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Abstract

Chronic elevation of blood glucose at first causes relatively minor changes to the neural and 

vascular components of the retina. As the duration of hyperglycemia persists, the nature and 

extent of damage increases and becomes readily detectable. While this second, overt manifestation 

of diabetic retinopathy (DR) has been studied extensively, what prevents maximal damage from 

the very start of hyperglycemia remains largely unexplored. Recent studies indicate that diabetes 

(DM) engages mitochondria-based defense during the retinopathy-resistant phase, and thereby 

enables the retina to remain healthy in the face of hyperglycemia. Such resilience is transient, 

and its deterioration results in progressive accumulation of retinal damage. The concepts that 

co-emerge with these discoveries set the stage for novel intellectual and therapeutic opportunities 

within the DR field. Identification of biomarkers and mediators of protection from DM-mediated 

damage will enable development of resilience-based therapies that will indefinitely delay the onset 

of DR.

1. DR is one of the complications of DM

Types of diabetes mellitus (DM)

Diabetes mellitus (DM) is a prevalent and chronic metabolic disorder characterized by 

elevated blood glucose caused by aberrations in the production and/or response to insulin. 

The World Health Organization (WHO) ranked DM as the ninth leading cause of global 

mortality in 2019. As of 2021, approximately 529 million individuals worldwide were living 

with DM, with projections estimating a staggering increase to about 1.31 billion by 2050 

(Collaborators, 2023). According to the American Diabetes Association (ADA) “Standards 

of Care in Diabetes” (American Diabetes Association Professional Practice, 2024), DM is 

classified into 4 categories: type 2 (T2D), type 1 (T1D), DM that is related to gestation, and 

DM that results from other causes such as monogenic diabetes syndromes, diseases of the 
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exocrine pancreas, and exposure to drugs or chemicals. Of the four categories of DM, T2D 

and T1D are the most common (American Diabetes, 2014).

Type 2 diabetes mellitus (T2D), also known as adult-onset diabetes, constitutes about 90–

95% of DM. This type of DM is characterized by two main insulin-related anomalies: 

insulin resistance and β-cell dysfunction (Roden and Shulman, 2019). Insulin resistance 

results from decreased insulin responsiveness of cells in the peripheral tissues, in particular 

the muscle, liver, and adipose. In the early stage of T2D, insulin-resistance triggers β-

cells hyperfunction (hyperinsulinemia) to achieve normal glucose homeostasis. As T2D 

progresses, β-cells fail to produce enough insulin, resulting in hyperglycemia.

High body mass index (BMI) is the predominant risk factor for T2D, contributing to over 

50% of global disability-adjusted life-years in 2021 (Collaborators, 2023). Factors such as 

increased availability of shelf-stable and high-calorie products, limited access to healthy 

foods, increased consumption of ultra-processed foods (Delpino et al., 2022), and sedentary 

lifestyles (Popkin et al., 2012) have fueled the rise in obesity rates, thereby exacerbating 

the prevalence of T2D. Despite the potential of obesity management as a readily available 

and effect approach to mitigate the progression of DM, current trends indicate a persistent 

increase in obesity rates (Popkin et al., 2012). Effective interventions for T2D, which could 

be sustained over two years, encompass weight reduction through stringent caloric control, 

enhanced physical activity, and bariatric surgery (Schauer et al., 2017; Taheri et al., 2020). 

Early detection, patient education, regular healthcare consultations, lifestyle modifications, 

and early pharmacological intervention constitute pivotal strategies in preventing or delaying 

the onset of T2D (Gong et al., 2019; Nauck et al., 2021). However, the implementation 

of proactive healthcare systems and infrastructural support for early interventions remains 

limited in many countries.

The other common type of DM is type 1 diabetes mellitus (T1D), also known juvenile-

onset diabetes. It is an autoimmune disorder characterized by T-cell-mediated destruction 

of pancreatic β-cells, which results in insulin deficiency and hyperglycemia (Kahaly and 

Hansen, 2016; Knip and Siljander, 2008).

While both genetic and environmental factors contribute to the risk of developing 

T1D, the precise mechanism remains incompletely elucidated (Banday et al., 2020). 

Genetic predisposition, infectious agents, nutrition, toxins, psychosocial and socioeconomic 

determinants, prenatal conditions, and environmental exposures have been implicated in 

T1DM development (Stene et al., 2023). Although relatives of individuals with T1D exhibit 

a significantly elevated risk, almost 90% of newly diagnosed patients have no family history 

of the disease (Turtinen et al., 2019). Despite extensive research, few non-genetic factors 

have been consistently associated with the risk of islet autoimmunity or T1D onset (Herold 

et al., 2024). Ongoing large-scale observational studies, such as ENDIA, GPPAD, TEDDY, 

and DAISY, are investigating potential environmental triggers, including viral exposures, 

dietary patterns, and the microbiome, to better understand their role in the pathogenesis of 

T1D (Herold et al., 2024).
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Types of complications

DM damages both large and small blood vessels throughout the body, and thereby 

compromises a patients' health outcomes and quality of life. Complications of the 

macrovasculature, including the coronary and cerebrovascular arteries, are the leading cause 

of death in individuals with DM (Morrish et al., 2001). Complications of the microvascular 

network in the kidneys, eyes and peripheral nerves also develop in patients with DM, and 

are more common the macrovascular complications (Deshpande et al., 2008). Among the 

microvascular complications, diabetic retinopathy (DR) is the most common; its overall 

prevalence in individuals with DM is 34.6% (Yau et al., 2012). Even though the prevalence 

of DR is higher in people with T1D (77.3 vs. 25.2%) (Yau et al., 2012), both T1D and T2D 

patients are equally susceptible to DR (Skyler et al., 2017).

Despite extensive research efforts, there are currently no definitive cures for DM-

related complications. Consequently, prevention is paramount, and such strategies include 

controlling blood glucose levels, blood pressure, and lipid profiles. The effectiveness of 

these options varies among individuals, necessitating a personalized approach. Additionally, 

the burden of complications significantly impairs patients' quality of life, affecting an 

individual’s physical and psychological well-being, daily functioning, and socioeconomic 

status. Addressing complications remains a critical aspect of the management of patients 

who develop DM.

Types of DR

DR is the leading cause of visual loss amongst working-age adults within the western 

population (Teo et al., 2021). DR is classified according to a severity scale, which is based 

on the morphology and functionality of the retinal vasculature. There are two main types 

of DR: non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy 

(PDR) (Wong et al., 2016). NPDR typically precedes PDR and is characterized by vascular 

aberrations such as microaneurysms and hemorrhages, as well as exudates. NPDR is 

staged across a spectrum of severity as mild, moderate, or severe. PDR, on the other 

hand, represents an advanced stage of DR that is characterized by the presence of retinal 

neovascularization resulting from DM-induced ischemia. These vessels are fragile and prone 

to bleeding, leading to severe vision loss and even blindness if left untreated. Diabetic 

macular edema (DME), or swelling of the central retina, can develop in patients with any 

stage of DR, independent of DR progression. It results from increased vascular permeability 

and can lead to significant vision loss. The definition and classification of DME in the 

current guidelines are updated with information from OCT (optical coherence tomography) 

(Table 1). The impact of DR on a patient's vision and quality of life depends on various 

factors, including the stage of the disease, the effectiveness of treatment, and individual 

health factors. Early-stage DR may not cause noticeable symptoms, but as it progresses, it 

can impair vision and even blindness if left untreated.

Diagnosing DR

Diagnosis of DR in patients is based on the appearance of the retinal vasculature and 

thickness of the retina (Table 1). While DM also affects the neural compartment of the 

retina, such changes are not included in determining a patient’s diagnosis. DM can cause 
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loss of neural cells, neural dysfunction and a decline in vision (Simo et al., 2014; Simo 

et al., 2018). In some instances, neural dysfunction can be detected prior to the vascular 

abnormalities that are diagnostic of DR (Sohn et al., 2016; Srinivasan et al., 2022).

The growing appreciation that DM affects both vascular and neural components of the 

retina is the rationale to develop diagnostic approaches that include both of these retinal 

“compartments”. However, such efforts must overcome substantial hurdles. Processing 

visual information by the retina is complex; while it is known that many neural cell types 

participate, their relative contribution is still emerging (Joesch and Meister, 2016; Kim 

et al., 2008; Nath and Schwartz, 2017; Vlasits et al., 2019). The advent of this type of 

information is a prerequisite for assessing the impact of DM on this neural-based process. 

Furthermore, the intricate physical and functional relationship between the neural and 

vascular compartments of the retina present a challenge to determining the direct effect 

of DM on either. Finally, analysis of neural function in patients can be time consuming and 

require specialized equipment and staff, which is not as widely available as the infrastructure 

for analyzing the retinal vasculature. Some of these challenges may be circumvented by 

artificial intelligence-based diagnosis, which is described in the section below.

Artificial intelligence to diagnose DR

Individuals who have developed DM, and are therefore at risk of developing DR, are 

encouraged to undergo retinal screening, so that timely treatment can be implemented to 

prevent vision loss (American Diabetes, 2020). Such screening/diagnosis has historically 

been done by ophthalmologists who view retinal fundus images. Both the time-consuming 

nature of this process, and the advent of artificial intelligence (AI) have contributed to the 

development of an AI-based approach for diagnosing DR.

The initial strategy in the development of automated detection of DR from fundus images 

was machine learning models. These models used image-processing techniques to extract 

features of early DR that are listed in Table 1 such as microaneurysms, hemorrhages, 

exudates, and cotton wool spots (Abramoff et al., 2008; Abramoff et al., 2010; Gardner 

et al., 1996; Quellec et al., 2011). Additional feature extraction could be geometric 

or morphological features (such as Scale Invariant Feature Transform (Lowe, 1999) or 

Histogram of Gradient features (Dalal and Triggs, 2005)) that were not directly tied with 

the clinical definition of DR, but more general image-based features that could hopefully be 

correlated with the signal of DR.

