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Abstract 
Alzheimer's Disease (AD) is a complex neurodegenerative disorder significantly influenced by sex 
differences, with approximately two-thirds of AD patients being women. Characterizing the sex-
specific AD progression and identifying its progression trajectory is a crucial step to developing 
effective risk stratification and prevention strategies. In this study, we developed an autoencoder 
to uncover sex-specific sub-phenotypes in AD progression leveraging longitudinal electronic 
health record (EHR) data from OneFlorida+ Clinical Research Consortium. Specifically, we first 
constructed temporal patient representation using longitudinal EHRs from a sex-stratified AD 
cohort. We used a long short-term memory (LSTM)-based autoencoder to extract and generate 
latent representation embeddings from sequential clinical records of patients. We then applied 
hierarchical agglomerative clustering to the learned representations, grouping patients based on 
their progression sub-phenotypes. The experimental results show we successfully identified five 
primary sex-based AD sub-phenotypes with corresponding progression pathways with high 
confidence. These sex-specific sub-phenotypes not only illustrated distinct AD progression 
patterns but also revealed differences in clinical characteristics and comorbidities between 
females and males in AD development. These findings could provide valuable insights for 
advancing personalized AD intervention and treatment strategies. 
 
 
Introduction 
Alzheimer’s disease (AD), recognized as the predominant form of dementia, is a multifaceted and 
progressive neurodegenerative disorder that currently affects an estimated 6.9 million Americans 
as of 20241, with a potential rise to 13.85 million by 20602. AD accounts for 60-80% of dementia 
cases as well as the 7th cause of death in the United States, which presents significant challenges 
in both diagnosis and treatment globally1 and imposes substantial burdens on individuals affected, 
their families, healthcare systems, and the whole society. The progression of AD is hypothesized 
to include three main phases: preclinical AD, clinically significant mild cognitive impairment (MCI), 
and AD3. These phases represent a continuum where early pathological changes, such as the 
accumulation of beta-amyloid plaques and tau tangles, begin silently in the brain during the 
preclinical stage4. As the disease advances, individuals may experience noticeable cognitive 
decline, initially manifesting as MCI that significantly impacts daily functioning. Ultimately, this 
progression culminates in AD, marked by severe cognitive deficits, memory loss, and functional 
impairment5. However, the progression of AD is characterized by a complex array of longitudinally 
linked clinical features and outcomes, demonstrating a broad spectrum of manifestations across 
different groups of patients beyond three main phases6–8. There is considerable interindividual 
variability in AD progression9, with some experiencing rapid loss of cognition while others 
progressing more slowly. Compelling evidence indicates that heterogeneity exists in AD 
progression through different intermediate stages with varied clinical presentations10–13. 
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Many factors have been suggested to influence AD progression, such as age, sex8,14, genetic 
variations15–17, educational background18, environmental exposures19 and so forth. Basic and 
clinical research has indicated that sex difference is one of the most critical factors that contribute 
to its complexity20–23. Approximately two-thirds of all existing AD cases are in females24, and 
recent studies suggest significant sex differences in clinical severity25–27, neuropathological 
characteristics28,29 and genetic factors21,30 of AD. It is also reported that for women aged 65, the 
lifetime risk of developing AD is 21.2%, about twice the risk seen in men1,31. Additionally, female 
is a major risk factor for late-onset AD32. One of the reasons for the higher prevalence of AD in 
women might be their longer average life expectancy33. For three progressive pathological stages, 
they all present sex differences. For example, several studies reported a higher incidence of MCI 
in males34–36, while females show a faster rate of cognitive decline when transitioning from normal 
cognition to MCI. The accelerated cognitive decline in females has partially been attributed to the 
effects of the APOE ε4 allele37–41. Among patients who have not yet been diagnosed with AD,  
female carriers exhibit more severe brain metabolic slowdown, hippocampal volume reduction, 
and cortical thinning compared to male carriers38,42. APOE ε4 significantly increases brain Aβ 
deposition and atrophy, and dramatically reduces brain connectivity in the default mode network 
of females43–47. Similarly, women are significantly at greater risk of the development of MCI to AD 
due to a more rapid speed of cognitive decline. Several biomarkers have been revealed (e.g., 
Cerebrospinal Fluid (CSF), neuroimage), providing clearer evidence of a negative correlation 
between the APOE ε4 genotype and female AD patients48. For instance, female AD patients with 
ε4 carriers greatly exhibited higher levels of CSF tau protein compared to male AD ε4 carriers, 
increasing the risk of cognitive decline leading to AD38,48. Another longitudinal study also showed 
that the ε4 allele caused a significantly higher risk of transition from MCI to AD in women than in 
men38. However, some other studies found women have greater cognitive resilience, though they 
have increased tau pathology49,50. It is suggested that women might be better able to preserve 
their brain structural properties after exposure to pathological tau49. Moreover, male patients have 
a higher death rate than female patients after the diagnosis of AD, with women having a mean 
age at death of 89.8 years versus men at an average of 87.3 years28,51. Additionally, women aged 
75 years or older are more likely to be diagnosed with AD than men52. This is probably due to 
female carriers of APOE ε4 allele increased drastically and at a greater risk of cognitive decline 
than male carriers50. The mounting proof of sex differences in AD above-mentioned highlights the 
importance of understanding the underlying architecture and development in female and male AD 
progression.  
 
