Skip to main content
. 2024 Jun 28;55:101021. doi: 10.1016/j.neo.2024.101021

Table 1.

Performance of CUP classification model published previously.

Refs. Year Data type Method Performance of external validation dataset
Accuracy Validation tumor # of tumor types
[21] 2011 RT-PCR K-nearest neighbor 83 % (187) P + M 28
[33] 2011 Microarray Machine learning 88.5 % (462) P + M 15
[19] 2016 DNA methylation microarray Random forest 94 % (534) M 21
[32] 2020 Targeted DNA sequencing Random forest 74.1 % (11644) P + M 22
[22] 2020 DNA methylation microarray deep neural network not measured (581) P+M 10
[17] 2020 Gene expression 1d-inception 86.96 % (23) / 72.46 % (69) M 6 / 18
[18] 2020 Whole genome sequencing deep neural network 88 %P / 83 %M (2120) P + M 16
[11] 2021 Whole slide image multitask neural network 79.9 % (682) / 61 % CUP (317) M + CUP 17
[20] 2022 Whole genome sequencing Random forest 58 % CUP (141) CUP -
Our model 2023 DNA methylation microarray Vision transformer 96.4 %P (693) / 94.4 %M (302) P + M 14

RT-PCR: Reverse transcription polymerase chain reaction; P: primary tumor; M: metastatic tumor; CUP: cancer unknown primary