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SUMMARY 

Most genetic variants identified through genome-wide association studies (GWAS) are 

suspected to be regulatory in nature, but only a small fraction colocalize with expression 

quantitative trait loci (eQTLs, variants associated with expression of a gene). Therefore, 

it is hypothesized but largely untested that integration of disease GWAS with context-

specific eQTLs will reveal the underlying genes driving disease associations. We used 

colocalization and transcriptomic analyses to identify shared genetic variants and likely 

causal genes associated with critically ill COVID-19 and idiopathic pulmonary fibrosis. 

We first identified five genome-wide significant variants associated with both diseases. 

Four of the variants did not demonstrate clear colocalization between GWAS and 

healthy lung eQTL signals. Instead, two of the four variants colocalized only in cell-type 

and disease-specific eQTL datasets. These analyses pointed to higher ATP11A 

expression from the C allele of rs12585036, in monocytes and in lung tissue from 

primarily smokers, which increased risk of IPF and decreased risk of critically ill COVID-

19. We also found lower DPP9 expression (and higher methylation at a specific CpG) 

from the G allele of rs12610495, acting in fibroblasts and in IPF lungs, and increased 

risk of IPF and critically ill COVID-19. We further found differential expression of the 

identified causal genes in diseased lungs when compared to non-diseased lungs, 

specifically in epithelial and immune cell types. These findings highlight the power of 

integrating GWAS, context-specific eQTLs, and transcriptomics of diseased tissue to 

harness human genetic variation to identify causal genes and where they function 

during multiple diseases.  

Keywords: GWAS, eQTL, IPF, COVID-19, ATP11A, DPP9, COLOC, mQTL, scRNA-
seq, iCPAGdb, macrophage, TLR4, efferocytosis  
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INTRODUCTION 

Genome-wide association studies (GWAS) are a powerful approach to identify 

relationships between disease phenotypes and genetic variants, most commonly single 

nucleotide polymorphisms (SNPs). Elucidating associated SNPs can reveal 

unanticipated underlying pathophysiology of disease, unbiased by preconceived notions 

of plausible biology, and may lead to informed drug targets and therapies. Indeed, 

success along the drug development pipeline increases with human genetic evidence.1 

In 2021, two-thirds of the Food and Drug Administration approved drugs were supported 

by human genetic evidence.2 Beyond associations with individual diseases, multiple 

independent GWAS can be integrated to identify pleiotropy – the phenomenon where a 

single genetic locus affects multiple diseases or traits that are otherwise considered 

unrelated.3,4 Pleiotropy can reveal shared pathogenic mechanisms among different 

diseases. Understanding these mechanisms and identifying potential therapeutic targets 

require the identification of the causal genes associated with the genetic variant.  

One method to identify putative casual genes is to measure the degree of 

colocalization between disease GWAS and molecular quantitative trait loci (QTLs), such 

as expression QTLs (eQTLs), using statistical frameworks that integrate summary 

statistics to determine if overlapping signals are due to the same causal SNP. 5-7 While 

the chain of causality implied by colocalization makes intuitive sense (a SNP affects 

transcription of a gene to impact disease), there is surprisingly poor colocalization 

between disease GWAS and eQTL signals.8 One possible reason for lack of 

colocalization includes using eQTL datasets from unsuitable contexts. For example, 

cell- and disease-specific eQTLs may be required.8 Alternatively, other kinds of 
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molecular QTLs, such as methylation, splicing, or protein QTLs (mQTLs, sQTLs, 

pQTLs, respectively), may be more causally important in certain disease 

pathogenesis.8,9  

Here, we focused on pleiotropic SNPs associated with both critically ill COVID-19 

and idiopathic pulmonary fibrosis (IPF) and formally tested colocalization with context-

specific eQTLs to identify the likely causal genes. We previously developed a software 

called the interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb) to study 

pleiotropy by comprehensively identifying shared association signals between user-

uploaded GWAS and all publicly cataloged GWAS summary statistics.10,11 Using the 

first COVID-19 GWAS published by Ellinghaus et al.12 and the highest-powered IPF 

GWAS at the time,13 we identified a shared signal in DPP9, rs12610495, associated at a 

suggestive threshold with severe COVID-19 (p-value = 5.20 x 10-6)12 and at genome-

wide significance with IPF (p = 2.92 × 10−12)13.11 The DPP9 locus was later confirmed to 

be associated with critically ill COVID-19 at genome-wide significance.14-16 Others have 

also confirmed and expanded on the shared genetic associations between critically ill 

COVID-19 and IPF.11,17-19  

Notably, post-COVID-19 pulmonary fibrosis (PCPF) is clinically reminiscent of 

IPF.20 PCPF, which occurs due to irreversible lung scarring and stiffening, causes 

progressive difficulties in breathing and ultimately necessitates lung transplantation.20,21 

Critical illness is a major risk factor for PCPF.22 A meta-analysis reported that nearly 45 

percent of COVID-19 survivors had long-term respiratory symptoms and fibrosis, 

emphasizing the urgent need to understand the mechanisms and potential treatments of 

PCPF.22 In fact, drugs for IPF, including pirfenidone and nintedanib, have been co-opted 
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during emergency treatment of PCPF.23 Thus, shared genetic associations between 

critically ill COVID-19 and IPF might reflect common pathophysiology that could be 

utilized for therapeutic benefit in both diseases. 

In this study, we leveraged iCPAGdb again with the most current, highest-

powered COVID-19 GWAS (COVID-19 HGI release 7)24 and IPF meta-GWAS25 to 

determine whether additional loci are associated with both diseases. We have identified 

five shared loci, including the DPP9 locus containing rs12610495, that are likely due to 

the same causal variants based on colocalization analysis. For two of the variants, their 

risk alleles are reversed in COVID-19 and IPF, highlighting that a shared signal may 

have different functions in the two diseases and that the pulmonary damage from 

COVID-19 is likely distinct from IPF. We systematically identified the likely causal genes 

underlying the shared genetic architecture between critically ill COVID-19 and IPF by 

performing colocalization analysis using bulk, single-cell, and disease-specific eQTL 

datasets. For two genes, ATP11A and DPP9, we found colocalization of GWAS and 

eQTL signals only in a cell-type and disease-specific context. Therefore, context-

specific eQTL are critical for identifying the causal genes underlying the shared genetic 

architecture of critically ill COVID-19 and IPF and may lead to new insights connecting 

the diseases.  
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MATERIALS AND METHODS 

GWAS summary statistics and QTL datasets 

All datasets used in this study and accession information are summarized in Table 1 

and Table S1. For analyses using GTEx v8, we obtained the “Tissue-Specific All SNP 

Gene Associations” files via the Google Cloud Platform, which included non-significant 

associations not searchable on the web browser.26,27 In addition to the IPF eQTL and 

mQTL summary statistics, Borie et al. provided DPP9 expression and cg07317664 

methylation data.28  The genome coordinates in datasets were lifted to GRCh38 using 

the R packages “liftOver”29 and “rtracklayer”30.  

