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Abstract. Cryogenic Electron Tomography (CryoET) is a useful imag-
ing technology in structural biology that is hindered by its need for
manual annotations, especially in particle picking. Recent works have
endeavored to remedy this issue with few-shot learning or contrastive
learning techniques. However, supervised training is still inevitable for
them. We instead choose to leverage the power of existing 2D foun-
dation models and present a novel, training-free framework, CryoSAM.
In addition to prompt-based single-particle instance segmentation, our
approach can automatically search for similar features, facilitating full
tomogram semantic segmentation with only one prompt. CryoSAM is
composed of two major parts: 1) a prompt-based 3D segmentation sys-
tem that uses prompts to complete single-particle instance segmentation
recursively with Cross-Plane Self-Prompting, and 2) a Hierarchical Fea-
ture Matching mechanism that efficiently matches relevant features with
extracted tomogram features. They collaborate to enable the segmenta-
tion of all particles of one category with just one particle-specific prompt.
Our experiments show that CryoSAM outperforms existing works by a
significant margin and requires even fewer annotations in particle pick-
ing. Further visualizations demonstrate its ability when dealing with full
tomogram segmentation for various subcellular structures. Our code is
available at: https://github.com/xulabs/aitom.

Keywords: Cryogenic Electron Tomography (CryoET) · Prompt-based
Segmentation · Foundation Models.

1 Introduction

The advancement of Cryogenic Electron Tomography (CryoET) makes it possi-
ble to capture macromolecular structures with native conformations at nanome-
ter resolution [3]. In a typical CryoET pipeline, researchers prepare frozen-
hydrated samples and expose them to electron beams for imaging. The sam-
ple is incrementally tilted, allowing for the collection of multi-view images, i.e.,
tilt-series. These images can be used for 3D reconstruction, resulting in a 3D
density map, the tomogram. Further investigation requires particle picking to
accurately localize and segment sub-cellular structures. To this end, most ex-
isting methods [29,23,24,27,6,7,19,17] resort to supervised training or template
⋆ Corresponding author.
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matching [5], necessitating a large amount of laborious annotation. Some recent
works propose to adopt few-shot learning [28] or contrastive learning [8] tech-
niques to ameliorate this issue. However, currently, there is still a need to train
on several known categories or at least 20-50 annotations.

Looking out of the CryoET domain, recent years have witnessed a prolif-
eration of general-purpose segmentation models. With the ability to condition
on various types of inputs and accomplish different downstream segmentation
tasks [15,16,12,14,13], SAM [11] and SEEM [30] have demonstrated a diverse
range of capabilities. Furthermore, in the three-dimensional world, SA3D [2]
and LERF [10] extend the ability of the implicit 3D representation NeRF [18]
with prompt-based segmentation and visual grounding. This progress inspires
us to explore segmenting CryoET tomograms with general-domain foundation
models. However, there are several obstacles. While we see a tremendous num-
ber of 2D foundation models, their counterparts for 3D are relatively scarce,
e.g., a general volumetric segmentation model is still absent. Hence, bridging
general-domain foundation models to CryoET analysis is not trivial. In addi-
tion, general-purpose segmentation models [11,2] are commonly instance-specific
while semantic-agnostic. This limits their direct application to semantic-specific
particle picking, which requires picking all particles of a category simultaneously.

To overcome these challenges, we present CryoSAM, a training-free approach
for prompt-based CryoET tomogram segmentation. Our method introduces a
prompt-based 3D segmentation pipeline, bridging the gap between 2D segmen-
tation models and 3D volumetric segmentation. Our intuition is that the sil-
houettes of a particle are similar in adjacent tomogram slices. Hence, we can
segment its 3D structure layer after layer by refining the segmentation mask
from the previous plane. Formally, we achieve this by employing a Cross-Plane
Self-Prompting mechanism, which recursively propagates and refines segmenta-
tion masks along one direction by prompting SAM [11] with segmentation results
from preceding planes. This allows us to segment one particle instance with a
single prompt. To further segment all particles of a specific category compre-
hensively, we introduce a Hierarchical Feature Matching strategy for efficient
instance-level feature matching. This approach eliminates the need for prede-
fined templates [2,25] and the extraction of subtomograms [26]. Using the mean
feature of prompted particles as the query, it filters out regions dissimilar to
the query in a coarse-to-fine manner. After filtering, it proposes point prompts
in a relatively low resolution and relies on the prompt-based 3D segmentation
pipeline to achieve final segmentation results. These designs enable semantic
segmentation over a full CryoET tomogram with a single prompt.