In the last decade, the development of electronic health record (EHR) systems53,54 has made it 
possible to collect large-scale longitudinal and diverse profiles of patients for AD research55–57. 
Typical EHRs consist of a wide variety of critical health events of patients collected through routine 
care, including diagnostic codes, comorbidities, medication use, laboratory measurements, and 
other relevant clinical information. Moreover, EHRs include longitudinal follow-up data inpatient 
or outpatient, offering long-term insights into AD development. These data not only can assist 
healthcare professionals in personalized treatment and long-term patient management but also 
support clinical research on disease progression and pathology. EHRs have been effectively 
utilized to predict patient outcomes and identify disease sub-phenotypes, including AD58–61. Xu et 
al.56 proposed an outcome-oriented model using Long Short-Term Memory (LSTM)62 to identify 
progression pathways from MCI to AD, deriving several AD progression subtypes related to 
comorbidities like cardiovascular diseases. Hinrichs et al. developed a multi-kernel learning 
framework that enables us to predict transitions from MCI to AD, revealing differences in disease 
progression between MCI converters and stable MCI patients63. In sex-specific analyses, Alice T. 
et al.64 performed comprehensive phenotyping and network analyses, gaining insight into clinical 
characteristics and sex-specific clinical associations in AD. Additionally, the framework developed 
by Landi et al.65 identified patient stratification at scale by leveraging deep representation learning 
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of EHR data to classify dementia subtypes, enhancing large-scale precise disease prediction. 
Furthermore, Tang et al. demonstrated how EHRs and knowledge networks can be leveraged for 
AD prediction and uncovering sex-specific biological insights66. Many previous studies have been 
hypothesis-driven, analyzing phenotypes of AD patients using clinical data such as neurocognitive 
tests67 and neuroimaging68. They have focused on specific risk factors associated with AD, such 
as demographics (e.g., ages28), socioeconomics (e.g., exercise and occupation69) and 
comorbidities (e.g., hypertension70 and vascular disease71). However, the role of sex in 
moderating the complexity and heterogeneity of AD progression remains largely unexplored. 
These approaches have not accounted for sex differences in AD progression, specifically how 
sex influences long-term pathological characteristics72 of AD sub-phenotypes. Characterizing the 
sub-phenotypes of sex-specific AD progression and identifying the contributing factors is a crucial 
step for AD stratification and prevention. By revealing and understanding the differences, 
clinicians can tailor therapeutic strategies to maximize treatment benefits and minimize adverse 
effects in male and female AD patients. 
 
In this study, we developed a long short-term memory (LSTM)-based autoencoder that can 
identify sex-specific sub-phenotypes in the progression of AD using large-scale longitudinal EHR 
data. Unlike traditional approaches that establish the models of clinical characteristics’ correlation 
with patient outcomes, our proposed model learns temporal changes in patient conditions 
throughout the progression of AD, stratified by sex. Specifically, we identified and collected 
longitudinal EHRs of AD patients from the OneFlorida+ clinical research consortium. Then, we 
utilized an autoencoder model based on LSTM units that can automatically learn subsequence 
temporal features while accounting for sex stratification. We subsequently applied hierarchical 
agglomerative clustering to group patients into distinct clusters representing disease states or 
subtypes. We then used chi-square tests and visualization techniques to interpret the sex-based 
AD progression sub-phenotyping results. Finally, we validated the reproducibility and stability of 
the identified sub-phenotypes using the Silhouette score and Adjusted Rand Index (ARI). We 
demonstrated both differences and similarities in disease progression pathways between female 
and male AD patients. This study contributes to understanding the heterogeneity of AD 
progression on sex differences, potentially aiding in personalized care and treatment of AD. Fig. 
1 illustrates the overall framework of our study. 
 

 
Fig. 1. The overview of the study: (a) Data source and study population; (b) Constructing temporal patient 
representation; (c) Sex-specific latent representation with autoencoder; (d) Deriving sex-specific AD progression sub-
phenotypes; and (e) Evaluation of model and clustering. 
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Materials and methods 
Data source and study population 
The large amount of EHR data of AD patients used in this study comes from the OneFlorida+ 
Clinical Research Consortium73,74, one of the clinical research networks in the Patient-Centered 
Outcomes Research Institute-funded National Patient-Centered Clinical Research Network 
(PCORnet). OneFlorida+, a collaborative clinical network of 14 health institutions, including 
community health systems, clinics, and academic health institutes, which covers over 20 million 
patients from Florida (~17 million), Georgia (~2.1 million), and Alabama (~1 million). It consists of 
diverse EHR-based information adhering to the PCORnet Common Data Model (CDM), including 
demographics, encounters, procedures, diagnosis, vital signs, and among others, covering 
massive and heterogeneous patient-centered clinical data. These structured EHRs were collected 
after January 2012. This study was approved by the University of Florida Institutional Review 
Board (protocol no. IRB202202820). 
 