 
Table 1: Datasets used for present study 
Dataset Article Author (Year) Type 
Very severe respiratory confirmed 
(critically ill) COVID-19 vs. 
population 

COVID-19 Host Genetics Initiative 
(2021) GWAS 

5-way meta-GWAS of IPF 
susceptibility Allen (2022) GWAS 

GTEx Conditionally Independent 
eQTL 

Lonsdale (2013);  
GTEx Consortium (2017, 2020) eQTL 

GTEx Tissue-Specific All SNP Gene 
Associations eQTLs 

Lonsdale (2013);  
GTEx Consortium (2017, 2020) eQTL 

Human Lung Tissue eQTL Study Hao (2012) eQTL 
BLUEPRINT Chen (2016) eQTL 
Bulk IPF  Borie (2022) eQTL; mQTL 
Single-cell COVID-19 PBMCs Aquino (2023) eQTL 
Single-cell IPF Lung Natri (2023) eQTL 
IPF Lung Study 1 Jaffar (2022) Bulk RNA-Seq 
IPF Lung Study 2 Ammar (2019) Bulk RNA-Seq 
COVID-19 Whole Blood Study Li (2021) Bulk RNA-Seq 
COVID-19 Lung Study de Rooij (2022) Bulk RNA-Seq 
IPF Cell Atlas Adams (2020) scRNA-Seq 
Lung Atlas of Lethal COVID-19 Melms (2021) snRNA-Seq 
Abbreviations: GTEx, Genotype-Expression Project; SNP, single nucleotide polymorphism; 
GWAS, genome-wide association studies; eQTL, expression quantitative trait loci; mQTL, 
methylation quantitative trait loci; RNA-seq, RNA-sequencing; scRNA, single-cell RNA; 
snRNA, single-nucleus RNA 
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Discovery of pleiotropic SNPs using iCPAGdb  

We previously reported the development of iCPAGdb which identified cross-phenotypic 

associations across 4400 traits loaded from the NHGRI-EBI GWAS Catalog.10,11 For this 

study, critically ill COVID-19 summary statistics were formatted for the web browser 

(http://cpag.oit.duke.edu/explore/app/) and uploaded as the User Supplied GWAS for 

“GWAS source one”. NHGRI was selected for “GWAS source two”. P-threshold1 (factor1 

X 10-x1) and P-threshold2 (factor2 X 10-x2) were set to genome-wide significant (5x10-8; 5 

for “factor1” and “factor 2” and 8 for “x1” and “x2”). “European” was chosen for “LD 1000 

Genomes population” as the linkage disequilibrium (LD) population as the IPF GWAS 

was based on European ancestry. Additionally, the command line version of iCPAGdb 

(https://github.com/tbalmat/iCPAGdb) was utilized to directly compare the critically ill 

COVID-19 and IPF meta-GWAS, which became publicly available after the publication 

of iCPAGdb. The full results from iCPAGdb after uploading the critically ill COVID-19 

summary statistics are listed in Table S2.   

 

Identification of candidate eGenes and LD proxies 

The five SNPs shared between COVID-19 and IPF identified by iCPAGdb were 

queried in the eQTL datasets in Table 1. We checked whether each SNP was a 

conditionally independent eQTL in each of the 54 tissues in GTEx v8. Next, using the 

GTEx web browser, we downloaded all eGenes associated with each SNP. We then 

searched for conditionally independent eQTLs across the 54 tissues associated with the 

list of eGenes. We used LDmatrix to check if any of the conditionally independent 

eQTLs were in LD with our SNPs and could serve as LD proxies (r2 > 0.50) (Table S3). 
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For rs12585036 and rs12610495, the only conditionally independent SNPs in LD 

were eQTLs for ATP11A and DPP9, respectively. Two conditionally independent SNPs 

were in perfect LD with rs2897075 and were eQTLs for ZKSCAN1 and COPS6. 

rs1105569 was in strong LD (r2 > 0.90) with 330 conditionally independent eQTL 

associated with 23 eGenes across 49 tissues, underscoring the challenges in identifying 

causal genes in the 17q21.31 inversion supergene.31 For this locus, we further filtered 

conditionally independent eQTL in strong LD in tissues of interest for COVID-19 and IPF 

pathogenesis– fibroblasts, lung, lymphocytes, and whole blood. From literature review, 

we identified one additional eGene, TRIM4, associated with rs289707517 and two 

additional eGenes, CRHR1 and SPPL2C, associated with rs110556931. Altogether, we 

focused on 15 candidate protein-coding eGenes for our five SNPs of interest (Table 2). 

Table 2: Candidate protein-coding eGenes associated with SNPs of interest 
SNP of Interest Prioritized eGene Identified via 
rs35705950 MUC5B GTEx 
rs12585036 ATP11A GTEx 
rs12610495 DPP9 GTEx 
rs2897075 COPS6 GTEx 
 TRIM4 Literature 
 ZKSCAN1 GTEx 
rs1105569 ARHGAP27 GTEx 
 ARL17A GTEx 
 ARL17B GTEx 
 CRHR1 Literature 
 KANSL1 GTEx 
 LRRC37A GTEx 
 LRRC37A2 GTEx 
 MAPT GTEx 
 SPPL2C Literature 
Abbreviations: SNP, single nucleotide polymorphism; eGene, gene with an expression 
quantitative trait locus; GTEx, Genotype-Expression Project 
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Colocalization analysis 

We applied Giambartolomei et al.’s colocalization analysis (COLOC), using the R 

package “coloc”,6 to determine if the associations identified by iCPAGdb were due to 

the same causal SNP. COLOC uses a Bayesian framework to calculate the posterior 

probabilities that two traits are not associated in the locus of interest (PP0), only one 

trait is associated in the locus (PP1 and PP2), both traits are associated at the locus but 

with different, independent causal variants (PP3), or both traits are associated with a 

single causal variant in the locus (PP4). For COLOC using only GWAS summary 

statistics, we filtered SNPs within a 1 megabase (Mb) window from the SNP of interest. 

For COLOC using eQTL datasets, we filtered all eQTLs for a candidate eGene and then 

filtered SNPs within a 1 Mb window from the SNP of interest. We ran the COLOC 

“coloc.abf” function using the default prior parameters, p1 = 1 × 10-4, p2 = 1 × 10-4, and 

p12 = 1 × 10-5 for all analyses. PP4 between 0.700 to 0.900 was interpreted as likely to 

share a single causal variant, while PP4 > 0.900 was interpreted as sharing a single 

causal variant. The PP4/PP3 measured the intensity of the colocalization signal with 

values >5.00 indicating further support for colocalization and >3.00 suggesting likely 

colocalization.9,32   

 

IPF and COVID-19 transcriptomic analysis 

We utilized publicly available bulk RNA datasets from lung or blood from patients 

diagnosed with COVID-19 and IPF. Normalized counts were downloaded from GEO 

(GSE213001, GSE134692, GSE172114).33-35 When normalized counts were 

unavailable, raw counts were downloaded (GSE159585).36 Genes with counts less than 
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five were filtered out, and the remaining gene counts were normalized using DESeq237. 

We utilized publicly available single-cell (sc) and single-nucleus (sn) RNA-sequencing 

(RNA-Seq) datasets to investigate causal gene expression in IPF and COVID-19 lungs 

compared to healthy controls. A scRNA-Seq dataset for IPF from Adams et al.38 

containing 243,472 cells from 32 IPF lungs and 28 control donor lungs was downloaded 

from GEO (GSE136831). A snRNA-Seq dataset for lethal COVID-19 from Melms et al.39 

containing 116,314 nuclei from 19 lethal COVID-19 lungs and seven control lungs was 

downloaded from the Broad Institute Single Cell Portal.40 Previously annotated cell type 

clusters were used to create expression dot plots and calculate cell type proportions 

within each donor with the Python package “scanpy”.41 Only cell type clusters with at 

least ten cells and cells with at least 500 total counts were retained for downstream 

differential expression analyses. We then pseudobulked gene counts by donor and cell-

type using the Python package “decoupleR”42. Differential expression analysis between 

diseased and healthy lungs was conducted in the Python package “pyDESeq2”43 which 

implements the traditional DESeq237 workflow. Cell type proportions calculated from the 

datasets are in Table S4-5. Differential expression results are in Table S6-7.  