Recently, deep learning has advanced many areas of computer vision, such as image 

classification (He, 2016; Huang, 2017; Krizhevsky, 2012; Simonyan and Zisserman, 2014; 

Szegedy, 2016), object detection (He, 2017; Lin et al., 2020; Redmon, 2017; Ren et al., 

2017), and semantic segmentation (Badrinarayanan et al., 2017; Chen et al., 2017a; He et 

al., 2015; Ronneberger et al., 2015; Shelhamer et al., 2017). In contrast to the feature-based 

models discussed before, deep learning is usually an end-to-end approach. This means that 

the model sees the full image and the target label (e.g. DR stages), and learns to extract 

features that would help it differentiate images of the different target labels most efficiently 

in the training dataset. As with in several other medical image classification tasks (Dunnmon 

et al., 2019; Esteva et al., 2017; Park et al., 2019), this proved to be a more efficient means 
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of learning to detect DR stages from fundus photographs. (Abramoff et al., 2018; Abramoff 

et al., 2016; Dai et al., 2021; Gulshan et al., 2016; Gulshan et al., 2019; Ruamviboonsuk 

et al., 2022; Ting et al., 2017). Deep learning may have the potential to detect signals 

in biomedical image analysis, which humans haven’t been looking for, such as gender 

prediction using fundus images. Currently, clinicians are not aware of specific retinal feature 

variations related to gender, highlighting the importance of model explainability. Therefore, 

deep learning may enable clinician-driven discovery of novel biomarkers for early detection 

of disease (Babenko et al., 2022; Korot et al., 2021). Similarly, AI may uncover biomarkers 

of resilience to DR.

AI performs well on feature extraction, classification on specific eye disease given large 

amount of labeled retinal images from human experts; but not as good as doctors in terms 

of explainability of image details. We provide a comparison of the pros and cons of AI 

in healthcare, including (1) accuracy performance, (2) time and cost efficiency, (3) model 

robustness and generalization (Table 2).

(1) Accuracy performance. AI system tends to have higher sensitivity but lower specificity 

than general ophthalmologists or retina specialists. Before applying deep learning, the 

diagnostic accuracy of computer detection programs has been reported to be comparable 

to that of specialists and expert readers. The model sensitivity/specificity was 97%/59% 

compared to 71%-91%/95%-100% from three retinal specialists (Abramoff et al., 2013). 

Later on, as deep learning, where all transformations are determined from training data, 

instead of being designed by experts, has been highly successful and popular in computer 

vision, the AI system exceeded all superiority endpoints (from FDA) at sensitivity of 87% 

(>85%), specificity of 91% (>82.5%), demonstrating AI’s ability to bring specialty-level 

diagnostics to primary care settings (Abramoff et al., 2018). For consistency of predicting 

results, as AI is usually a static algorithm, its behavior does not differ based on workload, 

day of the week, or other human factors. On the other hand, AI is vulnerable to adversarial 

attacks from crafted input data (Shah, 2018).

(2) Time and cost efficiency. For AI development, the cost is relatively low compared to 

training experts in healthcare systems. For AI application, the model inference time is in less 

than 25 seconds, provided at the point of care. For most people, the model will eliminate the 

need for a separate visit to an ophthalmologist (Abramoff et al., 2013).

(3) Model robustness and generalization. AI is susceptible to Out-of-Distribution robustness 

problems. A Model trained at one institution might not perform highly when deployed at 

another institution, often due to different imaging protocols, imaging vendors, and patient 

populations (Rashidisabet et al., 2023).

The FDA authorized IDx-DR “for use by health care providers to automatically detect more 

than mild DR (mtmDR), including moderate, severe nonproliferative DR, proliferative DR, 

and/or clinically significant macular edema in patients (22 years of age or older) diagnosed 

with DM who have not been previously diagnosed with DR”, as the first autonomous 

diagnostic AI system in 2018 (Administration, 2018). It is a clinically-inspired algorithm, 

and therefore has independent, validated detectors for pathological lesions (microaneurysms, 
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hemorrhages, etc.), the output of which are then fused into a disease level output, using 

a separately trained and validated machine learning algorithm. Detectors of diagnostic 

features (e.g., hemorrhages, exudates) were developed with deep learning, except the 

microaneurysm detector which was from the featurebank (Abramoff et al., 2018). Many 

patients with mtmDR need to be referred for eye specialist care (hence, mtmDR is typically 

considered referable), but vision threatening diabetic retinopathy (vtDR) may need more 

urgent intervention. In 2021, another fully autonomous AI system for detecting DR without 

human oversight was The EyeArt system (Eyenuk, Inc) with 96% sensitivity and 88% 

specificity. It was used in detecting both mtmDR and, for the first time, vtDR, including 

severe nonproliferative DR, proliferative DR, and/or clinically significant macular edema) 

(Ipp et al., 2021). Further study evaluated and compared the performances of the EyeArt 

system and dilated ophthalmoscopy on a diverse cohort of subjects enrolled at multiple 

centers with geographic diversity, which indicated that the AI system had a higher sensitivity 

for detecting mtmDR than either general ophthalmologists or retina specialists (Lim et al., 

2023).

Current approaches to manage DR

Current approaches to manage DR encompass both preventive strategies and mitigation of 

symptoms. Although lifestyle factors such as maintaining a healthy diet, regular physical 

activity, and strict control of blood glucose levels are associated with a reduced risk of 

developing DR, no approach works for all individuals. Furthermore, aggressively reducing 

blood glucose using either insulin- or non-insulin-based approaches can worsen DR in 

some patients (Bain et al., 2019). For patients who have already developed DR, treatment 

options aim to halt disease progression and preserve vision. Anti-vascular endothelial 

growth factor (anti-VEGF) therapy, corticosteroids, and laser photocoagulation are among 

the mainstay treatments for DR (Wykoff, 2017; Wykoff et al., 2016). Agents that neutralize 

VEGF (anti-VEGFs), such as bevacizumab, ranibizumab and aflibercept, work by inhibiting 

abnormal blood vessel growth and reducing vascular leakage, thereby improving visual 

outcomes. Corticosteroids typically reduce inflammation and edema in the retina. Laser 

photocoagulation, including focal/grid and pan-retinal photocoagulation, aim to seal leaking 

blood vessels and prevent the growth of abnormal ones. These treatment modalities, often 

used in combination or sequentially, have demonstrated efficacy in slowing the progression 

of DR and preserving vision in affected patients (Wong et al., 2018).

DM induces changes within the retina prior to the onset of DR

Technological advances that improve our ability to observe the retina reveal DM-driven 

changes that precede the earliest signs of clinical retinopathy (Table 1) (Cheung et al., 2015). 

These include changes in the perfused capillary density (Chen et al., 2017b; Dimitrova 

et al., 2017; Rosen et al., 2019; Scarinci et al., 2018), leakage (Tichauer et al., 2015), 

expansion of the foveal avascular zone (Ashraf et al., 2018) and loss of vascular mural cells 

(Huang et al., 2024). Loss of neural cells and function also occurs prior to the onset of 

clinically-recognized DR (Channa et al., 2021; Motz et al., 2020). As compared with the 

nature and extent of the damage the accumulates following prolonged DM, the early changes 

are minor.
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2. Risk factors for developing DR

HG is the major risk factor for DR

The magnitude and duration of hyperglycemia greatly increases the risk of complications 

such as DR (Cheung et al., 2010; Chew et al., 2010). This concept emerged from several 

clinical studies demonstrating that controlling hyperglycemia reduced the incidence of DR 

and slowed its progression (1991; 1993; 1999; Metascreen Writing et al., 2006; Zoungas et 

al., 2017). Thus insulin-related dysfunction (the cause of DM) results in hyperglycemia, 

which substantially elevates an individual’s risk of eventually developing DR. While 

insulin’s effect on blood sugar has been the focus of these studies, insulin has many 

additional functions (such as governing mitochondrial homeostasis (Amorim et al., 2022; 

Brys et al., 2010; Zarse et al., 2012)), which may contribute to the beneficial effects of 

insulin-based therapies.

Dyslipidemia, hypertension, may also influence DR. However, the associations between 

plasma lipids, lipoproteins, and DR are not consistently strong at the individual patient 

level (Bryl et al., 2022). Similarly, while hypertension has been associated with an elevated 

risk of DR (Yau et al., 2012), the ACCORD study (Chew et al., 2010) showed that more 

intensive blood pressure control may not confer additional benefits in slowing retinopathy 

progression compared to standard control measures. Optimization of systemic risk factors 

such as HbA1C, blood pressure and serum levels of total cholesterol explain DR progression 

and PDR development in only 9% and 10% of affected patients, respectively (Antonetti 

et al., 2021). Other risk factors for DR include genetic predisposition, high BMI, puberty, 

pregnancy, and cataract surgery (Yau et al., 2012). However, clinical studies on patients 

living with DM have shown substantial variation in the onset and severity of DR that is not 

fully explained by known risk factors (Vujosevic et al., 2020). These findings underscore the 

complex interplay of various factors in the initiation and progression of DR, suggesting that 

additional unidentified factors may also play critical roles.

Recent studies indicate that sleep protects from many diseases, including DR, and hence 

poor sleep may be an additional risk factor for DR. There is a growing appreciation that 

sleep enforces health by preventing a plethora of pathologies (Buysse, 2014; Lopez-Otin 

and Kroemer, 2021; Sang et al., 2023). Sleep disturbances such as short or long sleep 

duration, poor sleep quality or mistimed sleep compromise glycemic control and increases 

an individual’s risk of developing DM (Anothaisintawee et al., 2016). Similarly, poor sleep 

quality is associated with both activation of process that drive DR, and the presence of 

DR (Besedovsky et al., 2012; Joussen et al., 2004; Mullington et al., 2010). For instance, 

obstructive sleep apnea contributes to insulin resistance, elevated blood pressure, endothelial 

dysfunction, increased systemic inflammation and oxidative stress (Anothaisintawee et al., 

2016; Garcia-Sanchez et al., 2022; Han et al., 2020; Lee et al., 2017; Reutrakul and 

Mokhlesi, 2017). Determining if such associations are causative will substantially advance 

this field of research.

