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Abstract6

CITE-seq enables paired measurement of surface protein and mRNA expression in single7

cells using antibodies conjugated to oligonucleotide tags. Due to the high copy number of8

surface protein molecules, sequencing antibody-derived tags (ADTs) allows for robust pro-9

tein detection, improving cell-type identification. However, variability in antibody staining10

leads to batch effects in the ADT expression, obscuring biological variation, reducing in-11

terpretability, and obstructing cross-study analyses. Here, we present ADTnorm (https:12

//github.com/yezhengSTAT/ADTnorm), a normalization and integration method de-13

signed explicitly for ADT abundance. Benchmarking against 14 existing scaling and normal-14

ization methods, we show that ADTnorm accurately aligns populations with negative- and15

positive-expression of surface protein markers across 13 public datasets, effectively removing16

technical variation across batches and improving cell-type separation. ADTnorm enables effi-17

cient integration of public CITE-seq datasets, each with unique experimental designs, paving18

the way for atlas-level analyses. Beyond normalization, ADTnorm includes built-in utilities to19

aid in automated threshold-gating as well as assessment of antibody staining quality for titra-20

tion optimization and antibody panel selection. Applying ADTnorm to a published COVID-1921

CITE-seq dataset allowed for identifying previously undetected disease-associated markers,22

illustrating a broad utility in biological applications.23
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Main24

Recent advances in single-cell multimodal profiling, such as Cellular Indexing of Transcrip-25

tomes and Epitopes by sequencing (CITE-seq), have enabled the paired profiling of gene ex-26

pression alongside surface protein expression1–4. This paired multimodal profiling of single27

cells has allowed researchers to achieve more precise cell-type annotation (e.g., of immune28

cells)5, 6, study the relationship between transcriptomic state and surface phenotype7–9, and29

readily adapt results to flow cytometry for validation1, 4. Given its extraordinary potential, there30

is increasing application of CITE-seq for atlas construction10–12 and in large cohort disease-31

related studies13–15. To effectively leverage the data being generated, there is a pressing need32

for computational tools for CITE-seq data integration across studies.33

Surface proteome profiling by CITE-seq gives rise to specific data characteristics and34

sources of technical noise inherent to antibody staining. Owing to the high copy number of35

surface proteins and efficient molecular capture of antibody-derived tags (ADTs), protein ex-36

pression is considerably less sparse than other single-cell modalities such as mRNA expression37

or genome-wide chromatin accessibility. Consequently, the protein expression captured by38

CITE-seq often closely matches the information-rich multi-peak density distributions observed39

in flow cytometry1 (Supplementary Fig. 1A). Density distributions of protein expression of40

CITE-seq data frequently exhibit a negative peak, representing background signal arising from41

non-specifically bound or unbound (free-floating) antibody16, and one or more positive peak(s)42

representing cells expressing the target protein. Similar to fluorescence-based techniques, the43

signal-to-noise ratio between the negative- and positive-expression peak(s) is highly sensitive to44

antibody staining conditions, including antibody concentrations17, staining volumes and time18,45

and antibody panel composition19. Because of these unique considerations, the normalization46

and integration approaches devised for other single-cell modalities may not be directly trans-47

latable, highlighting the need for methodologies tailored to the intricacies of protein data.48

Recent normalization algorithms designed for CITE-seq data, similar to established49

scRNA-seq approaches20, 21, have primarily focused on modeling sequencing bias and ambi-50

ent expression to remove background signals. Centered log-ratio (CLR) normalization was51

initially proposed for CITE-seq1, using library size to account for variable sequencing depth52

and cell size. However, unlike scRNA-seq, which offers relatively unbiased transcriptional53

profiling, CITE-seq protein panels target only a handful of manually selected proteins, typi-54

cally between 10 and 300. Therefore, the overall ADT library size is highly sensitive to panel55

composition, can be easily skewed by high expression of a few subset-specific proteins, and56

unreliably reflects sequencing depth or cell size. More sophisticated algorithms, including57

totalVI22, DSB16, and DecontPro23, attempt to model ambient contamination and remove or58

re-center the background-signal to zero. However, these negative-expression peaks in ADT59

abundance mirror expression distributions by conventional cytometry and are essential for re-60

liable threshold-gating of cells for cell-type annotation24. Improper or incomplete removal of61

background ADT expression can make it difficult to distinguish between negative-, mid-, and62

high-expression peaks, for example, in the trimodal expression of the surface marker CD4, a63
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T cell lineage marker. Consequently, normalization of the negative peak in CITE-seq should64

emphasize its essential role in cell-type identification rather than its artificial removal.65

Instead of individually modeling each source of noise, we constructed a non-parametric66

strategy, ADTnorm, building on methods originally conceived for cytometry data25 to re-67

move the batch effects through strategic peak identification and alignment. ADTnorm uses68

a curve registration algorithm26 to identify protein density landmarks, including the nega-69

tive and positive peaks, and relies on local minima to detect the valleys separating adja-70

cent peaks. Employing a functional data analysis approach27, ADTnorm normalizes pro-71

tein expression by aligning the landmarks across datasets (Fig. 1A and Methods), effectively72

simulating a scenario where all data are derived from the same experiment with equiva-73

lent background and antibody staining quality. ADTnorm is implemented as an R package74