Our contributions can be summed up as follows:

– We present a novel, training-free framework, CryoSAM, that takes a full
CryoET tomogram and a set of user prompts as input and segments the
prompted particle and all particles of the same category. This contrasts with
current methods that require supervised training [29,23,8,28].
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Fig. 1. Framework overview. ❶: We extract per-slice 2D features for three views (z,
y, and x) from CryoET tomogram I and concatenate them as F. ❷: After segmenting
the particle(s) prompted by P with instance segmentation mask(s), ❸: we average pool
the masked features to get query feature FQ. ❹: To efficiently propose prompts for
further segmentation, we match FQ with F using Hierarchical Feature Matching. ❺:
Finally, we adopt prompt-based 3D segmentation for semantic segmentation results M.

– We introduce Cross-Plane Self-Prompting, which enables 3D volumetric seg-
mentation with 2D foundation models, significantly reducing the labor cost
of annotation by leveraging its prompt-based nature.

– We propose a Hierarchical Feature Matching strategy to match instance-
level particle features. It cuts down the runtime by 95% compared with
naive feature matching, being more efficient and convenient to use.

2 Method

Given a volumetric CryoET tomogram I ∈ RD×H×W and N point prompts
P ∈ RN×3 denoting a set of single-category particles, our goal is to segment
all particles of the same category as the prompted ones. This process predicts
a 3D semantic segmentation mask M ∈ {0, 1}D×H×W , with the overall pipeline
depicted in Fig. 1. D, H and W denote depth, height, and width respectively.

2.1 Prompt-based 3D Segmentation

We propose Cross-Plane Self-Prompting, a mechanism that can propagate seg-
mentation masks along the ±z,±y,±x axes, to approach prompt-based 3D seg-
mentation, as illustrated in Fig. 2. The intuition is that the segmentation mask
of one particle should be similar for neighboring slices. Hence, we can prompt
SAM [11] with the segmentation results from the previous plane to get subse-
quent results. Formally, we take as input a single point prompt Pi = [zi, yi, xi]
and the three orthogonal planes intersecting at this point, namely, the YX-plane
Izi , the ZX-plane Iyi

, and the ZY-plane Ixi
. Then, we employ SAM to obtain

their 2D segmentation results, with the YX-plane as an example

(Ci
zi ,M

i
zi) = SAM [Izi |(xi, yi)] , Q

i
zi = argmaxx,y(C

i
zi), (1)
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Fig. 2. The pipeline of prompt-based 3D segmentation. After segmenting the
orthogonal planes intersect at the point prompt Pi, we iteratively execute Cross-Plane
Self-Prompting until we get the complete mask of the particle.

where Ci
∗ are the predicted confidence scores, Mi

∗ are the predicted segmentation
masks, and Qi

∗ are the coordinates with the highest confidence scores. We use
superscript i to represent the index of the initial point prompt. Then for each
direction in {±z,±y,±x}, we prompt the next tomogram slice with Qi

∗ and Mi
∗

from the previous plane, for which we term Cross-Plane Self-Prompting. Taking
the +z direction as an example which starts from z = zi, we have

(Ci
z+1,M

i
z+1) = SAM

[
Iz|Qi

z,M
i
z

]
, Qi

z+1 = argmaxx,y(C
i
z+1). (2)

Here, we benefit from SAM’s versatility, which allows it to take both point and
mask prompts as inputs. This recursive process continues until the intersection
over union (IoU) of the segmentation masks in two adjacent slices drops below
a threshold τIoU, which suggests that prompting the current plane will not get
a result consistent with previous ones. After getting the segmentation masks
{Mz}i±z, {My}i±y, {Mx}i±x for all 6 directions, we aggregate a union of all seg-
mentation masks in 3D, i.e., Mi = {Mz}i±z ∪ {My}i±y ∪ {Mx}i±x .

2.2 Feature Extraction

We rely on an off-the-shelf image encoder E to extract 2D features from to-
mogram slices {Iz}Dz=1, {Iy}Hy=1, {Ix}Wx=1. For each view z, y, and x, we obtain
ZE = {E(Iz)}Dz=1 ∈ RD×h×w×C , YE = {E(Iy)}Hy=1 ∈ Rd×H×w×C , and XE =

{E(Ix)}Wx=1 ∈ Rd×h×W×C , where the lowercase d, h, w are feature resolutions in
the latent space. Then we bilinear upsample them to get Z,Y,X ∈ RD×H×W×C ,
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Fig. 3. The pipeline of Hierarchical Feature Matching. We average the tomo-
gram features in the instance segmentation masks to obtain a query feature FQ. Then
we downsample F into several coarse ones and match them with FQ in a coarse-to-fine
manner. After the last matching stage, we apply NMS and gather coordinates with top
K similarities as prompts to derive final semantic segmentation results.

and aggregate them with a concatenation

F = {Fzyx}D,H,W
z=1,y=1,x=1 = [Z,Y,X] ∈ RD×H×W×3C , (3)

where Fzyx is a feature vector in F with coordinates [z, y, x].

