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A B S T R A C T   

Cancer of unknown primary (CUP) is a rare type of metastatic cancer in which the origin of the tumor is un-
known. Since the treatment strategy for patients with metastatic tumors depends on knowing the primary site, 
accurate identification of the origin site is important. Here, we developed an image-based deep-learning model 
that utilizes a vision transformer algorithm for predicting the origin of CUP. Using DNA methylation dataset of 
8,233 primary tumors from The Cancer Genome Atlas (TCGA), we categorized 29 cancer types into 18 organ 
classes and extracted 2,312 differentially methylated CpG sites (DMCs) from non-squamous cancer group and 
420 DMCs from squamous cell cancer group. Using these DMCs, we created organ-specific DNA methylation 
images and used them for model training and testing. Model performance was evaluated using 394 metastatic 
cancer samples from TCGA (TCGA-meta) and 995 samples (693 primary and 302 metastatic cancers) obtained 
from 20 independent external studies. We identified that the DNA methylation image reveals a distinct pattern 
based on the origin of cancer. Our model achieved an overall accuracy of 96.95 % in the TCGA-meta dataset. In 
the external validation datasets, our classifier achieved overall accuracies of 96.39 % and 94.37 % in primary and 
metastatic tumors, respectively. Especially, the overall accuracies for both primary and metastatic samples of 
non-squamous cell cancer were exceptionally high, with 96.79 % and 96.85 %, respectively.   

Introduction 

Cancer of unknown primary (CUP) is uncommon type of metastatic 
cancer where the origin of the tumor is not known after detailed in-
vestigations [1]. Although recent advances in radiological and molec-
ular assessments have led to a higher identification rate of primary 
tumor sites and have reduced the proportion of patients with cancer 
diagnosed with CUP to 1-2 %, there are still cases where the primary site 
of the caner is undefined [2,3]. Patients with CUP who received 
empirical chemotherapy were observed to have median overall survival 
durations ranging from 2.7 to 10.7 months [3]. 

The relatively poor survival observed in patients with CUP compared 
to patients with metastatic cancer originating from a known primary 
tumor suggest the importance of accurately identifying the primary 
tumor types for application of appropriate treatment [4]. In a 
meta-analysis study that evaluated the efficacy of tumor type-specific 
therapy in patients with CUP, the evidence is currently insufficient to 
recommend tumor type-specific therapy as a standard treatment 
approach in CUP. However, certain patients with CUP may still derive 
benefits from site-specific therapy [5]. Since the treatment approach for 
patients with metastatic tumors is largely determined by knowledge of 
the primary site, it is crucial to identify the primary site of the tumor to 
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provide accurate clinical management [6,7]. 
Advances in machine learning algorithms [8] have led to the 

development of various diagnostic or prognostic methods based on 
medical and molecular data, which have shown more reliable and 
reproducible performance than conventional methods [6,9,10]. In the 
diagnostic work of CUP tumors, recent studies have proposed the clas-
sification model for identification of the tissue of origin for CUP based on 
molecular profiling or scanned hematoxylin and eosin whole-slide im-
ages (WSI) (Table 1). Tumour Origin Assessment via Deep Learning 
(TOAD) is a deep learning model that uses WSIs to predict the tissue of 
origin for CUP [11]. TOAD enables prediction of origin of CUP using 
routinely obtained WSI without the need for additional molecular 
profiling, but exhibits relatively lower accuracy compared to models 
that use molecular profiles. In many pan-cancer studies, each tumor type 
displays a distinct molecular landscape [12–16]. Based on the under-
standing that these molecular profiles of the primary tumor are retained 
in metastatic cancer, the molecular feature such as DNA mutation sig-
natures, gene expression patterns, or DNA methylation of metastatic 
tumors has been utilized in several studies to predict the tissue of origin 
for CUP [17–22]. These CUP classification models employ a variety of 
machine learning algorithms to identify the tissue of origin by 
comparing the molecular characteristics of CUP to a reference dataset of 
tumors with known origins. CUP-AI-Dx clearly demonstrates the appli-
cability of image deep learning model on molecular features for CUP 
classification. This model showed high accuracy for identifying tissue of 
origin using 1D Inception convolutional neural network model and gene 
expression data [17]. 

In this study, we proposed a deep learning model based on vision 
transformer (ViT) [23] to predict the tissue of origin of CUP by classi-
fying DNA methylation image patterns. We separated the non-squamous 
cancer and squamous cell cancer to create tumor type-specific images 
for each group, and then combined these two images to create a DNA 
methylation image for model training. This approach showed excellent 
classification accuracy in predicting the primary site of metastatic can-
cer when compared to previous published models that relied on mo-
lecular profiles. 