We identified the patient cohort by the following criteria: (1) The start of the observation time was 
defined as the earliest of January 2012; (2) The first visit should be at 50 years of age or older; 
(3) Patients have at least one diagnosis of AD, i.e., International Classification of Diseases, Ninth 
Revision, Clinical Modification (ICD-9-CM) codes: 331.0 and International Classification of 
Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) codes G30.0, G30.1, G30.8, and 
G30.9. (4) The patients have at least two encounters.  (5) patients have at least one visit record 
three years before AD diagnosis and over one year of disease progression after AD diagnosis. 
We excluded the patients with AD diagnosis dates that are not within the period between their 
earliest and latest visit times. 
 
Variable selection and preprocess 
The EHRs information from selected AD patients consists of thousands of different features. We 
categorize these features into four types, i.e., continuous features (e.g., body mass index and 
age), binary features (e.g., death), time-to-event features (e.g., diagnosis and treatment) and 
multi-class features (e.g., smoking status and medication code). We first transformed these 
features with different strategies based on categories to ensure they can be processed by the 
classifiers. For instance, we discretized age using bins of identical 10-year size and discretized 
BMI into four groups: underweight (≤18.5), normal weight (18.5–24.9), overweight (25–29.9), and 
obesity (≥30). We also transformed smoking status codes into non-smokers, current smokers, ex-
smokers, and others. In addition, diagnosis and treatment codes were the main components of 
our variables. For diagnosis, the codes were mapped to Phecodes75 for the sake of 
standardization, an EHR-specific codebase for supporting phenome-wide association studies 
(PheWAS). For treatment medication codes, using National Drug Codes (NDC) and RxNorm, we 
mapped them to the unified Anatomical Therapeutic Chemical (ATC) Classification codes76. 
Further, we used multiple imputations by chained equations (MICE) to tackle the missing values. 
Finally, we concatenated all the features to be a patient-centered binary matrix, excluding sex in 
the column which was used as the classification label. 
 
We used visualization techniques to see the difference in the distribution of patients’ features 
before representation learning. If there is a change in the sex stratification between the initial 
patient feature matrix and the latent representations learned by the model, where the later sex 
stratification becomes more significant, it can indicate the effectiveness of our model in sex 
stratification. Since we leveraged sub-sequence level latent embedding to unveil sub-phenotypes 
subsequently, we used sub-sequence level patient features for visualization. The dimension of 
the subsequence is generally high, so we first use principal component analysis (PCA) 
dimensionality reduction to visualize the distribution in the main components. In addition to 
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visualizing PCA components with scatter plots, we used the Mann-Whitney U test to quantitatively 
assess sex stratification by analyzing the significance of the correlation between sex and the 
principal components. The Mann-Whitney U test77 is a non-parametric two-sample t-test used to 
test the null hypothesis. In this study, for example, we aim to test whether there is no statistically 
significant difference in the PCA components of subsequences between different sexes. Mann-
Whitney U test takes the PCA component from two sexes as parameters, compares their ranks 
to assess whether they come from the same distribution, and returns the test statistic and p-value 
to indicate statistical significance. All analyses are conducted at a significance level of p < 0.0178, 
as this is a commonly used p-value threshold for statistical significance in biomedical research. If 
p < 0.01, we reject the null hypothesis, indicating that the PCA components of subsequences 
differ significantly between sexes. Additionally, the primary feature in the patient feature matrix is 
the diagnosis features (1,711, 90.2%). To provide a more focused interpretation of sex differences 
in AD risk factors, we summarized three common AD comorbidity categories with sex differences 
based on previous studies79–81: neurological/mental disorders, cardiovascular diseases, and 
diabetes-related conditions (listed in Supplementary Table S1). These three comorbidity 
categories have been widely studied in previous research on sex differences in AD progression. 
We calculated the proportion of patients with these comorbidities. 
 
Constructing temporal patient representation using longitudinal EHRs 
To construct patients’ longitudinal progression trajectory before (3 years) and after (1 year) the 
onset of AD, we first aggregated multiple measurements or event irregular time points of EHRs 
and converted them into 3-month blocks as a subsequence of patients. Each block formed a 
vector representing a specific event type (e.g., diagnoses, medications, etc.). To model the 
progression patterns, we split each patient into multiple subsequences. Fig. 2 presents the 
construction of the AD temporal trajectory using EHRs. For example, a diagnosis vector contained 
distinct diagnosis codes and their frequencies within a 6-month window. For the invariant features 
(e.g., race and gender), we treated them as static features and passed them at each time window. 
We selected the earliest patient encounter date 3 years before AD onset as the index date and 
the latest encounter date 1 year after AD diagnosis as the end date. Given 𝑁	patients, the total 
number of time windows 𝑇	, and the dimension of patient feature matrix 𝐷	, we constructed the 
temporal patient representation. The representation is a matrix in which patients can be 
represented as a 3-tuple symbol and a sequence of vectors for patient 𝑖	at visit 𝑡!, where 𝑡!   ∈
{𝑡",  𝑡#,   … ,  𝑡$}  and each visit is denoted as 𝑥%, (! ∈ ℝ