2.3 Hierarchical Feature Matching

Shown in Fig. 3, Hierarchical Feature Matching aims to efficiently search for
voxel regions with similar features as the query. For input point prompts P =
{Pi} ∈ RN×3, we obtain an instance segmentation mask for each prompt through
prompt-based 3D segmentation, resulting in {Mi}. Then, we derive the query
feature FQ via masked average pooling (MAP)

FQ =

∑
i

∑
zyx M

i
zyx ⊙ Fzyx∑

i ∥Mi∥0
, (4)

where ⊙ is the Hadamard product with broadcasting and ∥·∥0 is the 0-norm in-
dicating the number of non-zero voxels. This operation averages features masked
by the instance segmentation masks to obtain a mean feature representing the
prompted particles. While a brute-force approach can achieve voxel-precise fea-
ture matching between FQ and F, we empirically show this is neither efficient nor
necessary. Instead, we propose to match FQ with multi-resolution features in F
in a coarse-to-fine manner, each time keeping only the most similar proportion.
We begin with building a feature pyramid

{Fr} = {[Zr,Yr,Xr]} , (5)
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Table 1. Comparison results for particle picking on EMPIAR-10499 [22].

Method Annotation Ratio Precision Recall F1 Score Runtime (min)

EMAN2 [21] - 26.1 55.3 35.5 2-5

crYOLO [24] 100% 47.8 56.8 52.0 30-40

Huang et al. [8]

5% 49.6 58.1 53.5

5-10
10% 50.1 58.2 53.8
30% 55.9 60.3 58.0
50% 53.0 65.1 58.4
70% 54.9 66.7 60.2

< 1% (single prompt) 53.1 55.3 54.2
5% 57.8 74.3 65.0
10% 58.2 75.1 65.5
30% 58.1 75.4 65.6
50% 58.0 75.3 65.5

CryoSAM (Ours)

70% 58.5 79.4 67.4

10-15

where r ∈ {16, 8, 4} is the downsampling ratio, and Fr ∈ RD
r ×H

r ×W
r ×3C . Zr ∈

RD
r ×H

r ×W
r ×C stands for an r times downsampled version of Z, with similar

definitions for Yr and Xr. Then from the lowest resolution of {Fr}, we calculate
its point-wise cosine similarity Sr = {Sr

zyx}
D
r ,Hr ,Wr
z=1,y=1,x=1 with query FQ

Sr
zyx =

FQ · (Fr
zyx)

⊤

∥FQ∥2 ·
∥∥Fr

zyx

∥∥
2

. (6)

For the lowest resolution, we calculate the similarity for all D
r

H
r

W
r features.

Subsequently, we build a mask Kr = Sr ≥ τsim that filters out regions with
low similarity scores and propagates this mask to the next resolution with up-
sampling. This allows the next round of feature matching to be conducted only
on the high-similarity features, thereby greatly reducing the computational com-
plexity. After iterating through the whole downsampling ratio list, we apply non-
maximum suppression (NMS) on the coordinates with their similarity scores and
keep the top K of them as point prompts. These prompts are then fed into the
prompt-based 3D segmentation pipeline for semantic segmentation.

3 Experiment

3.1 Experimental Settings

Datasets and evaluation metrics. Due to the scarcity of CryoET segmentation
annotations, we mainly assess the quantitative performance of CryoSAM for
particle picking. To this end, we utilize the EMPIAR-10499 dataset [22,9], which
comprises 65 tilt-series of native M. pneumoniae cells with annotated ribosomes.
We use the prediction from each proposed prompt as an instance segmentation
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Table 2. Ablation study for different feature extractors.

2D Feature Extractor Annotation Ratio Precision Recall F1 Score

SAM [11] < 1% (single prompt) 37.4 38.8 38.1
10% 44.1 60.0 50.8

DINO [1] < 1% (single prompt) 56.3 52.8 54.5
10% 63.2 74.4 68.3

DINOv2 [20] < 1% (single prompt) 55.4 58.8 57.1
10% 59.8 80.1 68.5

Table 3. Ablation study for different feature matching strategies.

Feature Matching Strategy Annotation Ratio Precision Recall F1 Score Runtime (min)

Naive < 1% (single prompt) 53.5 56.4 54.9 60-6510% 60.8 80.7 69.4

Hierarchical < 1% (single prompt) 55.4 58.8 57.1 10-1510% 59.8 80.1 68.5

mask to compare with other detection methods [8,21,24] in terms of precision,
recall, and F1 score. Results from all 65 tilt-series are averaged in our comparison
results reported in Tab. 1, while the first 20 are used in our ablation study. We
do not calculate mean average precision (mAP) as our method does not output
an explicit score for each segmentation mask.