(https://github.com/yezhengSTAT/ADTnorm) with an interactive graphical user75

interface to simplify landmark adjustments (Supplementary Fig. 1B) and a Python wrapper76

(https://github.com/donnafarberlab/ADTnormPy) available to facilitate ADT-77

norm’s integration into existing CITE-seq analysis workflows (Supplementary Note).78

Leveraging 13 public CITE-seq datasets (Supplementary Table 1), we benchmarked the79

integration performance of ADTnorm against 14 methods from three broad groups: (1) scaling80

methods commonly applied to cytometry and single-cell data, including Arcsinh transforma-81

tion, CLR1, log-transformation of count per million (logCPM), and a hybrid approach com-82

bining Arcsinh and CLR transformations (Arcsinh + CLR); (2) popular single-cell batch ef-83

fect removal tools, including Harmony28 implemented on the raw counts, arcsinh-transformed,84

CLR-transformed or logCPM-transformed data, fastMNN29, and CytofRUV30; and (3) methods85

tailored to CITE-seq normalization, including DSB16, decontPro23, totalVI22, and sciPENN8.86

Across 13 datasets, ADTnorm effectively reduced batch variability, such that negative and87

positive populations for each surface protein marker could be consistently identified across88

studies (Fig. 1B, protein density distributions in Supplementary Note). UMAP embeddings89

of the normalized ADT expression revealed effective batch integration by ADTnorm while90

preserving cell type separation at both broad and refined annotation levels, treating either the91

study-level or individual samples as batches (Supplementary Figs. 2-3). ADTnorm applied us-92

ing default landmark detection (default) or manually adjusted landmark detection (customized;93

Methods) outperformed other tools in balancing cell-type separation with cross-study batch94

effect removal as quantified by Silhouette scores, Adjust Rand Index (ARI), and the Local In-95

verse Simposon’s Index (LISI) (Methods; Fig. 1C and Supplementary Fig. 4A-C). Furthermore,96

ADTnorm can facilitate the seamless integration of new datasets without reprocessing existing97

ones by aligning landmarks to predetermined locations (Supplementary Note). It can also in-98

corporate users’ prior knowledge about a batch’s cell type composition. For example, because99

the Buus 2021 T cell dataset is composed of only T cells, ADTnorm is adjusted to align the100

singular peak in CD3 as positive-expression (Fig. 1B and Supplementary Note). ADTnorm101

is also highly scalable, with a fast processing speed and low memory consumption compared102

to other methods (Supplementary Fig. 4D-E). Also, ADTnorm is designed to process protein103
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markers independently, allowing adaption to parallel processing.104

We next explored the downstream impact of protein normalization on joint embeddings105

of RNA and protein data. Following batch-correction of ADT expression by the above meth-106

ods and batch-correction of the RNA expression using reciprocal PCA10, we computed the107

multimodal embedding using the weighted nearest neighbor (WNN) algorithm10 (Supplemen-108

tary Fig. 5A and Methods). As totalVI and sciPENN already incorporate gene expression109

into their protein normalization process, we omitted them from the WNN integration compari-110

son. As expected, methods with sub-optimal removal of ADT batch effects resulted in skewed111

WNN integration (Supplementary Fig. 6). ADTnorm markedly minimized batch influences112

and achieved superior accuracy in segregating cell types as quantified by ARI (Supplementary113

Fig. 5B), underscoring its utility in post-normalization multimodal integration.114

As surface protein expression varies across cell types, batch correction may be sensitive115

to variable subset composition across batches. To evaluate the resilience of normalization meth-116

ods, we subsampled specific cell subsets from a few batches, devising three scenarios featuring117

increasingly skewed cell-type compositions (Methods). Careful examination revealed that Har-118

mony, fastMNN, and CytofRUV were highly sensitive to compositional differences, produc-119

ing unexpected and inaccurate results. For example, CD19 is a highly specific B cell-lineage120

marker. However, in some batches, Harmony- and fastMNN-normalized CD19 expression was121

significantly higher in CD4 T cells than in CD8 T cells, and CytofRUV-normalized CD19 ex-122

pression in CD8 T cells was comparable to that in B cells, patterns not supported by biological123

expectations (Fig. 1D and Supplementary Fig. 7). Similar discrepancies were noted with DSB,124

totalVI, and sciPENN across other vital lineage markers (Supplementary Figs. 8-9). ADTnorm125

distinguishes itself by meticulously preserving the ranking of protein expression across cells126

within each batch, thereby reducing the risk of biologically irrelevant anomalies.127

Beyond its primary role in batch correction, ADTnorm leverages intermediate landmark128

detection results to perform automated threshold-gating (auto-gating) for cell type annotation129

and to assess staining quality to aid in the optimization of CITE-seq experiments (Methods).130