$×*. To increase the quantity and augment 
the data, the original data (where each patient corresponds to a temporal matrix) has been divided 
into multiple subsequences. Starting from the index date 𝑡" (the date of the first visit), every 2 
windows (equivalent to 6 months) form one subsequence, until reaching the maximum length of 
the patient's EHR data. We then divided each patient into multiple subsequences with varying 
time lengths, starting from the index date, and new subsequences are created with 3-month 
increments (i.e., 6-month, 9-month, etc.) until the last encounter of patients within the end date. 
Each subsequence is treated as an independent temporal matrix sample and inputted into the 
model. Therefore, the 𝑙	-th subsequence can be represented as 𝑥%, (!

(,") , in which 𝑙% ∈ {𝑙",  𝑙#,   … ,  𝑙.} 
is the index of each patient’s subsequence. Finally, we got the whole temporal matrix with 
dimensions from (𝑁,  𝑇,  𝐷) to (∑ 𝑙/.

/0" ,  𝑇,  𝐷). We concatenated these subsequences in different 
time lengths to construct the time-series AD progression trajectory for progression modeling. 
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Fig. 2. The construction of AD temporal trajectory using EHRs. 

 
Generating sex-specific AD latent representation with temporal autoencoder 
We constructed an LSTM-based autoencoder model82 to learn the representation of the 
subsequences of AD patients. This autoencoder consists of a three-layer LSTM encoder for latent 
temporal representation embedding learning, a two-layer LSTM decoder for reconstructing the 
subsequences, and a Multilayer Perceptron (MLP) predictor to stratify the patients into two sex 
groups (Fig. 1c). The multivariate time-series subsequences of each patient as the input were fed 
into the LSTM encoder cell, which creates a hidden state that represents the latent patient 
trajectory features. LSTM is particularly effective for handling longitudinal clinical patient data with 
long-term dependencies. Its internal memory units are capable of capturing features and 
correlations from the early stages to the later stages of patients. Then, the latent representation 
matrix from the last layer of the LSTM encoder was simultaneously fed into a two-layer LSTM 
decoder and an MLP. Firstly, it served the sequence reconstruction task handled by a two-layer 
LSTM decoder. The first layer of the LSTM decoder expanded the feature dimensions at each 
time step, while the second layer reconstructed the original sequence. This reconstruction 
enhanced the learning of effective temporal representations for patients. For the sequence 
reconstruction task, mean squared error (MSE) was used as the loss function. Secondly, the 
same latent representations were utilized for a sex-stratified AD classification task using an MLP. 
Through this classification task, we can stratify the latent representations learned by the LSTM 
encoder based on sex during training. For this task, we used the binary cross entropy (BCELoss) 
as the loss function and the area under the receiver operating characteristic curve (AUROC) as 
the predictive performance evaluation. The model was trained jointly using Adam optimizer, 
summing the MSE and BCELoss for optimization. 
 
Deriving sex-specific AD progression sub-phenotypes by unsupervised clustering 
To identify sex-specific AD progression sub-phenotypes, we first extracted the sex-specific AD 
progression embedding matrix learned by the LSTM encoder to clustering models. After obtaining 
temporal representations of each subsequence from the LSTM encoder's outputs involving sex-
stratified clinical information of AD patients, we then used several clustering algorithms to identify 
them into different clusters (or states) that exhibit similar temporal properties. Here, we tested 4 
types of clustering methods, including k-means, kernel k-means, density-based spatial clustering 
of applications with noise (DBSCAN), and hierarchical agglomerative clustering. We used 
hierarchical agglomerative clustering as an example to describe the clustering process. Initially, 
each subsequence can be regarded as a patient sample with varying-length clinical information. 
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Distances (or similarities) between all pairs of subsequences are computed, and the closest pair 
of subsequences is merged. The representation of clusters is updated, for instance, by using the 
average to represent the newly merged cluster. This process was repeated until all subsequences 
were merged into one cluster or reached the stopping criterion (e.g., a predetermined number of 
clusters was met). Different clusters represent groups of subsequences, with each cluster center 
representing a distinct patient state. To derive the AD progression sub-phenotypes, we assume 
that a patient has four subsequences containing clinical information with different time lengths 
(i.e., 3, 6, 9, and 12 months). Each subsequence can be grouped into a cluster (i.e., state) Ci  (i = 
1, 2, 3 …), assuming 3-month to C1, 6-month to C2, 9-month to C3 and 12-month to C4. The 
progression trajectory of this patient would be represented as “C1->C2->C3->C4”, which will be 
categorized as one of the sex-specific AD progression sub-phenotypes. 
 