 

Data Visualization 

All visualizations were created in R version 4.3.0.44 Lollipop plots, genotypic box plots 

and -log10(p-value) scatterplots were generated using “ggplot2”.45 Manhattan plots and 

LocusZoom plots were created using “fastman”46 and “locuszoomr”47, respectively. 

While p-values from eQTL and mQTL summary statistics incorporated PEER factor 

normalization, values plotted for gene expression and methylation were pre-PEER 
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normalization. For eQTL data from Borie et al.,28 normalized RNA TPM values were 

plotted (transcripts per million after trimmed mean of M values (TMM) normalization 

across samples and inverse normal transformation on a per-gene basis). For mQTL 

data from Borie et al.,28 normalized methylation beta referred to beta values of DNA 

methylation level measured on Illumina arrays (scale 0–1) after SeSame48 data 

preprocessing and normalization.  
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RESULTS 

Identification of loci shared between critically ill COVID-19 and idiopathic 

pulmonary fibrosis 

The underlying causal genes and mechanisms for the shared loci associated with 

critically ill COVID-19 and IPF have not been systematically identified. The COVID-19 

Human Genetics Initiative integrated 82 studies from 35 countries to create the largest 

cohort to date for risk, hospitalization, and critical illness.24,49,50 Herein, we studied the 

critically ill COVID-19 trait (cases = 18,152, controls = 1,145,546) as severe disease is a 

risk factor for developing lung fibrosis. iCPAGdb revealed shared genetic associations 

between critically ill COVID-19 and multiple human diseases (Figure 1A; Table S2). 

Most interestingly, critically ill COVID-19 significantly overlapped with several pulmonary 

traits (Figure 1B), including interstitial lung disease (ILD) and IPF at five loci (ILD: 

Fisher’s exact test FDR = 6.05 x 10-15 and 3774.0-fold enrichment; IPF: FDR = 1.56 x 

10-14 and 4780.0-fold enrichment) (Figure 1C-D). Importantly, the risk allele was 

reversed for two of the five SNPs, rs35705950 and rs12585036. The odds ratio at each 

shared locus was also generally larger for IPF, highlighting the complex disease 

mechanisms linking COVID-19 and IPF (Figure 1C).  
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Figure 1: iCPAGdb reveals associations with critically ill COVID-19. 

(A) Lollipop plot of the top 15 traits associated with COVID-19. Fold enrichment is calculated 

by dividing number of SNPs shared by number of SNPs expected to be shared.  

(B) Plot of the pulmonary traits associated with COVID-19. 

(C) Table of the five SNPs overlapping between critically ill COVID-19 and IPF. The location 

and functional annotation are from GENCODE on the UCSC Genome Browser and 

NCBI dbSNP, respectively. 

(D) Miami plot of the IPF and critically ill COVID-19 GWAS highlights the five shared SNPs. 

Over 7.5 million SNPs were included in the IPF meta-GWAS summary statistics, while 

the top 10,000 SNPs were publicly available in the critically ill COVID-19 summary 

statistics from the COVID-19 Human Genetics Initiative.  

 

P-values are -log10 transformed, and the red line indicates the genome-significant 

threshold at p < 5.0 × 10-8.  
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Although regional association plots visually suggested colocalizing signals in 

critically ill COVID-19 and IPF (Figure 2A-E), shared associations cannot be assumed 

to be driven by the same causal SNP. Overlapping GWAS signals may be due to a 

shared causal SNP or two independent signals driven by different causal SNPs with 

variable degrees of LD. To systematically reveal whether each signal was due to a 

single causal SNP, we performed formal colocalization testing using the critically ill 

COVID-19 GWAS and the IPF meta-GWAS (cases = 4,125, controls = 20,464). For all 

loci except rs1105569, the PP4 was greater than 0.900 (Figure 2F; Table S9). The 

exception, rs1105569 (PP4 = 0.725), is located within the 17q21.31 inversion 

supergene with extensive LD extending over nearly 900 kb,31 which precluded our 

ability to determine whether an individual causal variant was driving the association in 

both diseases (Figure 2E). Overall, we determined that for the five shared loci identified 

by iCPAGdb, four demonstrated colocalizing signals likely driven by the same causal 

SNP in both critically ill COVID-19 and IPF.  
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Figure 2: IPF and critically ill COVID-19 GWAS colocalize at shared signals.  

(A) LocusZoom plot highlights that rs35705950 is the lead variant (purple diamond) in both 

disease GWAS and is located upstream of MUC5B on chromosome 11.  

(B) rs12585036 is a top variant in the IPF GWAS and is in strong LD with the lead variant 

(rs9577395). rs12585036 is the lead variant in the COVID-19 GWAS and is located 

within an intron of ATP11A on chromosome 13.  

(C) rs12610495 is the lead variant in both disease GWAS and is located within an intron of 

DPP9 on chromosome 19. 

(D) rs2897075 is the lead variant in both disease GWAS and is located within an intron of 

ZKSCAN1 on chromosome 7. 

(E) rs1105569 is a top variant in the IPF GWAS and is in strong LD with the lead variant 

(rs3785884). rs1105569 is the lead variant in the COVID-19 GWAS. rs1105569 is 

located within an intron of CRHR1 and in a supergene with high linkage disequilibrium 

between SNPs.  

(F) COLOC indicates strong colocalization between the disease GWAS signals at four of the 

five shared SNPs with PP4 > 0.900, and PP4/PP3 > 5.00. COLOC is inconclusive for 

rs1105569 due to extensive linkage disequilibrium in the region. 

 

P-values are -log10 transformed, and the dotted line indicates the genome-significant 

threshold at p < 5.0 × 10-8. Linkage disequilibrium information for European populations 

was obtained from LDlink and is relative to the lead variant in each plot.  
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Identification of causal genes for shared loci in bulk tissue 

SNPs can affect a nearby gene through altering function or regulation. To 

speculate how each SNP contributed to gene regulation during COVID-19 and IPF, we 

used HaploReg,51 a publicly available tool that annotates the putative functional impact 

of queried SNPs and all SNPs in LD. We first explored whether any of our SNPs of 

interest were in strong LD with nonsynonymous variants, altering the amino acid 

sequence of the protein. For rs1105569, the lead variant was in strong LD (r2>0.80) with 

18 nonsynonymous variants (missense, frameshift, and nonsense) in CRHR1, SPPL2C, 

and MAPT.51 These three genes, and several others in 17q21.31, were previously 

considered important for COVID-19.14,24,50 No nonsynonymous variants were in strong 

LD with the other four SNPs of interest, indicating these signals were likely due to 

regulatory variants.   

Next, we determined if the five SNPs of interest were associated with gene 

expression in bulk, healthy tissue. In GTEx,26 only rs35705950 was a conditionally 

independent eQTL for MUC5B in lung (nominal p-value = 6.71 x 10-16). We next 

assessed if our SNPs of interest were in LD with conditionally independent eQTLs in 

any tissue (Table S2). Through GTEx and literature review, we identified 15 plausible 

eQTL-protein-coding eGene pairs for COLOC analysis (Table 2).  