Materials and methods 

Data collection and preprocessing 

DNA methylation data (Illumina human methylation 450k Bead-
Chip) and clinical information of The Cancer Genome Atlas (TCGA) 
dataset consisting of 8,233 primary tumor samples across 31 solid tumor 
types were obtained from Xena platform [24]. Since the Illumine 450K 
array and EPIC array are frequently used to confirm genome wide 
analysis of DNA methylation, the CpG probes which are included in both 
platforms were used to further analysis. We then excluded probes with 
less than 80 % of samples and replaced missing values with median. The 
variance was calculated for each probe among the 8,233 samples and the 

10,000 most variably methylated CpG probes were selected. We used 
Uniform Manifold Approximation and Projection (UMAP) to visualize 
TCGA samples in lower dimensions. Based on the results of UMAP 
projection, we categorized 29 cancer types to 18 tissue types (additional 
file 1: Table S1) and excluding two cancer types (adrenocortical cancer 
and uveal melanoma) with fewer than 100 cases. After excluding two 
cancer types, 8,074 samples were divided to 4,860 training samples (60 
%), 1,600 validation samples (20 %), and 1,614 test samples (20 %). 

We obtained additional 20 microarray datasets from GEO for 
external validation of our models. These external validation datasets 
consisted of 693 primary tumor and 302 metastatic tumor samples 
across 16 cancer types. Detailed information of GEO dataset was sum-
marized in additional file 1: Table S2. Data preprocessing was conducted 
using the computing server at the Genomic Medicine Institute Research 
Service Center. 

Feature selection for deep learning model 

We utilized the training set (n = 4,860) from TCGA to select features 
for the model. In UMAP analysis, since squamous cell types of cancer 
formed a single cluster regardless of the organ of origin, we divided the 
training samples into non-squamous cell cancer group and squamous 
cell cancer group for a more precise identification of tumor type specific 
differentially methylated CpGs (DMCs). For each group, we identified 
DMCs by calculating the median beta value of each probe in the in-class 
sample and comparing it to the out-of-class samples. The statistical 
significance assessed using Mann-Whitney U test (p<0.001). 

We selected 136 DMCs for each of the 17 non-squamous cell cancer 
subtypes and 90 DMCs for each of the 5 squamous cell cancer subtypes. 
As a result, we used 2,312 DMCs from the non-squamous group and 450 
DMCs from the squamous group to generate the image for the deep 
learning model. 

Transformation of DNA methylation data to images and build the vision 
transformer model 

We used the Image Generator for Tabular Data (IGTD) tool [25] to 
generate images from the tabular data of DMCs using the Euclidean 
distance method with 5,000 iterations. The 2,312 DMCs from the 
non-squamous group were converted into images with a size of 68×34, 
while the 450 DMCs from the squamous group were converted into 
30×15 size images. The DNA methylation image of the squamous group 
was resized to 68×34 and merged with the non-squamous part image. 
To ensure compatibility with image data standards, the values in the 
image data were scaled to a range of 0 to 255, and since the image data is 
3-channel, the 68×68 DNA methylation data array was multiplied by 
255 and repeated three times to create a grayscale image in a 3-channel 
format (68×68×3). 

We employed the ViT model to predict the class of images from DNA 
methylation data. The model architecture was based on the basic ViT 

Table 1 
Performance of CUP classification model published previously.  

Refs. Year Data type Method Performance of external validation dataset 

Accuracy Validation tumor # of tumor types 

[21] 2011 RT-PCR K-nearest neighbor 83 % (187) P + M 28 
[33] 2011 Microarray Machine learning 88.5 % (462) P + M 15 
[19] 2016 DNA methylation microarray Random forest 94 % (534) M 21 
[32] 2020 Targeted DNA sequencing Random forest 74.1 % (11644) P + M 22 
[22] 2020 DNA methylation microarray deep neural network not measured (581) P+M 10 
[17] 2020 Gene expression 1d-inception 86.96 % (23) / 72.46 % (69) M 6 / 18 
[18] 2020 Whole genome sequencing deep neural network 88 %P / 83 %M (2120) P + M 16 
[11] 2021 Whole slide image multitask neural network 79.9 % (682) / 61 % CUP (317) M + CUP 17 
[20] 2022 Whole genome sequencing Random forest 58 % CUP (141) CUP - 
Our model 2023 DNA methylation microarray Vision transformer 96.4 %P (693) / 94.4 %M (302) P + M 14 