Clustering reproducibility and stability evaluation  
We evaluated the effectiveness of our identified clusters by analyzing their reproducibility and 
stability. Cluster reproducibility can evaluate the extent of separation and distinctiveness among 
the clusters, and stability can measure whether the clustering generated by the model is stable 
over multiple iterations. Regarding reproducibility, we employed the silhouette score83, which can 
evaluate the quality of clustering by measuring how each data point compares to its own cluster 
versus other clusters. A higher silhouette score indicates better cluster separation, where data 
points are closer to their own cluster center than to the neighboring clusters. Notably, if the 
silhouette scores close to zero, it implies the data points are on the cluster boundaries, whereas 
negative scores suggest the data points are within another cluster, which is potentially incorrectly 
clustered. We trained the model with training data (i.e., from OneFlorida+ sites: source 1, source 
3, source 11, N=1468 (88.2%)) and applied it to validation data (i.e., from OneFlorida+ sites: 
source 9, source 10, source 12, source 15, N=197 (11.8%)), and compared the average clustering 
silhouette scores. For the four clustering methods used, we also experimented on different cluster 
numbers, ranging from 1 to 20, for comparison. Further, we tested the stability of clustering 
models on the clustering model that has the best reproducibility performance. It is assessed if 
consistent cluster results can be reliably generated in iterative clustering. We utilized random 
subsets of data in each iteration and examined fluctuations in the Adjusted Rand Index (ARI) (a 
metric for measuring similarity between two clustering results)84. Higher ARI shows smaller 
fluctuations in changes, suggesting these clusters are more stable.  
 
 
Results 
Descriptive statistics and visualization of sex-stratified AD patients 
Table 1 shows the statistics of the study AD cohorts stratified by sex. As shown in the table, 
females have a slightly larger proportion of AD patients than males (57.7% versus 42.3%) and 
are older at AD diagnosis (77.1 versus 76.1 years). Females also show a longer total disease 
duration than males (2,998 versus 2,903 days). This is probably because female patients have a 
longer life expectancy, which suggests a slightly higher risk of developing AD. Regarding mortality 
rates, males show a higher mortality rate (14.20%) compared to females (11.34%). In addition, 
we could observe racial differences, including a higher percentage of Hispanic patients among 
females (25.81%) compared to males (18.52%), and a higher proportion of Black or African 
American and White patients among males (16.3% and 79.12%) compared to females (14.5% 
and 77.11%), respectively. In terms of comorbidities, neurological/mental disorders are prevalent 
in a large majority of AD patients, with 89.1% of the total cohort. We observed that 91.2% of 
female AD patients have neurological/mental disorders, slightly higher than males of 86.2%. 
Meanwhile, cardiovascular diseases and diabetes-related conditions both present a higher 
prevalence in males (46.3% and 48.3%) compared to females (38.5% and 45.7%) in our cohorts. 
More details can be found in Supplementary Table S2. 
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Table 1. Descriptive statistics on the characteristics of the study cohort 
 Total AD Patients  

(N = 1665) 
Female AD Patients  

(N = 961) 
Male AD Patients 

(N = 704) 
Demographics and Vital Signs 
Age at AD diagnosis, mean (std) 76.7 (9.2) 77.1 (9.5) 76.1 (8.8) 
Female, N (%) 961 (57.7%) 961 (100.0%) 0 (0.0%) 
Male, N (%) 704 (42.3%) 0 (0.0%) 704 (100.0%) 
Disease development, mean (std) 
Duration days 2958.1 (620.2) 2998.0 (613.7) 2903.2 (627) 
Age at death 81.7 (8.9) 82.1 (9.4) 81.2 (8.4) 
Mortality rate, N (%) 209 (12.55%) 109 (11.34%) 100 (14.20%) 
Hispanic, N (%) 
Hispanic 426 (25.6%) 248 (25.8%) 178 (18.5%) 
Not Hispanic 1230 (73.9%) 707 (73.6%) 523 (54.4%) 
No Hispanic information 9 (0.5%) 6 (0.6%) 3 (0.3%) 
Race, N (%) 
American Indian or Alaska Native 0 (0.0%) 0 (0.0%) 0 (0.0%) 
Asian 10 (0.6%) 5 (0.5%) 5 (0.7%) 
Black or African American 259 (15.6%) 157 (16.3%) 102 (14.5%) 
White 1298 (77.96%) 741 (77.11%) 557 (79.12%) 
Multiple races 15 (0.90%) 6 (0.62%) 9 (1.28%) 
Unknown 83 (5.0%) 52 (5.4%) 31 (4.40%) 
Comorbidity, N (%) 
Neurological/mental disorders 1483 (89.1%) 876 (91.2%) 607 (86.2%) 
Cardiovascular diseases 696 (41.8%) 370 (38.5%) 326 (46.3%) 
Diabetes-related conditions 779 (46.8%) 439 (45.7%) 340 (48.3%) 