Valley landmarks identified during ADTnorm normalization can be used to perform automated131

cell type annotation using predefined gating rules (Supplementary Table 2; Supplementary132

Fig. 10A-C). While ADTnorm auto-gating showcased high accuracy for a majority of the stud-133

ies, achieving between 80-100% for comprehensive and nuanced cell type distinctions, auto-134

gating was underperformed for dendritic cells, memory CD4 T and memory CD8 T cells in135

the Hao 2020, Kotliarov 2020, and Witkowski 2020 datasets (Fig. 1E). Auto-gating accuracy is136

likely influenced by the marker staining quality. Hence, we introduced a stain quality score,137

inspired by fluorescent stain index31, to detect protein markers with poor signal-to-noise separa-138

tion (Methods; Supplementary Fig. 1C). Low-quality scores are suggestive of under-optimized139

staining conditions, which need careful evaluation or potential exclusion from downstream140

analyses. Leveraging ADTnorm to assess staining quality revealed that CD56 and CD45RA,141

which are markers used for gating dendritic and memory T cells, featured less distinct peak sep-142

aration in batches with poor auto-gating performance (Fig. 1F and Supplementary Fig. 10D).143
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To effectively stain for surface protein, antibody concentrations must be carefully tuned144

for each sample type. Sufficient antibodies are essential for positive-expression signal(s) to145

overcome background, but an overabundance of antibodies can obscure rare or low-expression146

markers by increasing background noise and can increase experimental costs. Although down-147

stream analysis can often tolerate suboptimal staining conditions, variable staining quality is a148

major source of batch artifacts across samples and laboratories. To explore whether our stain149

quality score is sensitive enough for titration optimization and to evaluate ADTnorm’s ability to150

mitigate these batch effects, we utilized a titration CITE-seq study that analyzed 124 antibodies151

on human peripheral blood mononuclear cells (PBMCs)17. This study categorized antibody152

titration into four levels, including the manufacturer’s recommended concentration (1x) and153

adjustments to 1/25x, 1/5x, and double (2x) the recommended concentration. As anticipated,154

the higher concentrations (1x and 2x) typically yielded more distinct separation between nega-155

tive and positive cell populations, whereas lower concentrations led to greater overlap between156

negative and positive populations or failed to identify any positive population (Fig. 2A and Sup-157

plementary Note). These trends were reflected in the stain quality scores, where markers with158

reduced separation at low antibody concentrations exhibited lower scores (Fig. 2B). Notably,159

conventional normalization methods were unable to successfully integrate expression across160

titration batches (Supplementary Fig. 11 and Supplementary Note), but ADTnorm could ef-161

fectively align negative and positive populations across concentrations, thus rescuing cell type162

discrimination for many protein markers profiled using sub-optimal staining conditions (Sup-163

plementary Fig. 12) and minimizing batch effects (Fig. 2A). For markers at low titrations that164

exhibited no positive population, ADTnorm could only align the negative populations (Supple-165

mentary Fig. 13A). In these cases, excessively low stain quality scores could alert researchers166

of protein markers that consistently show poor discrimination, suggesting a potential need for167

revising antibody titration or selection (Fig. 2B and Supplementary Fig. 13B). We also as-168

sessed the influence of antibody titration on ADTnorm’s auto-gating accuracy, finding that169

auto-gating accuracy remains stable as long as lineage markers had detectable positive staining170

(Supplementary Fig. 14).171

We next explored whether ADTnorm could facilitate the analysis of consortium efforts.172

Three UK medical centers profiled 192 protein markers using CITE-seq to study COVID-19173

immune response across a diverse cohort of over 100 healthy donors and COVID-19 patients13.174

Staining quality was highly variable across the participating medical centers (Fig. 2C). Specif-175

ically, samples from Newcastle (Ncl) exhibited reduced separation between negative and pos-176

itive peaks, whereas samples from Cambridge and Sanger displayed robust separation and a177

higher frequency of detectable positive signals (Supplementary Figs. 15-16). These batch ef-178

fects could not be effectively mitigated by other tools (Fig. 2C, Supplementary Fig. 17 and179

Supplementary Note). ADTnorm effectively reduced technical artifacts (Fig. 2C), resulting in180

improved cell type separation, both at the broad and refined annotation levels and also in the181

joint RNA and ADT embedding (Supplementary Fig. 18).182

Leveraging ADTnorm’s integration and auto-gating, we next aimed to identify whether183
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the expression of specific surface markers could be associated with COVID-19 disease (Sup-184

plementary Fig. 16E). Previous studies have identified compositional changes in the immune185

compartment associated with disease, including increases in the frequency of specific monocyte186

subsets in the PBMC compartment of mild, moderate, and severe COVID-19 patients (as noted187

in Fig. 1c of the original publication13). Other studies have identified biomarkers on blood188

monocytes associated with COVID-19 and type-I interferon signaling, including CD3832, 33,189