RT-PCR: Reverse transcription polymerase chain reaction; P: primary tumor; M: metastatic tumor; CUP: cancer unknown primary 

J. Hwang et al.                                                                                                                                                                                                                                  



Neoplasia 55 (2024) 101021

3

using Tensorflow and vit-keras python package. The input image is 
divided into the 289 (17×17) image patches, which were flattened into a 
vector. Position embedding vectors were added to the patch embedding 
vectors, and the resulting vectors were passed through multiple trans-
former blocks that utilized multi-headed attention layers. We used 8 
transformer blocks with the four attention heads, and the projection 
dimension was set to 256. We used two fully connected layers with 512 
and 256 neurons, and we utilized the GELU as activation function in the 
transformer block. The final output of the transformer block was flat-
tened and served as the input vector for two fully connected layers with 
1024 and 512 neurons. The model was trained using a batch size of 100, 
epoch of 14, learning rate of 0.0001, and the AdamW optimizer. We used 
a hold-out validation method for training this model. 

Direct visualization of the attention in the model is another notable 
feature of the ViT model. Following a similar approach described in a 
self-supervised learning method for ViT, we used the attention weights 
of multi-head in the final layer of the Transformer encoder to visualize 
the attention patterns. 

Model performance evaluation 
Overall accuracy, precision, recall, and f-1 score were calculated to 

evaluate the performance. The performance metrics were computed as 
follows: 

Accuracy =
True positive + True negative

True positive + False negative + False positive + True negative  

Precision =
True positive

True positive + False positive  

Recall =
True positive

True positive + False negative  

f1 score = 2 ×
Precision × Recall
Precision + Recall  

Results 

Classification of tumor origin based on deep learning model 

First, we used DNA methylation microarray data from the TCGA, 
consisting of 8,233 primary tumor samples, to investigate the global 
DNA methylation patterns across different types of cancer. Upon visu-
alizing the data using UMAP, we observed distinct groupings of samples 
based on their respective cancer types. Also, we found that cancer 
clusters exhibiting the same organ origin or histological feature tended 

Fig. 1. CUP-classifier model workflow. The beta values of non-squamous cancer-specific DMCs and squamous cancer-specific DMCs were converted into 68×34 
and 30×15 array formats, respectively, and were followed by conversion to IGTD image. The squamous part image was resized to 68×34 and merged with non- 
squamous part image. Merged images were divided into 17×17 image patches and these patches were used to train the ViT model for classification of CUP. 
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to be located in close proximity (additional file 2: Fig. S1). For the most 
cancers exhibited clustering patterns based on organ types, such as 
colorectal (colon adenocarcinoma and rectum adenocarcinoma), oeso-
phagogastric (esophageal carcinoma and stomach adenocarcinoma), 
kidney (kidney papillary cell carcinoma, kidney clear cell carcinoma, 
and kidney chromophobe), hepatobiliary (liver hepatocellular carci-
noma and cholangiocarcinoma), brain (brain lower grade glioma and 
glioblastoma multiforme), soft tissue (Sarcoma and mesothelioma) and 

gynecologic cancer (uterine corpus endometrioid carcinoma, uterine 
carcinosarcoma, ovarian serous cystadenocarcinoma, and cervical & 
endocervical cancer). In contrast, some other cancers were clustered 
based on histological features, such as squamous cell cancers (head & 
neck squamous cell carcinoma, esophageal carcinoma, lung squamous 
cell carcinoma, cervical & endocervical cancer, and bladder urothelial 
carcinoma). Based on these results, we excluded two cancer types with 
small cohorts (79 adrenocortical cancers and 80 uveal melanomas) and 

Fig. 2. Differentially methylated CpG (DMC) map and DNA methylation image. (a) Detailed pixel location of DMCs in the DNA methylation image, colored by 
tissue type. (b) Example of DNA methylation image of six tissue types and outline of the image was colored by tissue type. 

Fig. 3. Performance for the prediction of the tumor origin on the TCGA dataset. (a) The classifier model confusion matrix for TCGA test dataset and (b) TCGA- 
meta datasets. Rows and columns of the matrix represent the predicted classes by the model and the true classes of the tumor, respectively. The number of samples 
and recall are plotted upper of the matrix and precision is plotted next to the confusion matrix. (c) Overall accuracy and the weighted average of precision, recall, and 
F1-score of the classifier for the test dataset (left) and TCGA-meta dataset (right). 
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re-categorized 29 cancer types into 18 common origin classes according 
to their primary organ or histological characteristics. Subsequently, we 
built a deep learning model for classification of tissue origin of cancer 
(additional file 1: Table S1) (Fig. 1). 