 
Due to the size of the patient subsequence-level features, we first utilized low-dimensional PCA 
visualization to plot patients’ initial feature matrix colored by sex, shown in Fig. 3a. In this figure, 
each point represents one subsequence of the patient (1,897 features). From this figure, we can 
see that there is no clear separation between female and male AD patients. Then, we used violin 
plots and performed the Mann-Whitney U-test to check the distribution and significant differences 
between sex groups and two PCA components. For PCA component 1, it is noteworthy that the 
Mann-Whitney U-test p-value is 6.1e-23 (p-value < 0.01) in Fig. 3b, indicating a significant 
difference between sexes. This rejected our null hypothesis and suggested that there might be a 
significant difference in the initial low-dimensional patient subsequences between females and 
males. However, in the second component (Fig. 3c), the Mann-Whitney U-test p-value is 0.09 (p-
value >= 0.01), in which we did not find significant differences which explain the overlap of sex 
groups before stratification. 
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Fig. 3. Visualization of subsequence-level features. (a) PCA visualization of all patients’ 
subsequence-level feature matrix with each dot representing a subsequence from one patient 
colored by sex (females and males); Violin plot shows the distribution of female and male patients 
along the PCA principal component 1 (b) (p-values 6.1e-23 from Mann-Whitney test); and 
principal component 2 (c) (p-values 0.09 from Mann-Whitney test). 
 
 
Performance of prediction model, cluster reproducibility and stability 
For the evaluation of the sex-stratified identification of AD patients, we achieved 0.903 of AUROC, 
showing a strong capability for prediction. Then, regarding the evaluation of the clustering’s 
reproducibility and stability. As shown in Fig. 4a, we achieved a silhouette score of 0.61 for 
hierarchical agglomerative clustering, 0.53 for k-means clustering, 0.08 for kernel k-means 
clustering, and 0.45 for DBSCAN clustering, where the x-axis is the cluster index, and the y-axis 
is the silhouette score of each cluster. These plots indicate that the hierarchical agglomerative 
cluster analysis achieved the best performance, which can identify the clusters from the latent 
embeddings effectively. As for the cluster stability, we calculated and visualized hierarchical 
agglomerative clustering ARI results, in which the ARI slightly fluctuated around 0.93 over random 
sub-dataset sample sizes (Fig. 4b). The stability analysis indicates that consistent clustering 
results can be reliably generated, even when random subsets of data are used. These findings 
demonstrate that the hierarchical agglomerative clustering model is stable and can be used in the 
following experiments, and the identified clusters are not statistical artifacts. The evaluation of 
reproducibility and stability of clustering is crucial for ensuring that the identified clusters are 
meaningful and reproducible in different situations.  
 

 
Fig. 4. Cluster Reproducibility and Stability Performance. (a) Clustering reproducibility analysis; (b) Clustering stability 
scores over iterations. 
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Clusters of sex-stratified subsequences from AD patients 
The hierarchical agglomerative clustering generated seven different clusters from all 
subsequences of AD patients. We denoted these derived clusters (i.e., states) as C1 to C7. Fig. 
5a (left) shows the visualization of the clusters using PCA, which presents the clusters of learned 
representation of AD patients by sex. We can find a clear sex stratification of AD patients through 
learned latent embeddings compared with Fig. 3a. Like Fig. 3b and Fig. 3c, we examined the 
correlation of PCA principal components and sex groups using the Mann-Whitney U test. We also 
used violin plots to visualize the distribution of latent embeddings’ PCA principal components in 
Fig. 5a (left). The PCA principal component 1 exhibited a greater significant difference in sex 
groups (p-value = 4.3e-152) compared to Fig. 3b (p-value = 6.1e-23). PCA principal component 
2 also showed significant differences in sex groups (p-value = 3.2e-19) compared to Figure 3c (p-
value = 0.09). The right plot of Fig. 5a displays the identified clusters (C1-C7) of subsequences 
of these AD patients. We could observe that the cluster C4 (N=9,537, 34.9%) involves most 
subsequences of AD patients, followed by C1 (N=4,726, 17.3%), C7 (N=4,583, 16.8%), C6 
(N=3,743, 13.7%), C3 (N=2,498, 9.1%), C5 (N=1,258, 4.6%), and C2 (N=983, 3.6%). To gain 
insights into the features that differentiate these clusters, the heatmap in Fig. 5b shows the patient 
percentages of the top features in each cluster (i.e., state). For better visualization and 
interpretation, we ordered the percentages by the values in C1 and colored the names of features 
by our summarized three main comorbidity categories (listed in Supplementary Table S1). We 
can see that essential hypertension is the most prevalent disease among all the clusters (e.g., 
82.7% in C4, 89.6% in C7), with a particularly high occurrence in C4 and C7. Hyperlipidemia is 
the next most common feature in AD patients (e.g., 72.5% in C4, 79.5% in C7). Neurological 
disorders and memory loss also account for a significant proportion (e.g., neurological disorders: 
62.8% in C7, memory loss: 51.3% in C7). Chronic pains, such as joint, back, and abdominal pain, 
are also common comorbidities in the states among AD patients. Moreover, compared with the 
phenotypic features in cluster C4, there is a larger proportion of severe comorbidities in C7 (e.g., 
0.827 versus 0.896 in essential hypertension and 0.725 versus 0.795 in hyperlipidemia). The 
differences between these sex-specific cluster pairs (e.g., C4 and C7) could be crucial in 
understanding the sex-specific progression patterns of AD. Additionally, we could also observe 
the differences in the demographics of these clusters. For example, the ratio of female 
subsequences in clusters C3 and C4 is significantly higher than male, with 90.1% and 88.0%, 
respectively, whereas the male subsequences have a larger proportion in clusters in C6 (96.7%) 
and C7 (75.4%). This might indicate that C3 and C4 are the female-dominated states, while C6 
and C7 are the male-dominated AD progression states. We also noticed that clusters C2 (2981.1 
days) and C5 (2913.8 days) have shorter durations among all clusters, while C4 and C7 show 
longer durations in AD development. More details can be found in Supplementary Table S3. 
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Fig. 5. The visualization and clustering results. (a) The visualization of latent representation embeddings by sex and 
violin plots show the distribution of female and male patients along the PCA principal component 1 (top) (p-values 4.3e-
152 from Mann-Whitney test) and PCA principal component 2 (bottom) (p-values 3.2e-19 from Mann-Whitney test); (b) 
The visualization of latent representation embeddings by cluster; (c) Heatmap results of top 20 phenotypic features in 
each generated cluster (i.e., state) in AD patients. 
 