CD6434, 35 and CD16936, 37 . We sought to identify whether these trends could be attributed to190

changing subset frequencies within the monocyte compartment or to the upregulation of these191

markers across multiple subsets of monocytes. We analyzed the percent-positivity of these and192

other markers on CD14+, CD16+, and CD83+CD14+ monocytes, and observed upregulation193

of these markers among COVID-19 patients compared to healthy donors across multiple mono-194

cytes states (Fig. 2D-E and Supplementary Fig. 19A). Such upregulation mirrors the trends195

observed in scRNA-seq (Supplementary Fig. 19B). The normalization employed in the orig-196

inal publication, DSB, did not accurately represent these trends, masking positive expression197

of CD169 (Supplementary Fig. 20), failing to identify upregulation of CD169 with COVID-19198

in any monocyte subset, and reducing signal of CD38 and CD64 in CD16 monocytes (Supple-199

mentary Fig. 19C). This demonstrates the utility of ADTnorm in isolating biologically relevant200

changes and uncovering previously concealed insights in surface protein expression.201

In summary, ADTnorm offers a fast, precise, and scalable solution for normalizing pro-202

tein expression data, effectively minimizing batch artifacts within studies and enabling inte-203

gration across studies. ADTnorm is designed for high adaptability, allowing for normalization204

at various batch levels, supporting missing data, and incorporating prior cell type knowledge.205

By addressing protein batch effects, ADTnorm also improves multimodal aggregation of RNA206

and protein modalities, enhancing cell type discrimination and improving interpretability. Un-207

like other normalization methods that may introduce abnormal expression artifacts, ADTnorm208

maintains the ranked order of cells within batches for expression of each protein marker and209

delivers consistent performance across datasets with uneven cell type compositions. Addition-210

ally, its auto-gating feature offers an expedited avenue for cell-type annotation. The integrated211

stain quality scoring system alerts researchers to suboptimal staining and assesses experiment212

quality, aiding in the calibration of antibody titration for pilot studies tailored to specific tis-213

sue systems. Among positive-expressing populations, ADTnorm’s landmark registration ap-214

proach homogenizes variations in enrichment strength across samples. While it is possible215

that these variations represent biological differences, that interpretation is confounded by many216

sources of technical noise, including antibody concentrations, staining conditions, and sequenc-217

ing artifacts. Notably, ADTnorm also preserves information about the proportion of positive-218

expressing events in each batch, offering valuable insights into disease status, as exemplified219

in the COVID-19 case study. This feature underscores the potential of ADTnorm to transcend220

mere normalization, contributing to the identification of disease-associated protein markers.221

Due to ADTnorm’s high adaptability, we expect its utility may also extend beyond CITE-222

seq, allowing for the harmonization of protein expression across multiple technologies (e.g.,223
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flow cytometry, CyTOF, and CITE-seq together). Its application is also primed for expansion224

to multimodal assays by leveraging the normalized protein data as a bridge for cross-modality225

integration, such as scCUT&Tag-pro38, ASAP-seq39 and PHAGE-ATAC40, which profile sur-226

face proteins alongside epigenomic or chromatin accessibility features. ADTnorm stands as a227

pivotal tool in the evolving landscape of genomic research, facilitating comprehensive analyses228

across a broad spectrum of biological conditions and technological platforms.229
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248

Figure 1 ADTnorm normalization model, function and performance. A. ADT-249

norm takes in the ADT expression matrix after routine quality control steps. The nor-250

malization procedure starts with the identification of landmarks (peaks and valleys)251

in the expression density distribution for each protein marker of each batch. Then,252

detected peaks and valleys are aligned across batches through functional data anal-253

ysis. The landmark alignment normalization integrates CITE-seq data from different254
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sources. The detected peaks and valleys can also be used for automatic threshold-255

gating (auto-gating) and antibody staining quality evaluation, which can guide the se-256

lection of CITE-seq antibodies and staining concentrations. B. Comparison of ADT257

expression distribution across studies of three T cell lineage markers (CD3, CD4 and258

CD8) after normalization by Arcsinh, CLR or ADTnorm. UMAP embeddings colored259

by study or cell type were generated after the normalization of 9 ADT markers shared260

across all 13 studies. ADTnorm was provided “study” as the batch key. Cell type261

annotations were defined by manual threshold-gating by two immunologists on each262

sample separately, independent of the normalization work in this paper (Methods).263

The corresponding manual gating strategy is summarized in Supplementary Table 2.264

C. Study-level batch correction and broad-level cell type separation quantified by Sil-265

houette score and Adjusted Rand Index (ARI) across various ADT transformation and266

normalization approaches (Methods). ADTnorm was applied using default parameters267

or customized landmark alignment adjustments. Gray arrows indicate the direction of268

improved integration performance, i.e., minimized batch effect and maximized cell type269

separation. The vertical and horizontal error bars represent the standard deviations of270

