org/10.5539/jas.v7n3p79
https://doi.org/10.1186/s43170-022-00092-9
https://doi.org/10.1080/00103624.2016.1254234
https://doi.org/10.21276/ambi.2016.03.sp2.ra03
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref46
http://refhub.elsevier.com/S2405-8440(24)09587-2/sref46

	Evaluating the effects of the CERES-Rice model to simulate upland rice (Oryza sativa L.) yield under different plant densit ...
	1 Introduction
	2 Materials and methods
	2.1 Description of the study area
	2.2 Description of the CERES-Rice model
	2.3 Field experiment
	2.4 Model inputs
	2.4.1 Crop data
	2.4.2 Soil data
	2.4.3 Climate data

	2.5 Model calibration and validation

	3 Results and discussion
	3.1 Results
	3.1.1 Calibrtion and evaluation

	3.2 Discussion
	3.3 Conclusions

	Data availability statement
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