Interpretability of identified sex-specific AD progression sub-phenotypes 
We identified five primary AD progression sub-phenotypes by the split of subsequences’ clusters 
derived from each patient illustrated in Fig. 6a, represented as S1 to S5 that involve distinct 
progression pathways: (1) S1: C1->C2->C3->C4, (2) S2: C1->C3->C4, (3) S3: C1->C5->C6->C7, 
(4) S4: C1->C6->C7, and (5) S5: C1->C5->C6. According to Fig. 6a, we could find that S1 and 
S2 are female-dominant sub-phenotypes, with 406 and 326 female patients, whereas there were 
only 7 and 3 male patients, respectively. On the opposite, the sub-phenotypes S3 to S5 are male-
dominant. Further observations suggest (Fig. 5b and Supplementary Table S3), in the sub-
phenotype S1, the state C4 had the larger proportion of comorbidity along the progression 
pathway C1->C2->C3->C4 (e.g., essential hypertension 82.7%) compared with other states. It 
also showed a longer duration of disease (i.e., 3,036.6 days) in AD development, followed by C3 
(67.9%, 3,007.3 days), C2 (52.0%, 2,981.1 days), and C1 (17.2%, 2,958.3 days). This might 
suggest C4 is a progression state relatively associated with slow AD progression, while patients 
in C1 progressed more rapidly. Similarly, we found that C5 had the shortest disease duration days 
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(2,913.8 days) in male-dominant sub-phenotype S3. Additionally, there are three other sub-
phenotypes with progression pathways: C1->C3->C4, C1->C6->C7, and C1->C5->C6, 
respectively.  
 
Interestingly, we noticed that the states C2, C3, and C4 were uniquely associated with female-
dominant sub-phenotypes S1 and S2, whereas C5, C6, and C7 only existed in male-dominant 
sub-phenotypes. To understand the differences between these states in sex-specific AD sub-
phenotypes, we conducted chi-square tests on paired states across clinical phenotypes. The p-
values of these tests were shown in Fig. 6b, where we could see significant differences in most 
comorbidities among compared state pairs, like hyperlipidemia and other cerebral degenerations 
in C2 & C7, C3 & C5, and C3 & C7 with p-value < 0.05. These findings indicate these pairs of 
states could be crucial in understanding the AD progression sub-phenotypes between females 
and males. We also used Sankey diagrams to illustrate the progression pathways and transitions 
between sex-specific AD sub-phenotypes. In Fig. 5 (c), these diagrams show the main transitions 
from C1 to other states. The width of the Sankey diagram represents the size of patients transiting 
from one state to another, where pathways S1 and S3 are the two groups with the largest number 
of patients. The flows in the diagram further validated the differences in the progression in male 
and female AD patients with distinct sub-phenotypes.  
 

 
Fig. 6. Sex-specific AD progression sub-phenotypes, comorbidity significant difference and pathway 
structures. (a) Patients by sub-phenotype patterns; (b) Heatmap results of cluster analysis; (c) Sankey 
diagrams of AD sub-phenotype progression pathways. 
  
 
Discussion  
In this study, we developed an LSTM-based auto-encoder model to identify sex-specific AD 
progression sub-phenotypes using longitudinal EHRs and extract associated clinical 
characteristics. Firstly, the OneFlorida+ Clinical Research Consortium enabled us to collect large-
scale and heterogeneous clinical information from AD patients, including diagnosis, lab 
measurements, medication, etc. We then constructed temporal subsequences extracted from AD 
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patients to represent their progression trajectory. We achieved our goal of deriving sex-specific 
sub-phenotypes by the combination of an LSTM-based autoencoder with clustering techniques. 
The autoencoder generated sex-based embeddings of temporal subsequences representing 
various clinical information of AD patients. We then applied hierarchical agglomerative clustering 
to group these subsequences into different clusters (i.e., states), and then we obtained all the 
states of a patient’s subsequences and concatenated these states as a progress trajectory (or 
sub-phenotype), from which we can extract and reveal the clinical characteristics for each sub-
phenotype. Here, we uncovered five primary sex-specific AD sub-phenotypes (Fig. 6b). We 
evaluated our model's learned representation embeddings by AUROC and clustering 
reproducibility and stability using silhouette and ARI score, which demonstrated a decent 
performance with robustness for both. In this work, we emphasized the heterogeneity of AD 
progression and the importance of considering sex factors in disease modeling and treatment. 
The identified sub-phenotypes would not only present different trajectories of AD progression but 
also reveal differences in characteristics and comorbidities between male and female patients.  
 