20 bootstrap samples for each normalization method. D. Violin plots displaying CD19271

expression for each cell in the 10X malt 10k dataset following normalization under the272

severe imbalanced setting (Methods). Abnormal artifacts introduced to specific cell273

types during the normalization are highlighted by red squares. E. Average auto-gating274

accuracy across cell types (x-axis) and studies (colors). F. Averaged stain quality275

quantification across protein markers (x-axis) and studies (colors). The central boxes276

of D-F represent the interquartile range (IQR), which contains the middle 50% of the277

data. The line inside the box indicates the median. The whiskers extend to the small-278

est and largest values within 1.5 times the IQR from the lower and upper quartiles,279

respectively. B, E and F share the same color legend for studies.280
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281

Figure 2 ADTnorm application to antibody titration determination and COVID-282

19 related disease study. A. ADT expression distributions of three T cell lineage283

markers (CD3, CD4 and CD8) across samples stained at 1/25, 1/5, 1 and 2 times the284

commercially recommended antibody concentration following normalization by Arc-285

sinh, CLR or ADTnorm. UMAP displayed the batch correction across the four antibody286

concentrations and cell-type separation using 124 ADT markers provided by the origi-287

nal paper17. B. Stain quality score is utilized to determine the positive population and288

negative population separation power (Methods). The lowest titration with sufficient289

separation of positive and negative cells (dashed line indicates stain quality score of290

5) is highlighted for each protein marker with increased saturation. C. Data integration291

across three research institutes where CITE-seq was generated. UMAP shows the292

batch correction across three research institutes and cell type separation compared293

across Arcsinh, CLR, DSB and ADTnorm. DSB is the normalization method used294

in the original paper13. UMAPs were constructed on 192 ADT markers colored by295

research institute or cell type. D. Volcano plots displaying results of differential propor-296

tion of the positive cells for each protein marker between healthy donors and COVID-19297
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patients. The differential detection analysis was done for CD14+ Monocytes, CD16+
298

Monocytes and CD83+ CD14+ Monocytes, respectively. Cell type labels are from the299

original publication13 of the COVID-19 data. E. Dot plot displays consistently differen-300

tially expressed protein markers, i.e., CD38, CD64 and CD169, across three monocyte301

subsets. Points are colored by the average normalized ADT expression and the dot302

size is relative to the proportion of cells with positive-expression in healthy donors or303

COVID-19 patients.304
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Methods305

Data source and pre-processing306

Public CITE-seq datasets were downloaded through URLs summarized in Supplementary307

Table 1. Datasets are identified by the first author’s last name or by “10X” for data obtained308

from the 10X genomics websites. Empty droplets, cell aggregates, and apoptotic cells were309

removed from each dataset based on total UMI counts and the percentage of mitochondrial310

gene expression using the PerCellQCMetrics and isOutlier functions using default parameter311

values from the scuttle R package41. ADTnorm was then applied to the raw CITE-seq protein312

expression data after quality checks and cell filtering.313

ADTnorm normalization and integration pipeline314

Landmark Detection. ADTnorm first Arcsinh-transforms raw ADT counts, then identifies315

landmarks (peaks and valleys) in the density distribution of protein expression. Peaks are316

defined as local maxima within high-density regions (Supplementary Fig. 1A), and a curve317

registration algorithm26 is employed to identify all detectable peak locations. Between each318

adjacent pair of peaks, ADTnorm identifies valleys as local minima. In scenarios where only319

one peak is detected or in cases involving a shoulder peak (Supplementary Fig. 1C), valley320

detection depends on the density slope transitioning from the negative peak to the distribution’s321

right tail or shoulder peak. Peak and valley detection accuracy relies on precise kernel density322

estimation for each sample, making selecting a practical bandwidth crucial. The search for an323

appropriate bandwidth begins with a relatively large value. If no or only one peak is detected324

with this broader bandwidth, the search continues with narrower settings. For markers gener-325

ally exhibiting multiple peaks, like CD4, an even narrower bandwidth is applied. Users can326

input prior information into the ADTnorm software to assist in selecting the optimal bandwidth327

for constructing the ADT density distribution.328

CITE-seq ADT counts are discrete, unlike the continuous data from flow cytometry, with329

negative peaks often close to zero. Although the Arcsinh transformation effectively compresses330

large ADT counts into a more manageable range similar to log transformation, it remains nearly331

linear for counts near zero. Therefore, Arcsinh transformation potentially results in artificial332

peaks at this low range due to the discrete values. To eliminate suspicious negative peaks,333

ADTnorm merges peaks detected below a certain small threshold (neg candidate thres defined334

by users in ADTnorm function) near zero or applies a larger bandwidth to smooth these ar-335

eas. Additionally, if the quality control and filtering steps are insufficiently rigorous, leaving336

empty droplets, a minor enriched peak might appear near zero before the true negative peak.337

ADTnorm is designed to recognize and disregard such spurious peaks. Conversely, doublets338

might create false positive peak landmarks outside the typical range. ADTnorm uses the mean339

absolute deviation (MAD, mad function in the stats R package with default values) to assess340

whether a positive peak landmark is an outlier, excluding it from peak alignment procedures.341