In summary, while elevated and prolonged blood sugar is an established risk factor for DR, 

there is a growing appreciation that it is not the only one.
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DM damages both the neural and vascular compartments of the retina and causes retinal 
dysfunction

Once resilience (the innate ability of the retina to remain healthy in the face of DM) is 

lost, the vascular, neural and immune components of the retina progressively accumulate 

damage. Because such damage is associated with biochemical and molecular changes that 

accompany DM, they are widely considered to be the drivers of such damage. For instance, 

hyperglycemia-driven elevation of oxidative stress correlates with the death of both vascular, 

and neural cell types (Barber et al., 2011). As the endothelium is damaged, it triggers 

leukostasis, which is binding of leukocytes to endothelial cells within retinal capillaries 

(Barouch et al., 2000; Lessieur et al., 2022; Miyamoto et al., 1998; Schroder et al., 1991; 

Serra et al., 2012). Leukostasis is required for experimental DR; preventing leukostasis 

attenuates injury and death of endothelial cells within the retina (Joussen et al., 2001; 

Joussen et al., 2004; Joussen et al., 2003). Similarly, genetically or pharmacologically 

suppressing proteases that are secreted by neutrophils protects diabetic animals from DR 

(Lessieur et al., 2021). The importance of immune homeostasis in DR is further illustrated 

by the discovery that perturbing immune homeostasis is sufficient to cause retinopathy in 

non-DM mice, i.e., in the absence of all other DM-driven perturbations. Eliminating the 

somatostatinergic neurons within the hypothalamus of non-DM mice skewed the profile 

of circulating immune cells and caused retinal damage that was typical of DR (Huang 

et al., 2021). Notably, the number of somatostatinergic neurons are decreased in animal 

models of DM (Bhatwadekar et al., 2017). The functional interdependence of the various 

compartments of the retina makes it difficult to define the relative contribution of DM-driven 

damage on any one of the retinal compartments to resultant retinal dysfunction.

3. Oxidative stress is a central driver of DR

HG increases oxidative stress, which is a central driver of damage to the retina

There are a number of ways that the retina responds to persistent hyperglycemia that 

accompanies DM. These include changes in glucose metabolism (decreased glycolysis 

and pentose phosphate pathway; increased polyol pathway), perturbation of biochemical 

and signaling pathways (increased production of advanced glycation end products (AGEs), 

activation of protein kinase C), increased inflammation and oxidative stress (Bierhansl et al., 

2017). Such changes can be synergistic, for instance oxidative stress promotes inflammation 

and vice-a-versa. Eventually they damage and thereby compromise the function of both 

the vascular and neural compartments of the retina. The current understanding of the 

pathogenesis of DR has been comprehensively presented in a number of excellent review 

articles (Antonetti et al., 2012; Antonetti et al., 2021; Cai and Boulton, 2002; Hammer et al., 

2017; Kowluru et al., 2015; Noh and King, 2007; Robinson et al., 2012; Stitt et al., 2016; 

Wu and Zou, 2022). In the sections below we will focus on HG-mediated oxidative stress; 

Figure 1 provides an overview of how HG-driven oxidative stress underlies damage which 

occurs to the retina in diabetic individuals.

DM increases oxidative stress in two subcellular compartments (the cytoplasm and 

mitochondria) in numerous retinal cell types, including photoreceptors, which are the majors 

producers of ROS in the retina (Arden and Sivaprasad, 2012; de Gooyer et al., 2006; 
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Du et al., 2013). Hyperglycemia increases the level of oxidative stress in the cytoplasm 

by a process the includes increasing the level of diacylglycerol and thereby activating 

protein kinase C family members, which in turn activate NADPH-dependent oxidases 

(NOX) (Bierhansl et al., 2017; Drummond and Sobey, 2014; Jiang et al., 2011; Laddha and 

Kulkarni, 2020; Noh and King, 2007; Peng et al., 2019). In endothelial cells, the resultant 

increase in reactive oxygen species (ROSs) can uncouple endothelial cells nitric oxide 

synthase (eNOS) so that instead of producing nitric oxide (NO), it generates superoxide, a 

highly reactive ROS species (de Zeeuw et al., 2015; Meza et al., 2019; Sasaki et al., 2008).

A rise in the level of ROS within the mitochondrial is initially driven by increased flux 

through the TCA cycle, which is coupled to the ROS-producing electron transport chain 

(ETC) (Nissanka and Moraes, 2018; Scialo et al., 2017; Stowe and Camara, 2009; Zorov et 

al., 2014). Overwhelming the mitochondria’s innate ability to control ROS results in damage 

of mitochondrial DNA, which encodes some of the members of the ETC. Failure to produce 

a complete set of ETC proteins/subunits results in ETC dysfunction that drives progressive 

self-amplifying damage (Ferrington et al., 2020; Kowluru et al., 2015). As outlined below, 

increasing clearance of dysfunctional (ROS-producing) mitochondria and a compensatory 

increase in biogenesis enables cells to remain healthy in the face of ongoing HG-induced 

damage. As mitophagy fails, damaged mitochondria accumulate, oxidative stress rises and 

retinal damage ensues (Hombrebueno et al., 2019). Together these studies show that DM 

increases oxidative stress within multiple subcellular compartments of retinal cells and 

thereby damages the retina.

There is a growing appreciation, that the endothelium, which is in direct contact with 

noxious agents that are present in the circulation, is resistant to their damage. For instance, 

retinal endothelial cells are resistant to HG-induced damage such as senescence, oxidative 

stress and mitochondrial dysfunction (Bertelli et al., 2022; Busik et al., 2008; Serikbaeva et 

al., 2022). Similarly, the endothelium of the aorta resists damage caused by pro-atherogenic 

insults such as elevated cholesterol (Berk et al., 2001; Cunningham and Gotlieb, 2005; Jain 

et al., 2014). The endothelium within the aorta, which experiences laminar shear stress 

organizes components of signaling pathways (Notch, VE-PTP, Ca channels, scaffolds) in a 

way that activates expression of genes (Klf2, Nos3) that provide protection (via eNOS) for 

all of the cell types that are at risk for plaque formation (Coon et al., 2022; Hong et al., 

2023; Mack et al., 2017; Mantilidewi et al., 2014; Shirakura et al., 2023). By comparison 

with this exhaustively-studied endothelial cell-based system that protects the aorta from 

atherosclerosis, the mechanism by which the retinal endothelium resist hyperglycemia 

remains largely unexplored.

In light of the intimate functional relationship between the various compartments of the 

retina (e.g. the neural vascular unit), it seems plausible that the benefit of endothelial 

cell-based protection could extend to the neural retina. This concept has been observed in 

the context of retinal damage (instead of protection). Mice that express a mutated tight 

junction protein (occludin), which prevents DM-driven leakage of retinal blood vessels, 

also attenuates the DM-mediated decline in vision (Goncalves et al., 2021). Similarly, 

retinal degeneration can be prevented with endothelial cell precursors, which promote 

vascularization of the retina (Otani et al., 2004; Ritter et al., 2006). Furthermore, expression 
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of Notch3 on vascular cells prevents neural degeneration of the retina (Romay et al., 2024). 

These studies demonstrate that the benefit of preventing damage and/or facilitating repair 

of the vasculature extends to the neural retina. Whether this same principle applies to 

resilience, i.e. if there is a bystander effect of resilience, have yet to be determined.

Chronic HG rewires metabolism in ways that elevate oxidative stress

Chronic elevation of blood sugar rewires metabolism in a variety of ways, and some of these 

changes result in increased oxidative stress (Brownlee, 2001; de Zeeuw et al., 2015). For 

instance, HG suppresses the pentose phosphate pathway (PPP), a glycolytic side pathway, 

(Zhang et al., 2000; Zhang et al., 2010) and elevates oxidative stress in at least two 

ways. Inhibiting PPP reduces its output of NADPH, which is required for the reduction 

of oxidized glutathione (GSSG) to regenerate the anti-oxidant glutathione (GSH). Similarly, 

the level of ribose-5-phosphate, which is required for nucleotide synthesis, declines as a 

result of suppressing the PPP. Both of these changes compromise mitochondrial redox. 

The mitochondria depend on GSH to limit oxidative stress, and on nucleotide synthesis to 

make new mitochondrial DNA to offset its loss via mitophagy (Mari et al., 2020). These 

are two examples of how HG-driven metabolic perturbation impairs endogenous systems 

to prevent mitochondrial oxidative stress. Other examples of how chronic hyperglycemia 

affects metabolism in ways that result in elevated oxidative stress have been detailed in a 

number of review articles (Brownlee, 2001; Obrosova et al., 2001).

Evidence that oxidative stress is required for DM to damage the retina

The central role of oxidative stress in DR pathogenesis is revealed by observations that 

suppressing oxidative stress by genetic or pharmacological approaches protects the retina 

from DM-driven damage in experimental animals. Pharmacological agents that normalize 

mitochondrial oxidative stress suppress HG-mediated pathways that damage the retina 

(Du et al., 2003; Nishikawa et al., 2000). Furthermore, overexpressing Sod2 prevents 

DM-induced mitochondrial oxidative stress and dysfunction, and also protects mice from 

developing DR in the face of DM (Goto et al., 2008; Kowluru et al., 2006). Recent studies 

indicate that an NOX4 inhibitor (GLX7013114) protects diabetic rats from retinopathy 

(Dionysopoulou et al., 2023). Together these studies indicate that the DM-mediated increase 

in oxidative stress in both subcellular compartments are required for DM to damage the 

retina.

The importance of elevated oxidative stress for developing DR is reinforced by observations 

from many laboratories that anti-oxidant therapy protects experimental animals from DR. 

Supplementing the diet of Goto-Kakizaki rats (a T2D model) with a combination of vitamins 

C and E for 36 weeks prevents hallmarks of DR, including acellular capillaries and pericyte 

ghosts (Yatoh et al., 2006). Similarly, supplementing the diet of T1D rats with lipoic acid 

for 44 weeks inhibits mitochondrial dysfunction and capillary cell apoptosis (Kowluru and 

Odenbach, 2004). Furthermore, the administration of the polyphenol antioxidants found 

in green tea suppresses the DM-driven decline of the endogenous antioxidant defense 

system (including SOD, GSH and CAT) and protects from DR (Kumar et al., 2012). 