In our cohort, female patients showed a larger proportion of AD patients, with an older age of 
diagnosis and a longer time of disease development on average. The mortality rate for males 
(14.20%) was higher than that for females (11.34%). These characteristics are consistent with 
previous studies1,33,85. In our clustering results, we found 7 clusters (or states), in which cluster 
C4 included the largest number of patient subsequences. When we looked at the clinical 
characteristics of these clusters, we observed that essential hypertension was the most prevalent 
comorbidity among all the clusters, followed by hyperlipidemia (79.5%), hypertension (69.6%), 
neurological disorders (62.8%), and memory loss (51.3%). Moreover, in the identified five primary 
AD sub-phenotypes, two of them were female-dominant (S1 and S2), and the other three were 
male-dominant (S3, S4, and S5) sub-phenotypes, with distinct progression pathways for each 
sub-phenotype. (Fig. 6a). According to the results, the age of AD diagnosis in females was highest 
in cluster C4 within sub-phenotype S1, and C4 also had the largest proportion of comorbidities, 
such as essential hypertension and hyperlipidemia. We further observed that these sub-
phenotypes encompassed varying states of rapid or slow disease progression. For example, 
compared with S3 (C1->C5->C6->C7), there is no relatively rapid progression state like C5 in S4 
(C1->C6->C7). Based on the analysis of comorbidities among AD patients in different sex-specific 
sub-phenotypes, we found neurological/mental disorders, cardiovascular diseases, and diabetes-
related conditions were more prevalent among female AD patients. Additionally, we compared 
the differences of paired clusters that uniquely existed in female or male dominant sub-
phenotypes, such as C2 & C7, C3 & C5, and C3 & C7 (Fig. 6b). We discovered obvious 
distinctions in some comorbidities, including cardiovascular diseases (e.g., essential 
hypertension), diabetes-related conditions (e.g., type 2 diabetes), neurological/mental disorders 
(e.g., cerebral degeneration, memory loss), and chronic pain (e.g., pain of the joint). These 
findings suggest that AD progression varies significantly in terms of different sex groups, and our 
identified AD sub-phenotypes can provide an in-depth understanding of sex-specific disease 
progression pathways.  
 
This study, while insightful in exploring and identifying sex differences of AD sub-phenotypes 
through advanced AI techniques, has several limitations that should be acknowledged. First, the 
reliance on EHR from one specific research network may introduce biases due to the 
demographic and geographic characteristics of the population. The patients in OneFlorida+ 
predominantly from Florida, Georgia, and Alabama, might not fully represent the broader, more 
diverse U.S. population or other global populations. The generalizability of the findings should be 
further validated with heterogeneous demographic profiles. Second, while the clustering model 
showed stability and reproducibility, the interpretation of the sex-specific AD sub-phenotypes 
remains challenging. The clinical significance of these clusters, especially their specific meaning 
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and potential utility in guiding personalized treatment plans, needs validation through prospective 
studies and clinical trials. The study's design limits the ability to identify detailed causal inferences 
about the progression pathways and their implications for disease development. Third, although 
we discovered sex-specific sub-phenotypes using data-driven methods, this study primarily relies 
on routine EHR data, lacking detailed cognitive assessment (e.g., the Mini-Mental State Exam) 
and biomarker data (e.g., brain imaging or cerebrospinal fluid analysis), which are crucial in AD 
progression and sex difference study. The incorporation of these data categories should be 
considered in future investigations, which can provide a more comprehensive and valuable insight 
into the potential mechanisms driving sex differences in AD progression and develop personalized 
therapeutic interventions. 
 
Future research would focus on, firstly, validating these sub-phenotypes in larger and more 
diverse populations to enhance the generalizability of our findings. This underscores the need to 
adopt methods such as federated learning techniques86 that can scale across large 
heterogeneous datasets. Secondly, exploring the underlying biological mechanisms driving these 
sex differences in AD progression, which is crucial for developing sex-stratified targeted therapies. 
This highlights the necessity of employing multimodal and multi-omics data and research 
approaches87. For example, incorporating the genetic data of male and female AD patients 
through whole genome or exome sequencing analyses can identify potential differential genes 
and variants associated with clinical manifestation in AD development. Thirdly, developing more 
robust and powerful computational models to precisely and quantitatively trace and identify 
phenotypic changes in the development of AD for patients, which can provide timely monitoring 
and feedback for disease management.  
 
Supplementary Materials  
The codes and supplementary materials are publicly available at https://github.com/UF-HOBI-Yin-
Lab/AD_sex_subtype.  
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