A previous study informed that rs35705950 is within an enhancer region of 

MUC5B that was differentially methylated and bound by the transcription factor 

FOXA2.52 Subsequent colocalization analyses with eQTL and mQTL data from control 

and IPF lung tissue revealed that the T allele of rs35705950 was also associated with 

higher methylation within a repressor region of MUC5B and higher MUC5B 
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expression.28 Similarly, we found that MUC5B was the only eGene for rs35705950 in 

the lung. Colocalization of the disease GWAS and MUC5B-eQTL signals resulted in a 

PP4 of 1.00, indicating that rs35705950 was the causal SNP driving both the GWAS 

and eQTL signals (Figure 3A-B). 

An LD proxy of rs12585036, rs9577395 (r2=0.99) was a conditionally 

independent eQTL for ATP11A in tissues of unclear relevance to IPF and COVID-19 

(aorta, skin, small intestine). However, in tissues relevant to IPF and COVID-19 (EBV-

transformed lymphocytes, cultured fibroblasts, lung, and whole blood), we found modest 

colocalization of the GWAS and ATP11A-eQTL signals in whole blood (PP4 = 0.621 

with IPF GWAS; 0.749 with COVID-19 GWAS; Figure 3C-D). In the remaining three 

tissues, we did not find colocalization of the GWAS and ATP11A-eQTL signals (PP4 < 

0.408; Table S8), and the lead eQTLs were in weak LD with rs12585036 (r2 < 0.20). 

An LD proxy of rs12610495, rs2277732 (r2 = 0.95) was a conditionally 

independent eQTL for DPP9 in fibroblasts. Accordingly, the disease GWAS and DPP9-

eQTL signals colocalized in fibroblasts (PP4 = 0.989), highlighting that this variant may 

affect DPP9 expression in a cell-type specific manner (Figure 3E-F). In GTEx, the G 

allele was associated with lower DPP9 expression in lungs and fibroblasts and was also 

the risk allele for both critically ill COVID-19 and IPF. In the remaining three tissues, we 

did not find colocalization of the GWAS and eQTL signals (PP4 < 0.225; Table S8), and 

the lead eQTLs were in weak LD with rs12610495 (r2 < 0.20).   

LD proxies of rs2897075, rs73158411 and rs13243708 were conditionally 

independent eQTLs in esophageal and breast tissue for COPS6 and ZKSCAN1, 

respectively. However, we found no colocalization between the disease GWAS and 
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eQTL signals for COPS6, TRIM4, or ZKSCAN1 in the tissues of interest (PP4 < 0.312; 

Table S8). The lead eQTLs for COPS6, TRIM4, or ZKSCAN1 were in weak with 

rs2897075 (r2 < 0.20). 

For rs1105569, we tested 9 candidate protein-coding eGenes (Table 2) but did 

not find clear evidence of colocalization for any eGene in the tissues of interest, which 

was likely due to the extensive LD in the region (Table S8). Thus, out of five shared loci, 

baseline bulk eQTL data in the most relevant healthy tissue (i.e. lung) only revealed a 

clear causal gene (MUC5B) for rs35705950 (Figure 3A-B). Our focus on the shared 

genetic variants between critically ill COVID-19 and IPF prompted us to broaden our 

search to other relevant tissues, revealing that expression of ATP11A in whole blood 

and DPP9 in fibroblasts may be relevant for the effect of rs12585036 and rs12610495, 

respectively, during pathogenesis (Figure 3G). Our results highlight a mystery in the 

field of human genetics – lack of colocalization between GWAS and eQTL signals.8,53,54 

To address this, we next examined context-specific eQTL datasets. 
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Figure 3: Colocalization of Disease GWAS and GTEx eQTL signals.  

(A) LocusZoom plot shows rs35705950 is the lead eQTL (purple diamond) for MUC5B in 

GTEx lung tissue.  

(B) Comparison of -log10(p-values) from the IPF GWAS and MUC5B-eQTLs in GTEx lung 

tissue shows rs35705950 as the shared lead SNP.  

(C) rs12585036 is not the lead eQTL nor in LD with the lead eQTL (rs1631350) for ATP11A 

in GTEx whole blood. 

(D) Comparison of -log10(p-values) from the IPF GWAS and ATP11A-eQTLs in GTEx lung 

tissue shows rs12585036 as the shared lead SNP.  

(E) rs12610495 is in strong LD with the lead eQTL (rs2277732) for DPP9 in GTEx 

fibroblasts.  

(F) Comparison of -log10(p-values) from the IPF GWAS and DPP9-eQTLs in GTEx 

fibroblasts show rs12610495 as the shared lead SNP.  

(G) COLOC indicates strong colocalization between the disease GWAS and MUC5B- and 

DPP9-eQTL signals in lung and fibroblasts, respectively, with PP4 > 0.900 and PP4/PP3 

> 5.00. COLOC suggests colocalization between the COVID-19 GWAS and ATP11A-

eQTL signals in whole blood with PP4 > 0.700 and PP4/PP3 > 5.00.  

 

P-values are -log10 transformed. Linkage disequilibrium information for European 

populations was obtained from LDlink and is relative to the lead variant in each plot. 
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rs12585036 is an eQTL for ATP11A in lung tissue from a cohort of primarily ex- 

and current smokers 

The Lung eQTL Study utilized lung samples from 1,111 patients, and most 

patients (85%) were either ex-smokers or current smokers (compared to 68% of all 

tissue donors in GTEx).55-57 We were interested in the Lung eQTL Study due to its 

larger sample size compared to GTEx and because smoking is a risk factor for ILDs 

including IPF.58-60 We hypothesized that this dataset might elucidate additional eQTL 

signals that were not detected in GTEx and better colocalize with the IPF and COVID-

19 GWAS signals. Indeed, we found that a lead eQTL for ATP11A in the Lung eQTL 

Study, rs7998551 (p=7.68 x 10-8), was in strong LD with rs12585036 (r2 = 0.96) (Figure 

4A). We subsequently found evidence of colocalization between the disease GWAS 

and the ATP11A-eQTL signals (PP4 = 0.996 with IPF GWAS; 0.995 with COVID-19 

GWAS; Figure 4B-C; Table S9) but lack of colocalization between the ATP11A-eQTL 

signals from the Lung eQTL Study and GTEx lung (PP4 = 0.344; Table S9). This 

demonstrated that lungs exposed to a particular environmental stressor, such as 

smoking, can reveal eQTLs and causal genes that would otherwise be overlooked. The 

C allele of rs12585036 was associated with higher ATP11A expression and was the risk 

allele in IPF but the protective allele for critically ill COVID-19. Thus, ATP11A appeared 

to have opposite effects on the pathophysiology of these two diseases. 

We found no colocalization at the MUC5B locus since the SNP array used in this 

study (Illumina Human1M-Duo BeadChip) did not include rs35705950, and there are no 

additional SNPs in LD with this SNP. We did not find colocalization at our other variants 

of interest. 
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Monocytes are a critical cell type for the eQTL effect of rs12585036 

 The colocalization of rs12585036 with ATP11A expression in lung tissue 

primarily from smokers revealed a plausible environmental context where an eQTL 

effect is revealed. However, as these data were from bulk lung tissue, it was unclear 

what specific cell type drove this difference. Smoking causes inflammation and 

infiltration of immune cells, specifically monocytes and neutrophils, into the lungs.61-63 

Therefore, we hypothesized the eQTL effect may be associated with a specific immune 

cell, which was also consistent with the modest colocalization we detected from bulk 

whole blood in GTEx (Figure 3C-D). The BLUEPRINT project64 allowed us to 

interrogate ATP11A eQTLs in monocytes, neutrophils, and CD4+ T cells. rs12585036 

was an eQTL only in monocytes (p-value = 3.58 x 10-12 in monocytes vs. 1.38 x 10-3 in 

neutrophils and 3.89 x 10-2 in T cells; Figure 4D) and demonstrated strong 

colocalization with the disease GWAS (PP4 = 0.994; Figure 4C-E; Table S9). 