Moreover, treating diabetic rats with melatonin, a strong antioxidant naturally secreted by 

the pineal gland, suppresses VEGF and oxidation of protein (Djordjevic et al., 2018) and 

Serikbaeva et al. Page 10

Prog Retin Eye Res. Author manuscript; available in PMC 2024 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduces leakage of retinal vessels (Mehrzadi et al., 2018). Notably, successful antioxidant 

interventions in animal models often involve initiating treatment close to the onset of DM, 

before development of DR and administering treatment for extended durations.

While the efficacy of antioxidant supplements in protecting patients from DR remains 

controversial, there have been promising results, especially those using a combination of 

antioxidants. For example, a 5-year follow-up study by García-Medina et al. (Garcia-Medina 

et al., 2011) showed that oral administration of Vitalux Forte®, containing vitamins C and 

E, lutein, b-carotene and trace elements, significantly reduced plasma lipid peroxidation end 

products and slowed the progression of DR in patients with T2D with NPDR. Another study 

using Nutrof Omega®, containing vitamins C, D, B and E, omega-3, lutein, glutathione and 

trace elements, for 18 months showed a significant reduction in total oxidative stress, plasma 

lipid peroxidation by-products and decreased DR progression and onset (Roig-Revert et al., 

2015). Similarly, oral administration of Nutrof Omega® for 38 months significantly reduced 

pro-oxidants, increased antioxidants and slowed DR progression in patients with T2D with 

NPDR (Sanz-González et al., 2020). The profiles of patients who benefit from these types of 

antioxidant supplements are T2D without DR or mild-to-moderate NPDR without DME or 

with DME but without the thickening of the retina. These findings suggest that antioxidants 

have the potential to be beneficial when administered during the early stages of DR, when 

anatomical damage is not excessive, and that they may not be able to reverse retinal damage 

once it has occurred (Chen et al., 2016; Kowluru, 2019).

Taken together, these studies indicate that oxidative stress is a viable therapeutic target. 

Furthermore, since such approaches are best when used prior to the onset of retinal 

damage. A plausible explanation for why prevention is more effective than treatment is 

that prolonged hyperglycemia induced epigenetic changes. Such changes are enduring and 

the reason for metabolic memory (Natarajan, 2021). Consequently, it is critical to intervene 

before such durable and pathogenic modifications occur. This concept is illustrated in a 

publication by Biswal et al. (Biswal et al., 2017), who demonstrated that the timing of 

antioxidant gene therapy administration is critical for efficacy; the therapy failed to be 

beneficial if is provided after tissue damage has occurred. Consequently, clinical trials 

should prioritize prevention strategies, specifically targeting patients in the nascent stages of 

DR. By doing so, interventions will prevent accumulation of irreversible damage.

Metabolism-independent effects of HG (osmolarity)

Elevated blood glucose not only alters metabolism of cells, but also increases the osmolarity 

of their extracellular environment. Recent studies indicate that while increased osmolarity 

is not without consequence, metabolism-related changes are required for hyperglycemia-

mediated damage.

In vitro studies with primary mouse Muller cells and a human Muller cell line (MIO-

M1) demonstrated that clearance of mitochondria (mitophagy) increased when cells were 

cultured in medium containing an elevated level of either D-glucose or L-glucose, which 

can, or cannot be metabolized, respectively. In cells cultured in L-glucose, increased 

mitophagy was accompanied by an increase in mitochondrial biogenesis and hence the 

mitochondrial content remained unchanged. In contrast, the amount of mitochondria 
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declined in cells cultured in D-glucose because the increase in mitophagy was not 

accompanied by a corresponding increase in mitochondrial biogenesis (Hombrebueno 

et al., 2019). These observations demonstrate that increasing the osmolarity can alter 

mitochondrial homeostasis. Furthermore, when the boost in osmolarity is driven by D-

glucose, it elicits a distinct response, presumably because D-glucose affects both osmolarity 

and glucose-related metabolism. Thus, the metabolism-mediated aspect of the response is 

both dominant, and detrimental.

Studies with Slc2a1knock-out mice shed light on the hyperglycemia-driven increase in 

osmolarity in the context of a T1D mouse model of DR (Holoman et al., 2021). The 

Slc2a1 gene encodes GLUT1, the primary glucose transporter in the retina (Kumagai et 

al., 1994; Rizzolo, 1997). While control mice (expressing two alleles of Slc2a1) experience 

both hyperglycemia-induced changes in metabolism, and increased osmolarity, in Slc2a1+/− 

mice the effect of hyperglycemia on metabolism is reduced, without changing the impact on 

osmolarity. Such mice are resistant to DR (Holoman et al., 2021). These in vivo studies align 

with the in vitro findings that it is the metabolism-dependent effect of hyperglycemia that is 

essential for DM-driven damage to the retina.

While the section above was written in a way that separated the impact of elevated glucose 

on osmolarity from its effect on metabolism, this distinction is blurred by the fact that some 

of the ways in which glucose can be metabolized can also contribute to hyperosmolarity. 

The polyol pathway coverts glucose to sorbitol and then to fructose. DM-driven inhibition 

of this pathway leads to an accumulation of sorbitol, which contributes to the rise in 

osmolarity (Lorenzi, 2007). If accumulation of sorbitol approaches the level of the glucose 

concentration, then this metabolic product may also contribute to the overall effect of 

osmolarity.

4. DM-induces mitochondrial dysfunction, which sets the stage for DM to 

damage the retina

Mitochondrial homeostasis

Mitochondrial homeostasis is essential for mitochondrial function, which is to respond to 

energetic demands via metabolism-related biochemical processes that they govern: oxidative 

phosphorylation (OXPHOS), the Krebs cycle and β-oxidation of fatty acids (Trefts and 

Shaw, 2021). Mitochondrial homeostasis is an interconnected process that can be organized 

into 4 phases: biogenesis, fusion, fission and mitophagy (Figure 2). Biogenesis generates 

new mitochondria from existing mitochondria, and this process involves synthesis of new 

DNA, proteins and lipids (Popov, 2020). Fusion incorporates newly minted mitochondria 

into the mitochondrial network, and also mixes the contents of the entire mitochondrial 

network (Chen et al., 2007; Detmer and Chan, 2007). This process monitors and identifies 

dysfunctional regions of mitochondria, and subjects them to fission, which physically 

isolates them. “Dysfunction” within the mitochondria can include production of excess 

reactive oxygen species and depolarization of the mitochondrial membrane potential. 

Finally, mitophagy is the process by which mitochondrial fragments are sent into the 

lysosome for disposal (Herhaus and Dikic, 2015; Pickles et al., 2018). The inter-relatedness 
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of the 4 phases of mitochondrial homeostasis is underscored by the recent observation that 

fission, which is a prerequisite for mitophagy, can also promote biogenesis (Burman et al., 

2017; Kleele et al., 2021; Twig et al., 2008). In light of the central role of mitochondria 

in energy homeostasis, it is no surprise that each step of mitochondrial homeostasis is 

controlled by metabolism (Mishra and Chan, 2016). Figure 2 lists some of the key liaisons 

between metabolism and the transcription factors that govern mitochondrial biogenesis 

(Amorim et al., 2022; Herzig and Shaw, 2018)

Enhanced mitophagy can protect from a variety of pathologies (Gao et al., 2020; Nah et al., 

2022; Sidarala et al., 2020; Xu et al., 2021), however, enforcing mitochondrial functionality 

involves more than just eliminating damaged fragments of the mitochondrial network. While 

increasing mitophagy will have an immediate benefit on mitochondrial functionality, if this 

is the only change, then the long-term consequence will be detrimental because the quantity 

of mitochondria within a cell will decline. Enforcing mitochondrial functionality requires 

harmonizing the rate of all 4 component of mitochondrial homeostasis (Figure 2) (Palikaras 

et al., 2015; Van Huynh et al., 2023). If these processes are unbalanced, then the cell’s 

vulnerability to death-inducing insults increases (Zacharioudakis et al., 2022). There appear 

to be multiple contributors to the balance between biogenesis and mitophagy, and they 

often include PGC1α, the transcription factor that regulates biogenesis, and components 

of the mitophagy machine (Parkin, Pink1, Bnip3) (Liu et al., 2023). The exact mechanism 

by which the various contributors to the balance between biogenesis and mitophagy are 

monitored and coordinated remains incompletely understood.

Features of mitochondria that enable resistance to adversity

The mitochondria are designed to mitigate and tolerate dysfunction (Herzig and Shaw, 

2018). Enzymes, which reduce the level of reactive oxygen species that damage mtDNA 

(e.g. SOD2; manganese-dependent superoxide dismutase) are localized in the mitochondria. 

Furthermore, in contrast to nuclear DNA, of which there is a single unit/cell, each cell 

contains many copies of mitochondrial DNA (mtDNA), which are housed in nucleoids. 

These back-up copies of mtDNA reduce the impact of damage to mtDNA.

In addition, damaged mtDNA can be repaired (Kazak et al., 2012; Santos et al., 2012). 

Santos et al. (Santos et al., 2012) found that after 15 days of DM, expression of enzymes that 

repair/replicate mitochondria within the retina increased, and then declined by 2 months. 

After 6 months, when the mitochondrial copy number had declined, the level of these 

enzymes had fallen below the level of non-DM counterparts. These studies reveal an 

apparent attempt by the retina to prevent DM-driven mitochondrial damage. Furthermore, 

suppression of such systems preceded the development of DR.

Moreover, mitochondrial functionality persists in the face of extensive damage of the 

mtDNA. In both cultured cells and mouse models, cells engineered to contain a mixture 

of wild-type and pathogenic mtDNA do not succumb to dysfunction until a high threshold 

of pathogenic mtDNA is breached (Nakada et al., 2009; Ono et al., 2001). Depending 

on the mutation, heteroplasmic cells (containing both mutant and wild-type mtDNA) can 

accumulate up to 60%–90% pathogenic mtDNA molecules without a noticeable decline in 

respiratory activity (Chomyn, 1998; Rossignol et al., 2003).
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The design features of the mitochondria that enforces its integrity and thereby enable 

resistance to adversity include the presence of systems to prevent damage, the existence of 

many copies of mtDNA, systems to repair damage, the capability to eliminate mtDNA that 

has not been repaired, and the ability to retain functionality with only a minor fraction of the 

mtDNA intact.