We divided a total of 8,074 tumor samples into training (60 %), 
validation (20 %), and test datasets (20 %), comprising 4,860, 1,600, 
and 1,614 samples, respectively. Using the training dataset, we inde-
pendently identified class-specific DMCs for the non-squamous group 
and squamous group. To enhance the performance of our model, we 
transformed the tabular format of beta values into an image format using 
the IGTD tool. In this transformation, we assigned similar features to 
neighboring pixels and dissimilar features to pixels that are far apart, 
taking into consideration the similarity of DNA methylation value 
among the probes. We found that the pixel location of certain class- 
specific DMCs, such as brain, oesophagogastric, hepatobiliary, and 
prostate, were clustered together within the same tissue type (Fig. 2). To 
generate a unique image representing the characteristic of the both 
class-specific DMCs from non-squamous group and squamous group, we 
combined the DNA methylation image of the squamous group with the 
non-squamous part image and used the combined image as an input for 
the model. Each tumor sample exhibited a unique image pattern in the 
DNA methylation data. When we averaged the DNA methylation images 
for each class, we observed distinct patterns that were specific to the 
origin of cancer (Fig. 2 and additional file 2: Fig. S2). The image patterns 
of randomly selected individual sample differed slightly from each 
other, however, the tissue-specific patterns were confirmed in most 
samples (additional file 2: Fig. S3). 

The DNA methylation images, generated using the IGTD tool, were 

used to train the ViT model. After training the classifier, we further 
examined the relative significance of the regions analyzed by the model 
in terms of human interpretability. 

Evaluation of model performance and model interpretability 

We evaluate the performance of our model using a test dataset of 
1,614 primary tumors and 394 TCGA metastatic tumors (TCGA-meta) 
that were not used in the model training. The performance metrics for 
test and TCGA-meta dataset are shown in Fig. 3a and Fig. 3b, respec-
tively. The model demonstrated an overall accuracy of 97.96 % for the 
test dataset, and 96.95 % for the TCGA-meta dataset, highlighting its 
strong performance. In addition, the weighted average of precision, 
recall, and F1-score exceeded 0.97 for both the test dataset and TCGA- 
meta dataset (Fig. 3c). 

The predictive performance of TCGA-meta dataset was comparable 
to that of the test datasets. These findings suggest that metastatic sam-
ples maintain the molecular profile of the primary tumor, enabling the 
model to make accurate predictions regarding the primary site of the 
tumor. 

For interpretability of the CUP classifier, attention map visualiza-
tions were generated for self-attention in the transformer encoder. 
additional file 2: Fig. S4 shows the average of attention maps for each 
class. Our model revealed that the attention of the model mainly focuses 
on regions with unmethylated probes. 

Fig. 4. Performance for the external validation datasets. Metrics including per-class accuracy, precision, recall, F1-score are calculated for the (a) primary 
tumors, (b) metastatic tumors in non-squamous group, and (c) primary and metastatic tumors in squamous group. Overall accuracy, weighted average of precision, 
recall, F1-score for each dataset are plotted at the front of the plot. 
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Application of classifier to external datasets 

To expand the utilization of our model in a various clinical setting, 
we analyzed the performance of our model on an external validation 
data set consisting of 995 samples (693 primary and 302 meta samples) 
across 14 primary cancer types from 20 independent studies (additional 
file 1: Table S2). Without data normalization or model tuning, our 
classifier model achieved overall accuracy at 96.39 % in the 693 primary 
tumors and 94.37 % in the 302 metastatic tumors. Confusion matrix and 
performance metrics for each class are shown in additional file 2: Fig. S5. 

Next, we divided the external dataset into a non-squamous cancer 
group and a squamous cell cancer group to assess the performance of 
each group independently. In the non-squamous cancer group, there 
were 560 primary cancer samples from 8 cancer types and 222 meta-
static cancer samples from 6 cancer types. The overall accuracy for both 
primary and metastatic samples was remarkably high, with 96.79 % and 
96.85 % accuracy, respectively. The squamous cell cancer group con-
sisted of 133 primary cancer samples from 4 squamous cell cancer types 
and 80 metastatic head and neck cancer samples. The overall accuracy 
for primary samples was 94.74 %, while for metastatic samples, it was 
87.5 % (Fig. 4). 