Directionality of the signals from the BLUEPRINT project and Lung eQTL Study were 

consistent with the C allele of rs12585036 being associated with higher ATP11A 

expression. Thus, our analyses used two context-specific eQTL datasets to reveal that 

ATP11A was the causal gene associated with the IPF and COVID-19 GWAS signals at 

rs12585036. Further, the eQTL signal appeared to be important specifically in 

monocytes, possibly within the proinflammatory context of smoking.  
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Figure 4: Colocalization at rs12585036 in a proinflammatory context and cell-type specific 

manner reveals ATP11A as a causal gene. 

(A) LocusZoom plot shows that rs12585036 is a top eQTL and in strong LD with the lead 

eQTL (rs7998551; purple diamond) for ATP11A in the Lung eQTL Study, which included 

primarily individuals with a smoking history. 

(B) Comparison of -log10(p-values) from the IPF GWAS and ATP11A-eQTLs in the Lung 

eQTL Study shows rs12585036 as a top shared SNP. 

(C) COLOC indicates strong colocalization between the disease GWAS and the Lung eQTL 

Study’s ATP11A-eQTL signals with PP4 > 0.900, and PP4/PP3 > 5.00. 

(D)  rs12585036 is a top eQTL and in strong LD with the lead eQTL (rs9577175) for ATP11A 

in monocytes in the BLUEPRINT project.  

(E) Comparison of -log10(p-values) from the IPF GWAS and monocytic ATP11A-eQTLs 

shows rs12585036 as a top shared SNP. 

(F) COLOC indicates strong colocalization between the disease GWAS and monocytic 

ATP11A-eQTLs signals with PP4 > 0.900 and PP4/PP3 > 5.00. 

 

P-values are -log10 transformed. Linkage disequilibrium information for European 

populations was obtained from LDlink and is relative to the lead variant in each plot. 
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rs12610495 is an eQTL for DPP9 in IPF lung 

We sought to determine if there was colocalization with eQTLs specifically 

identified in lungs from individuals with IPF. We utilized the Borie et al. eQTL dataset 

which included lung samples from healthy controls (n = 188) and individuals with IPF 

who also reported a more extensive smoking history (n = 234).28 Borie et al. previously 

demonstrated colocalization of the eQTL, mQTL, and GWAS signals at rs35705950 

within the MUC5B locus in both controls and IPF cases.28  

We did not find evidence of colocalization between disease GWAS and 

control/IPF eQTL signals at rs12585036, rs2897075, and rs1105569. However, we 

found colocalization at rs12610495 for DPP9 expression in IPF cases. Although the 

eQTL signals were in similar genomic locations for both controls and IPF cases, fine 

mapping further revealed that the lead variants between the two groups were distinct 

signals (Figure 5A-D). The lead variant in controls, rs758510 (p-value = 2.91 x 10-6 

from FastQTL following PEER normalization), and the lead variant in the IPF cases, 

rs12462642 (6.65 x 10-7), exhibited weak LD (r2 = 0.15). In contrast, rs12462642 and 

rs12610495 (the lead GWAS variant; 6.52 x 10-5) were in stronger LD (r2 = 0.68). 

COLOC demonstrated moderately strong colocalization between the disease GWAS 

and IPF cases DPP9-eQTL signals (PP4 = 0.874 with IPF GWAS; 0.873 with COVID-19 

GWAS) and weaker colocalization between the GWAS and control eQTL signals (PP4 = 

0.661; 0.640; Figure 5E-F; Table S9). Plotting DPP9 expression by rs12610495 

genotype confirmed a more robust association of this lead GWAS SNP with expression 

in IPF cases (slope = -0.212; p-value = 1.96 x 10-2 using linear regression of pre-PEER 

normalized values) compared to controls (slope = -0.074; p-value = 0.526) and was 
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consistent with the G allele being associated with lower DPP9 expression (Figure 5G-

H). Thus, two independent context-specific eQTL datasets, from fibroblasts and IPF 

lung, pointed to DPP9 as the causal gene underlying rs12610495. These discoveries 

could be related as IPF lungs are known to have high levels of activated, and potentially 

abnormal, fibroblasts.65-68  

In summary, we used context-specific eQTL datasets of fibroblasts, monocytes, 

and lungs affected by smoking and IPF to show that ATP11A and DPP9 were likely 

causal genes in critically ill COVID-19 and IPF. These results also revealed that 

ATP11A and DPP9 were likely important in monocytes and fibroblasts, respectively. We 

also examined recent sc-eQTL datasets from Aquino et al. for COVID-1969 and Natri et 

al. for IPF70 but found no further evidence of colocalization, which could be due to low 

power (n = 80 Western European individuals in Aquino et al.; n = 48 controls, 66 IPF 

cases in Natri et al.). 
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Figure 5: Colocalization at rs12610495 in IPF cases reveals DPP9 as a causal gene. 

(A) LocusZoom plot shows that rs12610495 is not the lead eQTL nor in LD with the lead 

eQTL (rs758510; purple diamond) for DPP9 in controls in the Borie et al. dataset.  

(B) rs12610495 is a top eQTL and in LD with the lead eQTL (rs12462642) for DPP9 in IPF 

cases.  

(C) Comparison of -log10(p-values) from the IPF GWAS and DPP9-eQTLs in controls shows 

rs12610495 as a top shared SNP.  

(D) Comparison of -log10(p-values) from the IPF GWAS and DPP9-eQTLs in IPF cases 

shows rs12610495 as the lead shared SNP.  

(E) COLOC does not support colocalization between the disease GWAS and DPP9-eQTL 

signals in controls with PP4 < 0.700. 

(F) COLOC indicates colocalization between the disease GWAS and DPP9-eQTL signals in 

IPF cases with PP4 > 0.700 and PP4/PP3 > 5.00.  

(G) Box plot for DPP9 expression in controls by genotype.  

(H) DPP9 expression in IPF cases by genotype.  

 

P-values in LocusZoom plots are -log10 transformed. Linkage disequilibrium information for 

European populations was obtained from LDlink and is relative to the top variant in each plot. 

Slopes and p-values for genotype expression boxplots were obtained through linear regression 

modeling. 
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rs12610495 is an mQTL affecting methylation of the DPP9 promoter in IPF lungs 

 The stronger colocalization of GWAS and eQTL signals at rs12610495 in IPF 

cases suggested that there may be underlying gene regulatory differences between 

healthy and IPF lungs. Differences in DNA methylation can influence gene expression, 

and mQTL may reveal locations in the genome where patterns of DNA methylation are 

regulated by genetic variation.71-73 We utilized the Borie et al. mQTL dataset which 

included lung samples from healthy controls (n = 202) and IPF cases (n = 345). We 

found that rs12610495 was not in strong LD with rs10420225 (r2 = 0.25), the lead mQTL 

for cg07317664 in controls, but was in strong LD with rs2277732 (r2 = 0.95), the lead 

mQTL for cg07317664 in cases (Figure 6A-B). We did not observe colocalization 

between the disease GWAS and control cg07317664-mQTL signals (PP4 = 1.33 x 10-2 

with IPF GWAS; 9.47 x 10-3 with COVID-19 GWAS) (Figure 6C, 6E). Like the eQTL 

colocalization at rs12610495, we found strong colocalization between the disease 

GWAS and IPF cases cg07317664-mQTL signals (PP4 = 0.980 with IPF GWAS; 0.763 

with COVID-19 GWAS; Figure 6D, 6F). Plotting methylation of cg07317664 by 

rs12610495 genotype indicated a more robust association in IPF cases (slope = 1.9 x 

10-2; p-value = 3.20 x 10-9 by linear regression using pre-PEER methylation values) 

compared to controls (slope = 1.2 x 10-2; p-value = 6.99 x 10-4) (Figure 6G-H). 
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Figure 6: Colocalization at rs12610495 reveals a differentially methylated site 

(cg07317664) near the DPP9 transcription start site in IPF cases.  