DR is associated with aberrant mitochondrial homeostasis

There is unequivocal evidence that mitochondrial dysfunction within the retina is associated 

with early DR in both patients and experimental animals, and a growing appreciation that 

this damage is caused by HG-driven elevation of mitochondrial oxidative stress. The section 

below highlights some of the topics that are covered in detail in several recent review articles 

(Alka et al., 2023; Miller et al., 2020; Skeie et al., 2021; Wu and Zou, 2022).

Studies with cultured cells show that culturing them in HG perturbs mitochondrial 

homeostasis, and that such changes are required for the deleterious effects of HG (Antonetti 

et al., 2021; Devi et al., 2019; Duraisamy et al., 2019; Kang et al., 2010; Kim and Roy, 2020; 

Kim et al., 2020; Li et al., 2024; Roy et al., 2019; Trudeau et al., 2010; Trudeau et al., 2012; 

Wu et al., 2022; Xie et al., 2021; Zhang et al., 2022). Furthermore, the progressive damage 

to the retina that occurs in diabetic animals is associated with uncoupling of biogenesis 

and mitophagy (Hombrebueno et al., 2019). Increased retinal damage (accumulation of 

senescent cells and AGEs (advanced glycation end products) is associated with a decline 

in mitophagy that causes accumulation of dysfunctional mitochondria (Hombrebueno et 

al., 2019). Furthermore, mitochondrial hyperfusion, is associated with damage of the retina 

(Mueller cells) in both experimental animals and patients who have progressed to early DR 

(Anderson et al., 2024).Together these studies indicate that mitochondrial homeostasis is 

perturbed in the damaged retina of patients and experimental animals that have developed 

early stages of DR. This concept is re-enforced by the emerging appreciation that resilience 

– the innate ability of the retina to remain healthy in the face of DM – is associated with 

mitochondrial-based adaptation to hyperglycemia (Serikbaeva et al., 2022).

Mitochondria-based therapy to prevent DR

The observation that aberrant mitochondrial homeostasis is strongly associated with DM-

induced damage of the retina raises the possibility that preventing or correcting it would 

protect from DR (Kaikini et al., 2017). Indeed, pharmacological suppression of DM-driven 

mitochondrial hyperfusion improves mitochondrial homeostasis, which includes increased 

mitophagy, and thereby allows the retina to remain healthy in the face of DM (Anderson 

et al., 2024). Others have also reported that mitochondrial homeostasis-directed therapy 

protects from DR. Notoginsenoside R1, which boosts mitophagy, protects mice from DR 

(Zhou et al., 2019). Experimental animals that lack genes, which drive fission (Dnm1l) are 

resistant to DM-induced damage of the retina (Kim et al., 2021). Similarly, pharmacological 

inhibition of Drp1, which is encoded by Dnm1l, prevents DR (Zhang et al., 2022). 

Curiously, antagonizing fission should prevent mitophagy and promote fusion (Figure 

2). While these studies provide compelling evidence that DM perturbs mitochondrial 

homeostasis, and thereby causes damage to the retina, they do not provide a unified guide 

for how to enforce mitochondrial homeostasis in the face of DM. Alternative attempts, such 
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as global mitochondrial uncoupling with niclosamide ethanolamine did not protect diabetic 

mice from several complications including DR (Hinder et al., 2019). A better understanding 

of the mechanism by which the various phases of mitochondrial homeostasis remain in 

harmony as the mitochondria responses to changes in the quantity and nature of nutrients is 

essential to developing mitochondria-based therapy to prevent DR.

5. Evidence for the existence of resilience to pathology

The immune system is an example of an endogenous system that confers resilience to 

pathology. While the relative rare frequency of disease in individuals with a functional 

immune system strongly supports this concept, even more convincing is the sharp increase 

in susceptibility to a plethora of afflictions that results when the immune system is 

compromised.

Similarly, the incidence of disease increases sharply with age (Belikov, 2019; Guo et al., 

2022; Niccoli and Partridge, 2012). Although a decline in the potency of the immune system 

is one of the changes that correlates with this increased vulnerability, additional age-related 

changes, such as compromised mitochondrial homeostasis are also likely to contribute. 

Similarly, VEGF signaling declines with age, and enforcing it promotes healthy aging and 

increases life span (Grunewald et al., 2021; Ungvari et al., 2018). The aging process and 

how it affect resilience to disease has been extensively investigated and this body of research 

has been summarized in a number of excellent review articles (Haigis and Yankner, 2010; 

Lopez-Otin et al., 2013, 2023).

Another approach to understand resistance to disease has emerged from attempts to define 

health (Lopez-Otin and Kroemer, 2021; Luu and Palczewski, 2018). A recent review article 

articulates eight hallmarks of health, which are organized into three categories (Table 3 

(Lopez-Otin and Kroemer, 2021)). Of these eight, the four that are written in red are the 

ones that are particularly relevant to DR because their deterioration is a likely prerequisite 

for damage to accumulate in response to DM-related stress such as hyperglycemia. 

Those systems whose failure results in quintessential features of DR are likely to be the 

cornerstones of resilience to DR.

Recent publications have contributed to the growing realization that enforcing hallmarks 

of health such as those in the “Response to stress” category (Table 3) can protect from 

disease (Chen et al., 2023; Luu et al., 2023). A comprehensive, omics-based approach 

to identify druggable enzymes that prevent stress-induced retinal degeneration identified 

phosphodiesterases (PDEs) (Luu et al., 2023). Inhibition of PDEs suppressed bright 

light-induced retinal degeneration in Abca4−/−Rdh8−/− double knock-out mice. Inhibition 

of PDEs, which regulate cyclic nucleotide-dependent signaling, was beneficial in two 

complementary ways: by enforcing somatic maintenance and preventing apoptosis. These 

discoveries indicate that health can be enforced via pharmacological approaches. More 

importantly, it shows that fortifying health prevents disease.

Luu et al. also reported that inhibiting PDEs protected mice from additional diseases; 

namely, genetic mutation-driven retinal degeneration and DR. Since many diseases can arise 
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from failure of a given health category (e.g. being overwhelmed by stress), enhancing such 

processes has the potential to protect from all diseases that manifest upon failure of a 

specific hallmark of health.

Resilience to DR is reminiscent of pre-conditioning/hormesis

Preconditioning/hormesis, a brief exposure to a sub-threshold level of injury, protects organs 

such as the brain and heart from subsequent insult (Calabrese, 2018; Gems and Partridge, 

2008; Granger and Kvietys, 2015; Lopez-Otin and Kroemer, 2021; Murry et al., 1986). 

The mitochondria play a central role in this response. The initial insult elevates the level 

of mitochondrial reactive oxygen species thereby promotes expression of protective genes 

including BCL2 and SOD2 (Sivandzade et al., 2019). In addition, the functionality of 

the mitochondria is improved by increasing mitophagy to reduce the level of damaged 

mitochondria (Correia et al., 2010; Gottlieb and Gustafsson, 2011). More recent studies have 

elucidated molecular mediators of hormesis within specific organs. For instance, the exercise 

capacity of skeletal muscle is dependent on autophagy to clear dysfunctional mitochondria. 

These events are driven by the REDD1/TXNIP complex, which increases oxidative stress 

that boosts mitophagy (Qiao et al., 2015). Similarly, ischemic post-conditioning of the retina 

improves the retina’s neural function and is dependent on autophagy, which also strongly 

suggests a mitochondrial involvement (Mathew et al., 2020). Together these findings 

indicate that mitochondria adapt to environmental conditions in ways that protect from 

pathology.

In contrast to the extensive literature focused on preconditioning-mediated protection of 

patients from cardiovascular disease, there are only a handful of publications investigating 

whether DM/HG-mediated stress induces hormesis. Patients with T1D are protected from 

ischemia-induced injury of skeletal muscle (Engbersen et al., 2012). Similarly, one week 

of DM protected mice from ischemia/reperfusion-induced heart injury as compared with 

non-DM mice (Ravingerova et al., 2010). The underlying mechanism of this phenomenon 

has not been addressed. As compared with ischemia- or hypoxia-induced preconditioning, 

HG-induced pre-conditioning is a largely unexplored area of research.

6. Resilience to DR

While the preceding sections focus on DM/HG-induced oxidative stress, this is not the 

only change that accompanies DM. Work from multiple investigators has contributed to 

our current appreciation that prolonged hyperglycemia triggers many interrelated drivers 

of pathology (inflammation, oxidative stress, mitochondrial dysfunction, senescence, etc.). 

Furthermore, targeting a single one of these changes has often been reported as an effective 

approach to prevent DR. Taken at face value the sum of these published studies suggest 

that DR requires a “perfect storm”, i.e. that the entire plethora of DM-triggered drivers of 

pathology are necessary for retinopathy. This concept suggests that preventing any one of the 

pathogenic drivers of DR would suffice for resilience. In the context of this review, we chose 

a single putative driver of DR (mitochondrial oxidative stress) to facilitate the presentation 

of the key concept of resilience: suppression of those events and processes that damage the 

retina is a plausible explanation for how the retina resists injury in the face of DM.
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After developing DM patients are initially resilient to DR

Patients who develop DM (either T1D or T2D) are initially resistant to DR, which develops 

slowly and progressively. It takes several decades for the proliferative form of DR (PDR) 

to manifest (1993; 1997; Aiello et al., 1998; Cruickshanks et al., 1992; Klein et al., 1984). 

It is only after the loss of the innate ability to remain healthy in the face of DM that the 

retina progressively accumulates damage (Figure 3). While understanding the underlying 

mechanism of resilience has enormous therapeutic potential (e.g. indefinitely delaying 

vision-threatening DR), this topic is understudied as compared with investigation of DM-

driven damage of the retina (Yu et al., 2024).