We identified that DNA methylation images of brain metastasis 
samples originated from melanoma and lung showed that each sample 
resembled its primary site, skin and lung pattern, rather than the brain. 
Similarly, in the case of liver metastasis originating from colorectal 
cancer, the DNA methylation pattern corresponded with the colorectal 
pattern rather than liver image. These results indicated that the DNA 
methylation heatmap pattern of the metastatic samples retained the 
primary organ pattern rather than reflecting the metastasized organ 
(Fig. 5). 

Discussion 

Deep learning technology has undergone significant advancements 
and has been extensively explored in the analysis of biological and 

clinical data. Notably, the field of image deep learning has witnessed 
substantial progress in the diagnosis of diseases and identification of 
lesions using medical imaging data, such as X-rays, CTs or pathology 
slides [26,27]. Furthermore, deep learning has also been applied to 
various biomedical fields utilizing omics data, including variant calling, 
annotation, and prediction of pathogenic variants [28–31]. 

Multiple methods have been developed to classify the CUP, utilizing 
diverse types of data, such as WSI, DNA methylation microarray, and 
RNA or DNA sequencing data. Marker gene analysis or traditional ma-
chine learning techniques such as random forest, regression, and support 
vector machine were used to train the model for classification [18–21, 
32,33]. In recent studies, deep learning methods such as deep neural 
networks and 1d-inception algorithm have been applied to identify the 
origin of unknown primary cancer [11,17,22]. 

In this study, we proposed a deep learning algorithm designed for the 
classification of CUP based on the analysis of organ-specific image pat-
terns derived from DNA methylation microarray data. DNA methylation 
is generally less sensitive to batch or platform variations compared to 
RNA expression data, requiring less extensive data normalization. We 
trained the model using DNA methylation images and confirmed that 
our model exhibited excellent performance on both the test dataset and 
the TCGA-meta dataset. To validate the effectiveness of our model, we 
performed validation using data from 20 independent studies without 
additional model tuning and data normalization, ensuring that its per-
formance is robust and can be applied effectively to various clinical 
settings. 

Our model demonstrated high accuracy compared to what has been 
reported in other studies in the external validation dataset. Specifically, 
it achieved an accuracy of 96.39 % and 94.37 % for primary cancer and 
metastatic cancer dataset, respectively. 

The models proposed in previous studies have been evaluated with 
an external dataset primarily consisting of non-squamous cancer data-
sets. For example, EPICUP which also predicts CUP based on DNA 
methylation data showed 94 % accuracy on the external dataset; how-
ever, it only included 11 squamous cancers (5 cervical squamous 

Fig. 5. DNA methylation image of metastatic cancer. Two brain metastases were selected for example: one from melanoma (patient 1) and another from lung 
adenocarcinoma (patient 2). Additionally, one liver metastasis from colorectal adenocarcinoma (patient 3) was included. Original DNA methylation image of five 
tissues (lung, skin, brain, colorectal, and hepatobiliary) were located in bottom of the figure. 
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carcinoma and 6 Head & Neck squamous cell carcinoma) out of 534 
metastatic cancer datasets. In case of study conducted by Zheng et al, the 
performance of model was evaluated with 581 independent cancer 
samples, but only 6 squamous cancer samples were included in the 
dataset. 

When our model was specifically applied to non-squamous cancer 
samples, it demonstrated an exceptional performance with 97 % accu-
racy in both of 560 primary tumor samples and 222 metastatic tumor 
samples. Although the number of tested metastatic cancer were smaller 
than EPICUP, our model has given the best accuracy than any other 
previous model before. The squamous cancer group showed 95 % ac-
curacy for primary tumor samples and 88 % accuracy for metastasis 
tumor samples, which was slightly lower compare to non-squamous 
group. 

While our model demonstrated strong performance in independent 
datasets consisting of metastatic cancer, we have several limitations in 
testing our model. First, we evaluated our model with a dataset 
composed of many types of cancer, but we were unable to test several 
types of cancer and performance tests on actual CUP samples are 
insufficient. Although we accurately predicted four CUP samples from 
GSE108576, a large dataset of CUP is needed for more accurate per-
formance evaluation. Second, our classifier showed lower performance 
in the squamous cell cancer group because of the lack of training data. 

Conclusions 

In summary, we have constructed image-based deep learning models 
for predicting the origin of CUP utilizing DNA methylation data. Owing 
to the very nature of DNA methylation data, our model showed great 
performance in prediction regardless of non-squamous cell cancers or 
squamous cell cancers without the need for minimal data normalization. 
We needed more DNA methylation data of patient with CUP or squa-
mous cell cancer for further validation. However, our model has po-
tential for improving the efficiency and accuracy of diagnosing cases 
where the primary cancer site is unknown. 
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