Similarly, outlier valley landmarks that substantially deviate from the typical range of valley342

values across samples within the same batch are identified by MAD and adjusted to the average343
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valley locations of neighboring samples, i.e., samples with higher protein expression distribu-344

tion similarity. Such similarity distance between pair of samples is quantified using the earth345

mover’s distance (EMD, calculate emd gene function in the EMDomics R package with default346

values)42 based on the ADT count density distribution for each protein marker.347

Landmark Alignment. ADTnorm leverages identified peaks and valleys in ADT density distri-348

butions to mitigate technical variations across batches, studies, platforms, and other experimen-349

tal inconsistencies by aligning these landmarks across samples. This landmark alignment strat-350

egy is inspired by methodologies like guassNorm and fdaNorm25, initially developed for flow351

cytometry data. Specifically, ADTnorm utilizes functional data analysis, employing a warping352

function27 to perform a one-to-one transformation of ADT expression that uniformly adjusts the353

ADT density distribution in a monotone fashion. Mathematically, the kernel density estimate354

for each sample i is represented by a B-spline interpoland xi. The peak(s) and valley(s) de-355

tected for each sample serve as landmarks, and the landmark locations are denoted by tij where356

j = 1, ..,m. m is 2, meaning there is only one peak and one valley, and m is 3, indicating that357

this sample has two peaks and one valley. To align the peaks and valleys across sample, xi is358

transformed by a strictly monotone and invertible function hi known as a warping function for359

sample i, such that hi(Tstart) = Tstart where Tstart is the starting point of the ADT expression360

value range and hi(Tend) = Tend where Tend is the ending point of the ADT expression value361

range. Also, hi(t0j) = tij for j = 1, ...,m, representing the transformation of the density curves362

xi so that the corresponding landmark j align to a fixed location t0j . By default, t0j is set to363

the mean value of tij across samples, but users can pre-defined the target landmark alignment364

locations (target landmark location parameter in ADTnorm function). To obtain the optimal365

estimation of hi, the target function is set to minimizing
R
||y(t) − xh(t)||2dt + λ

R
ω2(t)dt366

where y is a fixed function in the same class as xi and ω(t) measures the relative curvature of h.367

This penalty on the relative curvature ensures that the transformation function is both smooth368

and monotone.369

Note that ADTnorm also allows users to provide prior information to more properly align370

positive peaks across samples. For instance, in batches exclusively involving T cells (e.g.,371

buus 2021 T), a single positive peak for CD3 protein markers is expected. By providing a list372

of such batches and markers, ADTnorm can precisely align the detected peak to the positive373

peaks in other samples, ensuring consistent and accurate peak alignment (Supplementary Note).374

This functionality underscores ADTnorm’s adaptability and effectiveness in handling various375

experimental conditions and study designs. ADTnorm can be applied to integrate batch effects376

across studies (Supplementary Fig. 2) or batch effects between individual samples within stud-377

ies, e.g., each donor is a batch (Supplementary Fig. 3 and Supplementary Note). Furthermore,378

by ignoring missing values, ADTnorm can be used to integrate ADT expression for markers379

profiled in some but not all batches, a capability not shared by all normalization methods (Sup-380

plementary Note).381

Default and customized ADTnorm normalization settings382

In the benchmark analysis with 14 existing methods, ADTnorm normalized the 13 pub-383
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lic datasets using default landmark detection (default) or GUI-assisted manually adjusted384

landmark detection (customized). The default setting applied the default parameter values385

of the ADTnorm R function, which can handle general protein expression normalization386

scenarios. ADTnorm R function offers adjustable parameters to refine landmark detection387

and provides intermediate density plot visualizations, allowing users to verify the reason-388

ableness of detected peaks and valleys and landmarks alignment. A detailed tutorial (Sup-389

plementary Note and at https://yezhengstat.github.io/ADTnorm/articles/390

ADTnorm-tutorial.html) is available to facilitate ADTnorm’s usage, offering guidance391

on software utilization and parameter adjustment to accommodate different protein expression392

characteristics. Additionally, a GUI implemented using the R shiny function (Supplementary393

Fig. 1B) is available to help users manually fine-tune landmark locations for tailored protein394

normalization. The customized setting used in the benchmark analysis relied on manually fine-395

tuning the peak and valley landmarks to ensure the optimal landmark alignment.396

Weighted nearest neighbor integration of the RNA and protein397

Multimodal embeddings were evaluated to test the ADT integration performance of ADT-398

norm and existing methods. The RNA components are integrated using the Seurat reciprocal399