(A) LocusZoom plot shows that rs12610495 is not the lead mQTL nor in LD with the lead 

mQTL (rs10420225; purple diamond) for cg07317664 in controls in the Borie et al. 

dataset.  

(B) rs12610495 is a top mQTL and in LD with the lead mQTL (rs2277732) for cg07317664 in 

IPF cases. 

(C) Comparison of -log10(p-values) from the IPF GWAS and cg07317664-mQTLs in controls 

shows rs12610495 as a top shared SNP.  

(D) Comparison of -log10(p-values) from the IPF GWAS and cg07317664-mQTLs in IPF 

cases shows rs12610495 as the lead shared SNP.  

(E) COLOC does not support colocalization between the disease GWAS and cg07317664-

mQTL signals in controls with PP4 < 0.700.  

(F) COLOC indicates colocalization between the disease GWAS and cg07317664-mQTL 

signals in cases with PP4 > 0.700.  

(G) Box plot for normalized methylation beta in controls by genotype.  

(H) Normalized methylation beta in IPF cases by genotype. 

 

P-values in LocusZoom plots are -log10 transformed. Linkage disequilibrium information 

for European populations was obtained from LDlink and is relative to the top variant in 

each plot. Slopes and p-values for genotype methylation beta boxplots were obtained 

through linear regression modeling. 
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Cg07317664 is 7319 base pairs upstream of the transcription start site of DPP9, 

leading us to hypothesize that methylation at this location may regulate DPP9 gene 

expression. This hypothesis was consistent with the genetic and eQTL data as the G 

allele of rs12610495 was associated with greater methylation at a regulatory site of 

DPP9 and decreased expression of DPP9, while the A allele was associated with less 

methylation and increased expression. Comparing the mQTL and eQTL signals in 

controls and cases separately demonstrated that colocalization occurred only in cases 

(PP4 = 0.404 in controls; 0.730 in cases; Figure 7A-C;). Further, we found that IPF 

cases, regardless of rs12610495 genotype, had significantly higher methylation levels at 

cg07317664 (slope = 0.0304, p-value < 2.2 x 10-16) and significantly lower expression of 

DPP9 (slope = -0.561, p-value = 9.5 x 10-9; Fig 7D-E), suggesting that genotype was 

just one factor contributing to reduced expression in IPF and underscoring the 

importance of considering epigenetic regulation.  
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Figure 7: Colocalization at rs12610495 confirms the association between the cg07317664-

mQTL and DPP9-eQTL signals in IPF cases.   

(A) Comparison of -log10(p-values) of cg07317664-mQTLs and DPP9-eQTLs in controls in 

the Borie et al. datasets shows that rs12610495 in not the lead SNP for either dataset.  

(B) Comparison of -log10(p-values) in IPF cases shows rs12610495 as a top shared SNP.  

(C) COLOC does not support colocalization between cg07317664-mQTL and DPP9-eQTL 

signals in controls with PP4 < 0.700 but supports colocalization in IPF cases with PP4 > 

0.700.  

(D) Box plot for DPP9 expression in lung by diagnosis.  

(E) Box plot for normalized methylation beta in lung by diagnosis. 
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Causal genes in bulk diseased tissue  

The putative causal genes we identified also demonstrated altered expression in 

IPF and COVID-19. Consistent with the genetic associations and as previously 

reported, we found that MUC5B expression was significantly increased in lung tissue 

from individuals with IPF when compared to tissue from controls in two independent 

studies (GSE213001 and GSE34692) (Figure 8A-B). In contrast, ATP11A and DPP9 

expression were significantly decreased in IPF lung tissue when compared to control 

tissue (Figure 8A-B). Lower DPP9 expression in IPF lung tissue was concordant with 

the disease GWAS and eQTL association as the G allele of rs12610495 was associated 

with lower DPP9 and increased risk of IPF. In contrast, the directionality of the 

observation for ATP11A was discordant with the GWAS and eQTL association, which 

suggested the C allele of rs12585036 was associated with higher ATP11A and 

increased risk of IPF. However, two reasons may reconcile this observation for 

ATP11A. Firstly, ATP11A may be higher during the onset of disease and decrease in 

later stages, which was when most samples in these studies were collected. Later 

changes in ATP11A levels may reflect an effect of the disease on gene expression. 

Secondly, a single cell type may be underlying the genetic signal which is confounded 

when looking at bulk tissue and may also be depleted during later stages of disease.  

We did not observe significant differences in MUC5B or DPP9 expression in 

lungs from patients who succumbed to COVID-19 when compared to control lungs, 

which could be due to the limited number of samples in the study we examined 

(GSE159585; Figure 8C). We found significantly lower ATP11A expression in COVID-

19 lungs when compared to control lungs which was concordant with the GWAS and 
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eQTL association as the T allele of rs12585036 was associated with low ATP11A and 

increased risk of COVID-19 (Figure 8C). However, in another study which measured 

gene expression in whole blood (GSE172114; Figure 8D), we found that ATP11A 

expression was higher in patients diagnosed with critically ill COVID-19 when compared 

to those with non-critically ill COVID-19, which could be due to an increase in myeloid 

lineage cells. As observed in the other datasets, DPP9 is significantly lower in the blood 

of critically ill patients compared to the non-critically ill.  

Altogether, these findings support the relevance of ATP11A and DPP9 in IPF and 

COVID-19 pathogenesis, but directionality of how associated SNPs impact gene 

expression may differ in bulk diseased tissues possibly due to the impact of reverse 

causation of disease on gene expression, changes in cell type proportions, and/or the 

lack of temporal and spatial resolution. We therefore examined scRNA-Seq datasets. 
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Figure 8: Assessment of causal genes in bulk control and diseased tissue from 

independent studies. Box plots depict normalized expression of causal genes by diagnosis 

from: 

(A) GSE213001, which included lung tissue from non-diseased controls (n=14) and IPF 

patients undergoing lung transplant (n=20). 

(B) GSE134692, which included lung tissue from non-diseased controls (n=19) and IPF 

patients undergoing lung transplant (n=36). 

(C) GSE159585, which included lung tissue from non-diseased controls (n=12) and from 

patients who succumbed to COVID-19 (n=7).  

(D) GSE172114, which included whole blood samples from hospitalized patients with non-

critically ill COVID-19 (n=23) and patients in the intensive care unit with critically ill 

COVID-19 (n=46).  