Implementation details. We use DINOv2 [20] with a ViT-L/14 [4] backbone as
the default 2D encoder of CryoSAM and SAM [11] with ViT-H as our 2D seg-
mentation model. The IoU threshold τIoU to determine the end of segmentation
mask propagation and the similarity threshold τsim to filter out dissimilar regions
in Hierarchical Feature Matching are both set to 0.5. Top K = 512 coordinates
in the final stage of Hierarchical Feature Matching are used as prompts for full
tomogram semantic segmentation. In all experiments, we do not require any
training for CryoSAM. We use a subset of all ground truth coordinates as input
prompts. The annotation ratio in tables refers to the proportion of prompted
particles to all particles in our scenario.

3.2 Comparison Results

In Tab. 1, CryoSAM demonstrates significant advancements in particle picking
compared to three baselines under the same annotation ratio. It is notewor-
thy that our single-prompt result is better than the performance of Huang et
al. [8] under 10% annotation, which shows the annotation-efficient property of
CryoSAM. Our performance also improves as the number of available prompts
increases. This is probably because the averaged features are more robust with
the addition of different particle instances in similarity-based matching.
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(a) Input Prompt (b) r = 16 Filtering (c) r = 8 Filtering (d) Top K Proposals (e) Predictions (f) Ground Truths

Fig. 4. Intermediate and final results of CryoSAM. In (d) and (f), we show
points with coordinates ranging from z − 20 to z + 20 for demonstration.
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Fig. 5. Ablation study for the number of proposed prompts. 512/1024/All:
number of proposed prompts selected for prompt-based semantic segmentation.

3.3 Ablation Study and Analysis

Impact of feature extractors. We ablate the particle picking performance over
different 2D feature extractors in Tab. 2. Our results show that using DINO [1]
and DINOv2 [20] achieves significantly better results than using the SAM [11]
encoder. It follows that DINO and DINOv2 learn more discriminative features
with self-supervised training, which is beneficial for accurate feature matching.

Impact of feature matching strategies. We evaluate the effectiveness of Hierarchi-
cal Feature Matching in Tab. 3 by replacing it with naive feature matching that
only computes voxel-wise similarity in the highest DHW resolution. We see our
hierarchical strategy retains a comparable performance while taking a notably
shorter time to process. This reflects the robustness of our prompt-based 3D
segmentation pipeline, which does not require the proposal to be voxel-precise.

Impact of the number of proposed prompts. In Fig. 5, we analyze the precision-
recall trade-off by varying K. Generally, smaller values of K result in lower recall
and higher precision. We make our design choice to set K = 512 by selecting the
model with the best overall F1 score.

Qualitative analysis. We visualize the whole process of CryoSAM in Fig. 4, which
shows it can conduct 3D semantic segmentation with just a single point prompt.
See the supplementary for more qualitative results and failure cases.



CryoSAM 9

4 Conclusion

We present CryoSAM, a training-free framework that segments full CryoET to-
mograms with given prompts. It has two core innovations. First, the proposed
Cross-Plane Self-Prompting mechanism bridges the gap between 2D segmenta-
tion foundation models and 3D volumetric segmentation. Second, we introduce
Hierarchical Feature Matching, which is capable of efficient search for one cat-
egory of particles. Combining both shows positive synergy in prompt-based full
tomogram semantic segmentation, leading to SOTA results in particle picking.
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and P41GM103712, NSF grants DBI-1949629, DBI-2238093, IIS-2007595, IIS-2211597,
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(d) Top K Proposals (e) Predictions (f) Ground Truths(a) Top K Proposals (b) Predictions (c) Ground Truths

Fig. 6. Failure cases of CryoSAM. 1st row: False Positive in proposed prompts. 2nd
row: False Negative in proposed prompts. 3rd row: False Negative in final predictions.

(a) Input Prompts (b) r = 16 Filtering (c) r = 8 Filtering (d) Top K Proposals (e) Predictions

Fig. 7. Intermediate and final predictions of CryoSAM for membrane seg-
mentation. CryoSAM can segment membranes with sparse prompt inputs.
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(a) Input Prompts (b) r = 16 Filtering (c) r = 8 Filtering (d) Top K Proposals (e) Predictions (f) Ground Truths

Fig. 8. Intermediate and final predictions of CryoSAM for particle picking.
We provide additional results for feeding CryoSAM with both single-point prompts and
multiple-point prompts. In columns (a), (d), and (f), we show points with coordinates
ranging from z − 20 to z + 20 for demonstration, where z is the coordinate of the
visualized tomogram slice.
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