PCA (RPCA) strategy. Specifically, the raw gene expression data are first normalized by log-400

transformation of count per million (log CPM), and the top 5000 feature genes are selected401

by the “vst” method. Then, the normalized RNA data are scaled using the top features, fol-402

lowed by principal component analysis (PCA) for each study, respectively. Integration an-403

chors are obtained by FindIntegrationAnchors function of Seurat using the RPCA reduction404

method. We confirmed the RNA component integration performance by visualizing in UMAP405

and color-coded by batch and cell types in Supplementary Fig. 5A. The weighted nearest neigh-406

bor (WNN) strategy10 from Seurat is leveraged to further integrate the harmonized RNA and407

normalized protein components. Specifically, the FindMultiModalNeighbors function from408

Seurat is used to construct the WNN graph based on the top 30 PCs of the RNA component409

and the top 15 PCs of the protein component. We use default values for all other parameters in410

the above-mentioned across-modality integration pipeline.411

Robustness evaluation on normalization methods by the imbalanced cell type constitution412

To assess the robustness of normalization methods, we filtered the 13 public datasets to413

create three subsets of the data with different cell-type compositions. In the default integration414

setting, which we used to illustrate the ADTnorm model and performance, one dataset out of415

13 public datasets, i.e., buus 2021 T, was filtered to only contain one sample of 666 T cells.416

The other 12 datasets profile total PBMCs. This default setting creates a mild imbalanced417

scenario for data integration. To test integration performance with moderately imbalanced418

subset compositions across batches, we kept only T cells in the hao 2020 and triana 2021419

studies (24 samples and nine samples, respectively). Furthermore, filtering and only keeping420

CD8 T cells in the triana 2021 study and T cells from hao 2020 and buus 2021 studies formed421

the severely imbalanced cell-type composition. We evaluated the normalized expression for422

the CD19 and CD4 across major cell types on the 10X pbmc 10k and 10X malt 10k datasets,423
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which contain one sample per study and the full data from the original studies were kept.424

Stain quality score425

To determine the optimal concentration of antibodies to stain specific protein markers,426

we proposed a stain quality score designed for ADT data. The stain quality score is inspired427

by the stain index widely used to optimize the quality and effectiveness of fluorescent staining428

of cells in flow cytometry43. The stain index is defined as the ratio of the separation between429

the positive and negative peaks divided by two times the standard deviation of the negative430

population.431

Stain Index =
Positive Peak Mode Location−Negative Peak Mode Location

2× SD(Negative Peak)

To extend the stain index to capture separation in more diverse data distribution patterns432

beyond bimodal expression, such as multiple peaks, shoulder peaks or heavy right tail (Supple-433

mentary Fig. 1C), we designed the stain quality score as follows:434

Stain Quality Score2peaks =
PosPeakMode−NegPeakMode

SD(NegPeak) + SD(PosPeak)

× (PosPeakHeight− V alleyHeight+ 1)

∗ (AUC(PosPeak) + 1)

AUC(PosPeak) means the area under the curve of the positive peak in the corresponding435

density distribution. Therefore, the stain quality for protein markers with two peaks is positively436

correlated with the peak mode distance, the sharpness of the positive peak and the proportion437

of the positive population, and negatively correlated with the total standard deviation in the438

negative and positive populations.439

Stain Quality Score3+peaks =
RightMostPeakMode−NegPeakMode

P
(SD(EachPeak))

× (RightMostPeakHeight−RightMostV alleyHeight+ 1)

∗ (AUC(NonNegPeak) + 1)

For protein markers with three or more peaks, the stain quality score is positively correlated440

with the landmark distance between the right-most peak and the negative peak, the sharpness of441

the most positive peak and the proportion of non-negative populations. The score is negatively442

correlated with the sum of the standard deviation of each peak.443

StainQualityScore1peak =
V alley − PeakMode

SD(AllData)
×(0−V alleyHeight+1)∗(AUC(RightTail)+1)
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Due to the missing positive peak, for markers with one detected peak, we use the distance444

between peak and valley as the lower bound of the distance between any positive population445

and the negative peak mode. We continue to penalize the score for one peak by setting the446

PosPeakHeight to be 0. The area under the curve of the right tail beyond the valley is used447

to distinguish markers that only have a negative population and markers with a heavy right tail448

or even a shoulder peak. In other words, although the independent positive peak failed to be449

detected, the positive population is still present.450

Stain quality scores are comparable across markers with different peak numbers and gen-451

erally give higher scores to markers with more peaks. For markers with the same number of452

identified peaks, better separation of positive and negative populations (longer distance between453

peak modes) and sharper peaks (lower standard deviation) leads to higher stain quality scores.454

Markers with two identified peaks score higher than those exhibiting only a shoulder peak.455

Distributions with only one identified peak and a heavy right tail will have a lower score, and456

distributions with only one peak and no right tail will be given the lowest score. Supplementary457

Fig. 1C provided the diagram illustrating the peak patterns and associated stain quality score458

order.459

Computational environment for evaluating runtime and memory460

Software performance assessments (Supplementary Fig. 4D-E) were conducted on a ded-461

icated server at Fred Hutchinson Cancer Center in terms of running time and memory consump-462

tion. The server was equipped with an Intel(R) Xeon(R) Gold 6254 CPU @3.10GHz, featuring463