 

P-values were calculated using the Mann-Whitney U test. 
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Causal genes in single cell types from diseased tissue 

 Using a scRNA-Seq dataset for IPF38 and snRNA-Seq dataset for lethal COVID-

1939, we compared where the identified causal genes were expressed in healthy and 

diseased lung tissue. As differences in the expression of our identified causal genes 

could be due to either changes in cell type number or expression levels within a cell 

type, we first determined how cellular proportions differed between healthy and IPF or 

COVID-19 lungs. IPF lungs displayed decreases in type 1 and type 2 alveolar 

pneumocytes (AT1s and AT2s), and increases in other epithelial cell types (basal, 

ciliated, club, and goblet cells), myofibroblasts, peribronchial vascular endothelial cells, 

consistent with fibrosis and reduced healthy lung tissue (Table S4). COVID-19 lungs 

displayed a significant increase only in macrophages but also notable increases in 

monocytes and fibroblasts, and decreases in AT1s, AT2s, and other airway epithelial 

cells (Table S5). 

 We subsequently determined what cell types expressed our causal genes. As 

expected, MUC5B was highly expressed in goblet cells and modestly in AT2s, other 

airway epithelial cells, and macrophages (Table S6-7). ATP11A was notably expressed 

in AT1s, AT2s, and macrophages and modestly expressed in fibroblasts, endothelial 

cells, monocytes, and other airway epithelial cells (Table S6-7). The expression in 

macrophages and monocytes was particularly intriguing given the colocalization of 

monocyte eQTL and GWAS signals at the ATP11A locus. DPP9 was notably expressed 

in AT1s, AT2s, macrophages, and fibroblasts (Table S6-7). 

  Next, we examined differences in causal gene expression during IPF and 

COVID-19 in single cell types. Concordant with the GWAS and eQTL directionality, we 
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found that MUC5B was significantly increased during IPF in goblet cells, AT2s, other 

airway epithelial cells, and macrophages (Figure 9A). In COVID-19, we found 

decreased, although statistically nonsignificant, MUC5B in airway epithelial cells, which 

includes goblet cells (Figure 9B), consistent with our genetic associations having 

opposite effects in these two diseases.  

 We hypothesized that ATP11A would be increased in epithelial cells and/or 

myeloid lineage cells based on the GWAS and eQTL colocalization in lung tissue 

primarily from smokers and in monocytes. However, we found significantly lower 

expression in AT2s (Figure 9C; Table S6), which may be due to the depletion of 

epithelial cells during IPF. Consistent with our hypothesis, ATP11A was significantly 

increased during IPF in macrophages, a large proportion of which are derived from 

monocytes recruited to the lung during IPF,74 as well as in other airway epithelial cells 

and myofibroblasts, which are a key driver of fibrosis (Figure 9C; Table S6).65 During 

COVID-19, ATP11A was significantly decreased in AT1s, AT2s, other airway epithelial 

cells, concordant with the GWAS and eQTL data (Figure 9D; Table S7).  

 We hypothesized that DPP9 would be decreased during IPF and COVID-19 in 

fibroblasts and other cell types that increase in proportion during IPF based on our 

GWAS and eQTL colocalization in fibroblasts and IPF lung. DPP9 was significantly 

decreased in AT2s and monocytes during IPF (Figure 9E; Table S6). However, we 

found that DPP9 was significantly increased in myofibroblast during IPF, which may be 

due to the hyperproliferation of this cell type during IPF (Figure 9E; Table S6). During 

COVID-19, we found that DPP9 was significantly decreased in AT1s and AT2s (Figure 

9F; Table S7).  
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Figure 9: Assessment of causal genes at the single-cell resolution in control and 

diseased tissue. Box plots depict normalized expression of (A) MUC5B, (C) ATP11A, and (E) 

DPP9 in an IPF single-cell RNA sequencing study by Adams et al. which included controls 

(n=28) and IPF patients (n=32). Box plots depict normalized expression of (B) MUC5B, (D) 

ATP11A, and (F) DPP9 in a lethal COVID-19 single-nucleus RNA sequencing study by Melms 

et al. which included controls (n=7) and COVID-19 patients (n=19).  

 

P-values were calculated using Wald test with P values adjusted for multiple comparisons using 

the Benjamini-Hochberg method (*Padj < .05; **Padj < .001; ***Padj < .0001). 
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DISCUSSION 

 GWAS provide a powerful approach to gather human genetic evidence to 

increase success in drug development, but such efforts require the identification of the 

underlying causal genes.1 Molecular QTL studies were designed to bridge the gap 

between GWAS variants and causal genes, revealing molecular effects on gene 

expression, splicing, and methylation. However, studies have found limited 

colocalization between eQTL and human disease GWAS signals. This has been 

speculated to be due to multiple factors including lack of power in detecting GWAS and 

eQTL signals; inappropriate context with regards to cell type, developmental stage, and 

response; nonlinear relationships between eQTL effect and phenotype; overlap of eQTL 

signals due to multiple signals; and strong LD between variants limiting deconvolution of 

causality (e.g. rs1105569 within the 17q21.31 inversion supergene). Here, we found 

evidence that consideration of cell type and disease can improve colocalization of 

GWAS and QTL signals to reveal causal genes and where they may function during 

pathogenesis. Whereas eQTLs from healthy lung revealed MUC5B as the causal gene 

underlying the association of rs35705950 with critically ill COVID-19 and IPF, MUC5B 

may be atypical in that its expression is largely restricted to mucus-secreting cells and 

the effect size of the eQTL is large,28 making accurate mapping of this eQTL feasible 

with smaller numbers and in bulk tissue. Examination of eQTL data from isolated cell 

types and lung disease states was necessary to reveal DPP9 and ATP11A as two 

additional causal genes. Thus, well-powered tissue- and disease-specific eQTL 

datasets will continue to reveal additional causal genes for human diseases.  
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            For each of the five shared loci between critically ill COVID-19 and IPF, 

identification of the likely causal gene leads to testable hypotheses for how each gene 

impacts these two diseases. This has been demonstrated for the MUC5B locus in IPF. 

The variant rs35705950 is within an enhancer that is differentially regulated and binds 

the transcription factor FOXA2 to regulate MUC5B expression.52 Additional 

colocalization studies at rs35705950 between IPF GWAS, control and IPF eQTL, and 

mQTL signals suggested that higher methylation at a repressor region further 

contributes to increased MUC5B expression in cases of IPF.28 In vivo studies have 

functionally demonstrated that excessive MUC5B production impairs mucociliary 

clearance and increases the fibroproliferative response, while reducing mucin 

production may ameliorate fibrosis.75 Though increased mucus plugging was observed 

in COVID-19 lung autopsies,76 the same allele associated with increased MUC5B is 

protective against severe COVID-19, suggesting increased mucus production in this 

acute context is protective. The opposite risk alleles of MUC5B (and ATP11A) for IPF 

and critically ill COVID-19 also underscores that though these two diseases share five 

of the same genetic determinants, the underlying pathophysiology is unique—critically ill 

COVID-19 and PCPF is not simply IPF due to a known etiology. For the remaining four 

loci overlapping between COVID-19 and IPF, identification of causal genes has now 

begun to similarly elucidate mechanisms of diseases.   

