Table 9.
Validation | Forecast 1 − motor | Forecast 2 – motor |
---|---|---|
Train Accuracy (%) | 95.6 | 95.1 |
Test Accuracy (%) | 94.74 | 94.84 |
Batch size | 32 | 32 |
Optimizer | Adam | Adam |
Activation | Relu | Relu |
Epochs | 30 | 30 |
Learning rate | 0.0005 | 0.0005 |
Dense layer at first level (neurons) | 20 | 20 |
Dense layer at second level (neurons) | 10 | 10 |
Input layer forecast 1 − motor Input layer forecast 2 − motor |
4 (curr1, temp2, hum1, act1) | 3 (temp2, hum1, act1) |
Output layer (ON/OFF) | 2 (ON/OFF) | 2 (ON/OFF) |
Inferencing time (ms) | 1 | 1 |
Peak RAM Usage (bytes) | 1.4 K | 1.4 K |
Flash Usage (bytes) | 14.9 K | 14.8 K |