In a small subset of patients with T1D, DR is delayed for 50 or more years. The exceptional 

resistance to DR of these participants of the Joslin 50-Year Medalist Study (Sun et al., 

2011) is not associated with strict glycemic control; the average HbA1c was 7.3±1.0%. 

Thus, the retina remains healthy in the face of hyperglycemia. Further investigation revealed 

that durable resistance to DR is associated with elevated expression of retinol binding 

protein 3 (RBP3), a retinol transport protein expressed mainly by photoreceptors. A higher 

level of RBP3 in the vitreous was associated with less severe DR and a reduced risk of 

developing PDR in participants of the Medalist Study (Fickweiler et al., 2022). RBP3 

associates with glucose transporter 1 (GLUT1) to decrease glucose uptake and thereby 

attenuate hyperglycemia-driven expression of inflammatory cytokines (Fickweiler et al., 

2022). Curiously, RBP3 is an anti-oxidant (Chen et al., 2021; Gonzalez-Fernandez et al., 

2014; Lee et al., 2016), which raises the possibility that RBP3-mediated protection also 

involves suppression of oxidative stress. Regardless of the underlying mechanism by which 

Medalists remain retinopathy-free for many decades, their existence demonstrates that it is 

possible for the retina to stay healthy in the face of DM for a very long time.

There is a growing appreciation that sleep enforces health by preventing a plethora of 

pathologies (Buysse, 2014; Lopez-Otin and Kroemer, 2021). Sleep disturbances such as 

short or long sleep duration, poor sleep quality or mistimed sleep compromise glycemic 

control and increases an individual’s risk of developing DM (Anothaisintawee et al., 2016). 

Similarly, poor sleep quality is associated with both activation of process that drive DR, 

and the presence of DR (Besedovsky et al., 2012; Joussen et al., 2004; Mullington et al., 

2010). For instance, obstructive sleep apnea contributes to insulin resistance, elevated blood 

pressure, endothelial dysfunction, increased systemic inflammation and oxidative stress 

(Anothaisintawee et al., 2016; Garcia-Sanchez et al., 2022; Han et al., 2020; Lee et al., 

2017; Reutrakul and Mokhlesi, 2017). A plausible mechanism by which sleep protects from 

DR has emerged from the discovery that the circadian clock governs mitophagy via SIRT1 

(Ramsey et al., 2009). Perhaps sleep enforces mitochondrial homeostasis and thereby render 

the retina capable of withstanding stress caused by chronic HG.

Resilience is the innate ability of the retina to resist DM/HG-driven damage

Resilience is the innate ability of the retina to remain healthy in the face of DM (Figure 

3). This retinopathy-resistant period occurs in both patients and experimental animals. 

Resilience to the HG-mediated damage is transient; as resilience deteriorates, damage of 

the retina progressively accumulates.
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A plausible explanation for the retinopathy-resistant period of DM is that DM triggers 

protection from the DM-related damage. The results of the Medalist study (see above), as 

well as recent publications from our group (see below) provide support for this intriguing 

possibility.

Animal models of resilience to DR

Mouse models of DR (both T1D and T2D) recapitulate key steps of DR pathogenesis in 

humans (Engerman and Kern, 1995; Quiroz and Yazdanyar, 2021; Robinson et al., 2012). 

This includes a period of resilience that is followed by a progressive accumulation of 

damage to the neural and vascular compartments of the retina. However, the time course 

(both duration of resilience and onset of subsequent damage) is shorter in mice, and 

regardless of the duration of DM, they only develop the early stages of DR; they do not 

advance to PDR (Engerman and Kern, 1995; Quiroz and Yazdanyar, 2021; Robinson et al., 

2012; Samuels et al., 2015; Sergeys et al., 2019). Importantly, the underlying mechanism 

of pathogenesis in mice reflects what occurs in the eyes of humans (Antonetti et al., 2012; 

Brownlee, 2001; Ferrington et al., 2020; Kowluru et al., 2015; Stitt et al., 2016). Following 

the loss of resilience, HG increases oxidative stress, which damages the retinal vasculature 

and thereby sets the stage for additional drivers of retinal damage (Figure 1) (Kanwar et 

al., 2007; Kowluru and Abbas, 2003; Kowluru et al., 2015; Zhong and Kowluru, 2011). 

Such mouse models have been successfully used to identify therapeutic approaches to 

prevent DR. For instance, overexpressing Sod2 prevents both DM-induced mitochondrial 

oxidative stress and dysfunction, and protects mice from developing DR in the face of 

DM (Goto et al., 2008; Kowluru et al., 2006). Similarly, anti-oxidant-based therapies shield 

DM mice from developing DR (Dionysopoulou et al., 2023; Kowluru and Mishra, 2015). 

Thus, existing mouse models of DR have a proven track record of providing translationally 

relevant information. These same models can be used to investigate resilience.

We used both T1D (induced by injection of streptozotocin) and T2D (db/db) mouse models 

to investigate the mechanism of resilience. We reasoned that the retina was resistant to 

HG-driven oxidative stress because it had activated an endogenous anti-oxidative defense 

system. Indeed, we found that this was the case. Expression of anti-oxidant defense genes 

increased coincident with resilience (Li et al., 2023). This gene set included transcription 

factors (Nrf2) that govern anti-oxidant programs (He et al., 2020), NAD(P)H Quinone 

Dehydrogenase 1 (Nqo1), which encodes a cytoplasmic 2-electron reductase (Ross and 

Siegel, 2021), mitochondrially-localized enzymes that suppress oxidative stress (Sod2) 

(Kasai et al., 2020) and the first rate-limiting enzyme responsible for the synthesis of 

the anti-oxidant glutathione (Gclc) (Deneke and Fanburg, 1989). Focusing on the retinal 

vasculature, we found that cells within the retinal vessels that were isolated from mice that 

were within the resilience phase of DM had acquired resistance to ischemia/oxidative stress- 

and cytokine-induced death. As the duration of DM was extended and the resilience phase 

ended, expression of anti-oxidative defense genes declined and the retinal vessels from DM 

mice were no longer superior to vessels from non-DM mice in resisting death caused by 

DM-related insults. Furthermore, the DM vasculature became more vulnerable to death after 

a duration of DM that caused accumulation of detectable vascular and neural damage to the 

retina (Li et al., 2023).
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The resilience described above appears to be present in both the neural and vascular 

compartments of the retina. The resilience bioactivity (resistance to oxidative stress- or 

cytokine-induced death) was observed in the vasculature, whereas the resilience biomarker 

(increased expression of anti-oxidative stress defense genes) was detected by PCR analysis 

of the whole retina, of which 99% (based on cell #) is non-vascular.

In vitro models of resilience to hyperglycemia-induced damage

Many investigators report that increasing the glucose concentration with the medium of 

cultured retinal endothelial cells quickly (within hours or days) induces quintessential 

drivers of DR such as elevated oxidative stress and mitochondrial dysfunction (Ferrington et 

al., 2020; Zheng and Kern, 2009). Consequently, such experimental systems have been used 

to determine the various mechanisms by which hyperglycemia damages retinal endothelial 

cells.

Not all investigators find this to be the case (Ghanian et al., 2018; Huang and Sheibani, 

2008). Some report no retinopathy-related damage even after culturing primary human 

retinal endothelial cells (HRECs) for 6 days in HG-containing medium (Busik et al., 2008). 

Similarly, senescence was induced in HRECs only after 4 or 5 weeks of HG (Bertelli et 

al., 2022; Crespo-Garcia et al., 2024). In contrast to the commonplace observation that HG 

induces oxidative stress in human umbilical vein endothelial cells within days, one group 

recently reported no change in the level of reactive oxygen species even after 4 weeks of HG 

(Khapchaev et al., 2023). The reason for this non-uniform response of primary endothelial 

cells when they are cultured in high glucose-containing medium has not been systematically 

investigated.

We recently observed that exposing primary human retinal endothelial cells to high glucose 

at first induced death and compromised mitochondrial respiration and functionality, but 

as the duration of exposure was prolonged, cells adapted and became resistant to the 

deleterious effect of hyperglycemia (Serikbaeva et al., 2022). Thus, prolonged exposure to 

HG induced protection. Taken together, the work from multiple labs indicates that the simple 

experimental setting that involves culturing retinal endothelial cells in elevated glucose can 

be used to model both resilience to DR as well as HG-induced damage. The determinants of 

how cells will respond to HG has not been elucidated.

We used this in vitro experimental system to investigate the mechanism by which cells 

adapt, i.e. become capable of resisting the deleterious effects of HG (Serikbaeva et al., 

2022). As detailed below, mitochondrial oxidative stress remained unchanged even after 10 

days of HG (Table 5). In contrast, certain types of reactive oxygen species increased in other 

subcellular compartments: hydrogen peroxide (H2O2) in the Golgi and oxidized glutathione 

(oxGSH) in the vicinity of the plasma membrane. Short exposure to HG (1 instead of 

10 days) had no effect on any of the reactive oxygen species that were measured (data 

not shown). These data indicate the existence of a system that protects the mitochondria 

from oxidative stress in the face of HG. Figure 4 illustrates the key features of HIMA 

(hyperglycemia-induced mitochondrial adaptation)
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We considered the contribution of osmolarity to HIMA and found that it had a partial effect 

(Serikbaeva et al., 2022). Culturing cells in 5 mM D-glucose + 25 mM L-glucose made them 

resistant to oxidative stress-induced death, however it did not increase mitophagy or improve 

mitochondrial functionality as was seen with cells cultured in 30 mM D-glucose.

HIMA is associated with protection from mitochondrial oxidative stress

A combination of experimental approaches revealed that acquisition of HIMA 

(hyperglycemia-induced mitochondrial adaptation) prevented mitochondrial oxidative stress 

(Serikbaeva et al., 2022). We evaluated overall oxidative stress within cells using traditional 

redox sensitive dyes such as DHE (dihydroethidium) and DCFDA (2’,7’ –dichlorofluorescin 

diacetate). In addition, we used roGFP sensors which are mutant versions of green 

fluorescent protein (GFP) that are redox sensitive. Such sensors contain a tag that determines 

their subcellular location, and are fused with either yeast peroxidase ORP1, or with human 

glutaredoxin-1 in order to impart preference for hydrogen peroxide or oxidized glutathione, 

respectively. Finally, they are reversible and therefore can be used to observe both an 

increase, and subsequent decrease in oxidative stress in living cells and in real time. Such 

roGFP sensors have been characterized extensively and used to evaluate changes in oxidative 

stress in a variety of experimental conditions (Albrecht et al., 2011; Meyer and Dick, 2010; 

Roma et al., 2018).