The causal gene associated with rs2897075 has been difficult to identify due to 

lack of colocalization between GWAS and eQTL signals. We speculate that the most 

likely causal genes are TRIM4 and ZKSCAN1. rs2897075 is an eQTL for TRIM4 in 

several tissues, including the lung, and decreased expression is associated with the risk 
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allele of critically ill COVID-19 and IPF. TRIM4 has been reported to polyubiquitinate 

viral pattern recognition receptors including RIG-I and MDA5 and promoting type I 

interferon production during Sendai virus77 and SARS-CoV-278 infections, respectively. 

rs2897075 is also an eQTL for ZKSCAN1 in fibroblasts, and decreased expression is 

associated with the risk allele of IPF and critically ill COVID-19. Interestingly, ZKSCAN1 

mRNA can be backspliced into a circular RNA (circRNA), a type of noncoding RNA that 

can act as sponges for microRNA and proteins and may contribute to fibrosis.79,80 

Whether rs2897075 is associated with levels of ZKSCAN1 circRNA is unknown, though 

both ZKSCAN1 and circZKSCAN1 have been implicated in liver fibrosis.81 Although 

several studies have reported rs2897075 as a genome-wide significant hit in IPF 

GWAS, its mechanism and phenotypic effect has not been reported to our knowledge. 

Importantly, we noted that although rs2897075 was not an eQTL in the Borie et al. 

eQTL dataset, a variant in strong LD rs6963345 (r2 = 1.00) was associated with 

numerous mQTLs, suggesting that this SNP may influence DNA methylation.28  

The directionality of the rs12585036 alleles indicates that increased ATP11A 

expression is associated with increased risk of IPF while decreased expression is 

associated with increased risk of critically ill COVID-19. Our colocalization data suggest 

that the association at the ATP11A locus may be due to expression in monocytes and 

derived cells in the lung. Cycles of alveolar damage, recruitment of monocytes, and 

their differentiation into monocyte-derived alveolar macrophages occur repeatedly 

during IPF.74 Specifically, M2 macrophages promote fibrosis, possibly through secretion 

of TGF-beta82 and other profibrotic factors.74 ATP11A, or ATPase Phospholipid 

Transporting 11A, is a member of the P4-ATPase family of lipid flippases, responsible 
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for translocating aminophospholipids on the cellular membrane.83,84 We propose two 

mechanisms that could explain ATP11A’s involvement in the pathogenesis of IPF and 

COVID-19. Firstly, ATP11A is cleaved during apoptosis and results in 

phosphatidylserine’s translocation to the outer leaflet of the cell membrane, which is an 

“eat me” signal during efferocytosis.83-86 Increased apoptosis of epithelial cells and 

resistance to apoptosis in myofibroblasts are hallmarks of IPF, correlating with aberrant 

collagen deposition.87,88 During IPF, we speculate that increased ATP11A may 

contribute to impaired efferocytosis, an observation reported in murine models89 and 

IPF patient samples90. Secondly, ATP11A has also been reported to promote 

internalization of toll-like receptor 4 (TLR4), which is highly expressed on both alveolar 

pneumocytes and myeloid lineage cells, preventing hypersecretion of proinflammatory 

cytokines after stimulation with lipopolysaccharide.91 This may skew macrophages 

toward profibrotic M2 polarization. Additionally, TLR4 signaling contributes to proper 

AT2 renewal and lung repair.92 In the case of COVID-19, the ectodomain of the SARS-

CoV-2 spike protein has been consistently reported to stimulate TLR4.93,94 Without 

adequate internalization of TLR4 by ATP11A, downstream immune signaling may be 

overactivated, leading to hypersecretion of proinflammatory cytokines. Thus, we 

propose that ATP11A may affect IPF and COVID-19 by functioning in both epithelial 

and myeloid cells and eliciting impaired cell death and immune pathways (Figure 10A). 

Additionally, the opposite effects of rs12585036 and rs35705950 during IPF and 

COVID-19 highlight the trade-offs of specific genetic variants in the face of different 

threats. 
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Colocalization of disease GWAS and eQTL signals indicates that decreased 

DPP9 expression is associated with increased risk of COVID-19 and IPF and that 

fibroblasts may drive the association at least in IPF lung. DPP9, Dipeptidyl Peptidase 9, 

is a serine peptidase that is in the same family as DPP4, which is well-known as a 

target of hypoglycemic drugs and as a receptor for the coronavirus causing Middle 

Eastern Respiratory Syndrome. DPP9 helps maintain the inactive conformation of the 

NLRP1 inflammasome, inhibiting activation and downstream pyroptosis.95-97 In addition 

to regulating inflammasome activity, DPP9 also regulates survival, proliferation, 

migration, and adhesion, including in dermal fibroblasts.98 Interestingly, fibroblast 

activating protein (FAP) belongs to the same serine protease subfamily as DPP9. 

However, unlike the other DPP proteins, FAP is largely expressed by cancerous cells, 

inducing EMT. In IPF, FAP is specifically localized to fibrotic foci and not in normal 

tissue.99 DPP9 interacts with FAP directly in oral squamous cell carcinoma, and DPP9 

overexpression can inhibit the EMT activity induced by FAP.100 We previously reported 

that based on transcriptomics from patients infected with COVID-19 that DPP9 

decreased concordantly with resolution of infection, and therefore, may be dampening 

the inflammatory response.11 We suspect that lower DPP9 may exacerbate 

pathogenesis of IPF and COVID-19 by preventing excess NLRP1-mediated 

inflammation and weakening cell-to-cell adhesion, promoting a dysregulated cycle of 

inflammation and fibrosis (Figure 10B).  
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Figure 10: Hypothesized mechanisms linking disease-associated SNPs to causal genes, 

ATP11A and DPP9.  

(A) The C allele of rs12585036 is associated with increased ATP11A, leading to 1) defective 

efferocytosis and impaired lung tissue repair and 2) increased internalization of toll-like 

receptor 4 and increased M2-macrophage polarization. These mechanisms lead to 

increased risk of IPF and protection from COVID-19. 

(B) The G allele of rs12610495 is associated with increased DPP9, leading to 1) impaired 

cell adhesion and migration affecting lung tissue repair, and 2) excessive NLRP1-

inflammasome activity and proinflammatory cytokine production. These mechanisms 

lead to increased risk of both IPF and COVID-19.  
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While the evidence we have presented suggests that variants in ATP11A and 

DPP9 impact COVID-19 and IPF pathogenesis by altering expression of these genes, 

recent evidence from Nakanishi et al. demonstrated that the sQTL data for these loci 

also colocalize with severe COVID-19.101 Future studies will be necessary to 

understand the effect of these risk variants on splicing, but we note that each sQTL is 

predicted to only impact a single non-canonical isoform based on Ensembl annotation. 

The isoform associated with DPP9 (ENST00000599248) is not protein-coding; the 

associated isoform for ATP11A (ENST00000415301) is highly truncated. Thus, ATP11A 

and DPP9 demonstrate a new “problem” in human genetics; the same human disease 

signal may colocalize with multiple molecular QTL signals, expanding the list of possible 

causal genes that underlie a GWAS signal. eQTL and sQTL data may also demonstrate 

two consequences of the same SNP as altering splicing can certainly impact overall 

gene expression. 

Identifying shared genetic associations and their causal genes can reveal new 

insight into the pathogeneses of COVID-19 and IPF that could spur further therapeutic 

development. Indeed, MUC5B has been proposed as a target for IPF treatment since 

the genetic association was first reported.102 For the causal genes with new evidence 

presented here, DPP9 may be particularly attractive, and inhibitors in development have 

been speculated to be therapeutic for pulmonary fibrosis.103 However, for treatment of 

COVID-19 and IPF, increasing DPP9 expression or activity seems to be the desired 

outcome. It remains to be tested if recombinant DPP9 or increasing expression in 

fibroblasts is beneficial in critically ill COVID-19 or IPF.  
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