18 cores, 36 threads, and 754GB RAM. For GPU-accelerated tasks, an NVIDIA-SMI GPU464

with 12GB of VRAM was utilized. The computational environment was hosted on Ubuntu465

18.04.6 LTS, with kernel version 4.15.0-213-generic. The software was compiled and run us-466

ing GCC version 8.3.0 and CUDA toolkit 12.2. Evaluations were performed under minimal467

system load to ensure consistent and reproducible results.468

Data availability469

The raw data used in the paper were downloaded from multiple sources depending on the470

original studies. Supplementary Table 1 summarized the data source and accession. The cor-471

responding processed data for the 13 public studies were uploaded as demo data to be part of472

the ADTnorm software repository (https://github.com/yezhengSTAT/ADTnorm/473

tree/main/data).474

Code availability475

ADTnorm package is implemented in R and is accompanied by a Python wrapper of the476

R function. The source codes and detailed instructions for running ADTnorm are publicly477

available at https://github.com/yezhengSTAT/ADTnorm for the R package and478

https://github.com/donnafarberlab/ADTnormPy for the Python wrapper.479
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Supplementary Table 1: Public CITE-seq data summary

Dataset Tissue URL

10X pbmc 10k PBMC
https://support.10xgenomics.com/single-cell-gene-expression

/datasets/3.0.0/pbmc 10k protein v3

10X pbmc 1k PBMC

https://www.10xgenomics.com/resources/datasets/1-k-pbm-cs

-from-a-healthy-donor-gene-expression-and-cell-surface-protein

-3-standard-3-0-0

10X pbmc 5k v3 PBMC
https://www.10xgenomics.com/datasets/5k-human-pbmcs-3-v3-1

-chromium-controller-3-1-standard

10X pbmc 5k nextgem PBMC

https://www.10xgenomics.com/resources/datasets/5-k-peripheral

-blood-mononuclear-cells-pbm-cs-from-a-healthy-donor-with-cell

-surface-proteins-next-gem-3-1-standard-3-1-0

10X malt 10k MALT

https://www.10xgenomics.com/resources/datasets/10-k-cells

-from-a-malt-tumor-gene-expression-and-cell-surface-protein

-3-standard-3-0-0

stuart 2019 Bone Marrow https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE128639

granja 2019 bmmc Bone Marrow https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139369

granja 2019 pbmc PBMC https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139369

hao 2020 PBMC https://atlas.fredhutch.org/nygc/multimodal-pbmc/

kotliarov 2020 PBMC

https://nih.figshare.com/articles/dataset/CITE-seq protein-mRNA

single cell data from high and low vaccine responders to

reproduce Figs 4-6 and associated Extended Data Figs

/11349761

witkowski 2020 Bone Marrow https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153358

triana 2021 Bone Marrow
https://figshare.com/projects/Single-cell proteo-genomic reference

maps of the human hematopoietic system/94469

buus 2021 T Only keep T cells
https://figshare.com/collections/Improving oligo-conjugated

antibody signal in multimodal single-cell analysis/5018987

Nettersheim 2022 PBMC (Titration) https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE213282

Stephenson 2021 PBMC (COVID-19) https://www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-10026

*PBMC: Peripheral Blood Mononuclear Cells; MALT: Mucosa-Associated Lymphoid

Tissue.
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Supplementary Table 2: Manual gating strategy.

Cell Type Gating Strategy

B CD3−CD19+

CD4 T CD3+CD19−CD4+CD8−

CD8 T CD3+CD19−CD4−CD8+

DC CD3−CD19−CD20−CD14−HLA-DR+CD56−CD16−

NK CD3−CD19−CD20−CD14−HLA-DR−CD56+

Monocytes CD3−CD19−CD20−CD14+

naı̈ve B CD3−CD19+CD27−

memory B CD3−CD19+CD27+

naive CD4 CD3+CD19−CD4+CD8−CD25−CD45RA+CD45RO−

memory CD4 CD3+CD19−CD4+CD8−CD25−CD45RA−CD45RO+

Treg CD3+CD19−CD4+CD8−CD25+CD127−

naive CD8 CD3+CD19−CD4−CD8+CD45RA+CD45RO−

memory CD8 CD3+CD19−CD4−CD8+CD45RA−CD45RO+

plasmacytoid DC CD3−CD19−CD20−CD14−HLA-DR+CD56−CD16−CD123+CD11c−

myeloid DC CD3−CD19−CD20−CD14−HLA-DR+CD56−CD16−CD123−CD11c+

CD16+ NK CD3−CD19−CD20−CD14−HLA-DR−CD56+CD16+

CD16− NK CD3−CD19−CD20−CD14−HLA-DR−CD56+CD16−

classical monocyte CD3−CD19−CD20−CD14+CD16−

intermediate monocyte CD3−CD19−CD20−CD14+CD16+

non-classical CD16+ monocyte CD3−CD19−CD20−CD14−HLA-DR+CD56−CD16+
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