The subcellular location of the sensors listed in Table 4 was assessed in the experiments 

shown in Figures 5 and 6.

The results of this series of experiments are listed in Table 5. While culturing cells for 

10 days in HG-containing medium did not cause a global change in the level of H2O2 

or superoxide, oxidative stress did increase in certain subcellular compartments. More 

specifically, the level of oxidized GSH increased in the vicinity of the plasma membrane 

(Table 5), which is consistent, with reports by other investigators (de Zeeuw et al., 2015). 

Furthermore, H2O2 increased in the Golgi (Table 5). In contrast, there was no change 

in the level of three different reactive oxygen species (superoxide, H2O2 and oxGSH) in 

the mitochondria (Serikbaeva et al., 2022) (Table 5). We conclude that while culturing 

cells in HG for 10 days increased oxidative stress in certain subcellular compartments, the 

mitochondria was not one of them.

HG-induced protection from mitochondrial oxidative stress is independent of NRF2

We considered if protection from HG-driven oxidative stress involved nuclear factor 

erythroid 2–related factor 2 (NRF2), a transcription factor that increases expression of a 

plethora of anti-oxidant genes. Other groups have reported that overexpression of NRF2 

(Itoh et al., 2015; Kiyama et al., 2018; Li et al., 2008; Santos and Kowluru, 2011; Strom 

et al., 2016) protected the retina and prevented development of DR in animals (Wang et 

al., 2020). As shown in Figure 7A, the mRNA expression of NRF2 and genes that it 

regulates (HMOX1, SOD1, NQO1, GSTP1, GPX2, CAT) was not changed in cells that 

had undergone HIMA (10 days of HG). Furthermore, siRNA-mediated suppression of 

NRF2 (Figure 7B) had no effect on HG-induced death, or the level of either global, or 

mitochondrial superoxide (Figure 7C). These results indicate that the mechanism by which 
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cells that had undergone HIMA resisted the deleterious effects of HG was independent of 

NRF2.

We also investigated the role of mitochondrial homeostasis in HIMA (Serikbaeva et 

al., 2022). In cells that had attained HIMA, both biogenesis and mitophagy were 

increased, while the total mitochondrial mass remained unchanged. Furthermore, perturbing 

mitochondrial homeostasis by reducing expression of Mfn2 or Drp1 compromised 

mitochondrial functionality. These data demonstrate that HIMA was associated with a 

balanced adjustment in both biogenesis and mitophagy. Furthermore, HIMA required 

persistent mitochondrial homeostasis, which is likely due to the HG-driven increase in the 

damaged mitochondria, which need to be eliminated (mitophagy) and replaced (biogenesis).

Retinal cell types that are responsible for resilience

The observation that cultured human retinal endothelial cells undergo HIMA indicates that 

this phenomenon is cell autonomous – manifests without the input of any of the other retinal 

cell types. However, this does not eliminate the possibility that other cell types contribute. 

Because endothelial cells work together with other retinal cells types (i.e. ganglion, glial 

(astrocytes and Müller), immune (microglia), and vascular (endothelial and pericytes) in the 

context of neurovascular unit), it seems likely that resilience will be governed by the input 

of these other cell types (Tang et al., 2023). In support of this possibility is the intriguing 

observation that mesenchymal cells transfer mitochondria to endothelial cells and thereby 

promote mitophagy of the endothelium (Lin et al., 2024).

Besides other cell types, additional types of extracellular cues may influence resilience 

within the endothelium. Shear stress, which the blood exerts as it flows across the 

endothelium of the aorta, can induce resilience to cardiovascular disease (Gao and 

Galis, 2021). The underlying mechanism involves shear-mediated localization of signaling 

platforms that govern expression of transcription factors such as Klf2, which mediate 

expression of atheroprotective genes such as NOS3, encoding eNOS (Coon et al., 2022; 

Hong et al., 2023). Atherosclerotic plaques develop in adjacent regions of the aorta, which 

are subject to low or disturbed shear stress. Such studies demonstrate that the vascular 

endothelium harbors endogenous systems that protect it from pathology, and that such 

systems are responsive to environmental cues. Additional studies are necessary to determine 

if resilience of the retinal endothelium is under the influence of extracellular cues other than 

hyperglycemia, which induces it.

Existing biomarkers of DR are not useful to assess resilience

Biomarkers that are used to diagnose DR in patients are based on the presence of 

abnormalities in the appearance and/or function of the retinal vasculature (Table 1). Such 

biomarkers appear once resilience is lost, and only indirectly speak to its existence. 

Resilience biomarkers are likely to reflect features of protection from HG-mediated damage 

such as increased expression of anti-oxidant defense genes and improved mitochondrial 

functionality, which are required to limit the HG-driven increase in oxidative stress. 

Identification of such biomarkers will enable direct assessment of resilience, and thereby 

catalyze development of resilience-based therapeutics.
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7. Conclusions and opportunities

Patients and experimental animals that develop DM enjoy an initial retinopathy-resistant 

period. Recent discoveries indicate that resilience is a deliberate response, which involves 

engaging endogenous defense against DM/HG-driven mitochondrial oxidative stress (Figure 

8). While such concepts are novel to the field of DR, which is largely focused on damage 

to the retina, it resonates with hormesis, which is mitochondrial-based protection from 

pathology.

The appreciation that the retina is capable of mounting resilience to DM-driven damage 

brings to light intriguing research questions and opportunities. What is the mechanism by 

which the onset of DM engages resilience, and why is it lost as the duration of DM is 

extended? Can resilience be re-activated after the onset of detectable damage, and if yes, 

then can either the neural or vascular compartments of the retina be repaired? Is enduring 

resilience the reason that some individuals do not develop DR even after 50 or more years of 

DM? Does fenofibrate, which reduces the onset and slows progression of DR (Chew et al., 

2010; Group et al., 2010; Knickelbein et al., 2016) prevent the loss of resilience?

The resilience concept constitutes a novel therapeutic strategy of resisting the deleterious 

effects of DM. Resistance to HG-induced damage by becoming tolerant to HG is 

distinct from current approaches of reducing the level of blood sugar in order to reduce 

the magnitude of the damage-inducing insult. These resilience-oriented therapeutics will 

complement existing approaches of preventing damage (by curbing blood sugar) and 

mitigating the symptoms of damage (anti-VEGF, steroids, laser, surgery).

9. Materials and Methods

Tissue culture

Primary HRECs were purchased from Cell Systems (ACBRI 181; Kirkland, WA, USA). 

They were isolated from donor A, a 26-year-old Caucasian male. Cells were authenticated 

for cytoplasmic VWF/Factor VIII, cytoplasmic uptake of Di-I-AC-LDL, cytoplasmic CD31, 

GFAP, NG2 and PDGFRb by immunofluorescence. Mycoplasma, fungal and bacterial 

sterility was confirmed using a culture method. Cells were cultured in endothelial cell 

basal medium-2 (Lonza, EBM-2, CC3156) supplemented with microvascular endothelial 

SingleQuots kit (Lonza, EGM-2MV, CC4147). The media was refreshed daily and the cells 

were passaged within a day or two of reaching confluence. The glucose concentration in 

normal glucose (NG) and high glucose (HG) medium was 5 mM and 30 mM D-glucose, 

respectively. For osmotic control, cells were cultured in 30mM glucose by adding 25mM 

L-glucose (LG) into 5mM NG media.

293T cells were purchased from American Type Culture Collection (ATCC, Manassas, VA, 

USA). These cells were cultured in DMEM with L-glutamine and sodium bicarbonate, 

supplemented with 10% fetal bovine serum (ThermoFisherScientific, MT35010CV) and 

penicillin/streptomycin in a 5% CO2 tissue culture incubator.
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Lentivirus production and infection

70% confluent 293T cells were transfected with Lipofectamine 2000 (Invitrogen, Cat: 

11668019) complexed with the packaging plasmid (psPAX2), envelope plasmid (pVSVg) 

and lenti plasmid of interest (e.g. roGFP sensors). The supernatant containing the virus 

was collected for three consecutive days, aliquoted and stored at −80C. Primary human 

retinal endothelial cells were infected with lentivirus harboring the GFP plasmid with 

8 ug/ml polybrene reagent added to the media. On the following day, the media was 

replaced complete growth medium. The infection efficiency was routinely >80% across all 

experiments.

Immunofluorescent staining

Cells were plated on a gelatin-coated glass surface plates and fixed with 4% 

paraformaldehyde. After permeabilization with 0.25% TritonX100 in PBS solution, cells 

were washed with PBS and blocked in a solution containing 10% serum (goat, since 

secondary antibody is from a goat), 1% BSA in PBST (0.05% Tween). Samples were 

incubated in primary antibody overnight. Next day, cells were washed and incubated in 

fluorescent secondary antibody. Primary antibodies used: MnSOD2 (Cat #13533, Abcam, 

USA), catalase (D4P7B, Cat #12980, Cell Signaling, USA). Secondary antibodies used: goat 

anti-mouse IgG H&L Alexa Fluor 555 (Cat#ab150114, Abcam, USA).

Fluorescent staining with dyes

Cells were stained with WGA (Cat# W32466, ThermoFisher, USA) and BODIPY-ceramide 

(Cat# D7540, ThermoFisher, USA) dyes following manufacturer’s protocol.

siRNA

Confluent HRECs, plated onto a 6-well tissue culture plate, were transfected with siRNA 

in an antibiotic free complete endothelial cell medium (Lonza). To this end, 10 nM of 

ON-TARGETplus Human siRNA SMARTpool (Horizon Discovery) targeting NFE2L2 

(NRF2) (L-003755-00) or non-targeting pool (Scr, D-001810-10-05) was complexed with 

DharmaFECT 1 transfection reagent (Horizon Discovery, Catalog ID: T-2001) at 1:2 ratio 

in reduced serum Opti-MEM medium (Gibco, 31985070) and added to the media. The next 

day, transfected cells were trypsinized and plated into a 96-well tissue culture plate (for 

LDH-assay) in complete endothelial cell media. At 48-hour time point post-transfection, 

transfected cells were subjected to the designated experimental assay. The extent of silencing 

was determined on both the protein, and mRNA level using Western blot and qRT-PCR, 

respectively. The sequences of the primers used to measure mRNA of Nrf2-targeting 

enzymes with qRT-PCR are listed in Table 6.

LDH to assess cell death:

LDH, a measure of membrane integrity for cell-mediated cytotoxicity, was quantified 

using colorimetric CytoTox96 non-radioactive cytotoxicity assay (Promega, G1780). LDH 

is a stable cytosolic enzyme that is released upon cell lysis. The LDH activity that was 

released in the culture supernatant was measured with a coupled enzymatic assay following 

the manufacturer’s instructions. The optical density was determined using a Synergy H1 
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spectrophotometer (Agilent, CA, USA). The amount of color formed is proportional to 

the number of lysed cells. For each experimental group, the amount of released LDH was 

normalized to the total LDH level, which was obtained by lysing cells using the lysation 

buffer supplied in the kit.

Oxidative stress

NG- and HG-HRECs were plated at full confluency into 96-well plate and cultured in 

compete Lonza media. Media was aspirated and cells were stained with 10 uM DHE 

(D23107, ThermoFisher, USA), 5 uM mitosox (M36008, ThermoFisher, USA), 10uM DCF-

DA (D6883, Sigma) (resuspended in DMSO according to the manufacturer’s protocol) in 

Hank’s balanced salt solution (HBSS) supplemented with 1% fetal bovine serum (FBS) for 

30 min. The staining solution was further replaced with HBSS + 1% FBS, and fluorescent 

intensity was measured on spectroscopy with ex./em. at 510/580, 518/606, and 495/527 for 

each dye. Fluorescent values from unstained wells were subtracted from stained wells, and 

the data was normalized to the total protein amount per each condition. Total protein amount 

was measured using BCA described above.

Plasmid design

The mito-roGFP2-Orp1 (H2O2) sensor was made from pLPCX mito-roGFP2-Orp1, which 

was a gift from Tobias Dick (64992, Addgene, Watertown, MA, USA). The mito-roGFP2-

Orp1 in the pLPCX plasmid was cut with ClaI, blunted with T4DNA polymerase, then 

cut with Bgl2. The resulting 1.5 kb DNA fragment was ligated into the Hpa1/BamH1-cut 

pLV-EF1a vector. Insert-containing constructs were detected based on diagnostic BamH1/

EcoR1 restriction fragments. Because the ClaI site in the pLPCX mito-roGFP2-Orp1 

plasmid is blocked by methylation this construct was propagated in dam-/dcm- bacteria. 

The mito-roGFP2-Orp1-pLV-EF1a plasmid was used to make lentivirus (as described 

previously(Serikbaeva et al., 2022)), which was used to stably express mito-roGFP2-Orp1 in 

HRECs. Mito-Grx1-roGFP2 has been generated in the similar way as Orp1 version of the 

sensor.

PRX-Grx1-roGFP2 was provided by Dr. Yuta Hatori (Hatori et al., 2018) and was cut with 

Bgl2 and Not1, and the resulting 1.8 kb fragment was gel purified and ligated into gel 

purified BamH1/Not1-cut pLV.AS. pLV.AS is pLV-EF1a-IRES-Neo is a lentiviral vector 

that was modified in the Kazlauskas lab to improve the multiple cloning site (MCS). 

The resulting construct (pLV-PRX-Grx1) was analyzed by restriction digestion and DNA 

sequencing. The results confirmed that the inserts were successfully cloned into pLV.AS.

G-Grx1-roGFP2 was provided by Dr. Yuta Hatori (Hatori et al., 2018) and subcloned into 

pLV-AS lentiviral vector. G-Grx1-roGFP2 was PCR amplified with primers that generated a 

5’ BamH1 site and a 3’ Nsi1 site. The resulting PCR product was cut with BamH1 and Nsi1 

and subcloned into pLV.AS that had been cut with BamH1 and Nsi1. DNA sequencing of the 

resulting construct indicated that it was error-free.

PM-Grx1-roGFP2 and PM-Orp1-roGFP2 constructs provided by Dr. Yuta Hatori (Hatori et 

al., 2018) were targeting PM. Hatori’s group published that adding the CAAX sequence 

of p63/Rho guanine nucleotide exchange factor 25 (ARHGEF25) targets roGFP2 to both 
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plasma membrane and intracellular vesicles of HeLa cells. We generated lentiviral version 

of these constructs. Specifically, pPalmitoyl-Grx1-roGFP2 and pPalmitoyl-roGFP2- Orp1 

constructs were cut with Bgl2 and Not1, and the resulting 1.3 kb (Grx1) or 1.5 (Orp1) 

fragments were gel purified and ligated into BamH1/Not1-cut pLV.AS. The resulting 

constructs (pLV-PM-Grx1 and pLV-PM-Orp1) were analyzed by restriction digestion and 

DNA sequencing. The results confirmed that the inserts were successfully cloned into 

pLV.AS lentiviral vector. All plasmids of the roGFP sensors that were used in the study are 

listed in Table 4 and representative pictures of cellular localizations are depicted in Figures 5 

and 6.
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Figure 1. The role of HG-induced mitochondrial oxidative stress and subsequent damage of the 
retina.
Panel 1; focus on cells. Exposure of endothelial cells to hyperglycemia promotes oxidative 

stress within the cytoplasm and mitochondria. The ensuing mitochondrial dysfunction 

allows leakage of cytochrome c from the mitochondria into the cytoplasm, and thereby 

promotes death of the endothelium.

Panel 2; focus on capillaries. Death of cells within capillaries results in ischemia of the 

surrounding tissue, which responds by producing VEGF. VEGF is both neuroprotective 

(Foxton et al., 2013) (beneficial for the neural cells within the retina) but also promotes 

leakage of the adjacent capillaries that have not died. Accumulation of acellular capillaries 

and the resulting hypoxia is likely to drive progression to sight-threatening forms of DR.

Panel 3; focus on tissue and symptoms. Leakage of fluid from the capillaries into the neural 

retina, as well as influx of macrophages from the circulation into the retinal tissue triggers 

cytokine production (by both the retinal tissue and macrophages that have entered into the 

tissue and become activated). The increased level of VEGF and cytokines, drive progression 

to sight-threatening forms of DR, namely diabetic macular edema (DME) and proliferative 

diabetic retinopathy (PDR).
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Figure 2: Essential elements of mitochondrial homeostasis.
Changes in nutrient demands are detected by metabolic sensors that regulate biogenesis of 

mitochondrial. New mitochondria fuse and thereby integrate into the existing mitochondrial 

network. Environmental stress such as chronic hyperglycemia elevate oxidative stress, 

which damages the mitochondrial DNA and thereby further increases oxidative stress and 

compromises the functionality of the mitochondria. These damaged regions of mitochondria 

are detected, sequestered, physically removed by the process of fission and then eliminated 

via the lysosome in a process called mitophagy. Mitochondrial dynamics (fusion and 

fission), biogenesis and mitophagy must respond harmoniously to changes in the level and 

nature of environmental nutrients. SIRTs: sirtuins; AMPK: AMP-dependent protein kinase; 

mTOR: mammalian target of rapamycin (a ser/thr protein tyrosine kinase); IIS: insulin/IGF 

(insulin-like growth factor) signaling pathway.
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Figure 3. The two phases that the retina undergoes following the onset of DM.
In both humans and experimental animals, a retinopathy-resistant period precedes the 

appearance of DR. Recent discoveries in both T1D, and T2D mice indicate that this 

retinopathy-resistant period is associated with enhanced tolerance of insults that cause 

damage to the retina (Li et al., 2023). Loss of resilience is a prerequisite for accumulation 

and progression of overt damage to the retina, which is clinically recognized as DR.
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Figure 4. Hyperglycemia-induced mitochondrial adaptation (HIMA).
Hyperglycemia at first compromises the health of the mitochondria, which is followed by 

a series of changes that enable the mitochondrial health to improve despite the continued 

presence of hyperglycemia. These changes include a balanced increase of biogenesis and 

mitophagy, which prevents mitochondrial stress and improves the functionality of the 

mitochondria.
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Figure 5: The subcellular location of roGFP sensors.
Representative images of primary human retinal endothelial cells (HRECs) expressing the 

indicated roGFP sensors. Fixed cells expressing mito-oxGSH or prx-oxGSH colocalized 

with antibodies recognizing mitochondrial MnSOD2 or peroxisomal catalase, respectively. 

Living (not fixed) HRECs expressing the CAAX-tagged roGFP sensor (PM/G) colocalized 

with the plasma membrane (WGA1) and Golgi (BODIPY) markers. The Golgi-targeted 

sensor (G-oxGSH) colocalized with the Golgi (BODIPY) marker. The subcellular location 

of the H2O2-selective sensors was indistinguishable from the location of their oxGSH 

counterparts shown in this figure (data not shown). Scale bar, 20 um.
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Figure 6: High magnification of cells expressing roGFP sensors targeted to the indicated 
subcellular location.
Representative images of roGFP-expressing HRECs described in Figure 5.
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Figure 7: Protection from HG-induced oxidative stress was independent of NRF2.
(A) The mRNA level of HMOX1, SOD1, NQO1, GSTP1, GPX2, CAT and NRF2 in primary 

human retinal endothelial cells (HRECs) that were cultured for 10 days in either NG- (5 

mM) or HG- (30 mM) containing medium. The expression of each mRNA was measured 

using qRT-PCR and normalized to β-actin. Three independent experiments showed similar 

results.

(B) The mRNA level of NRF2 in HRECs transfected with 10 nM scrambled and NRF2-

targeted siRNA. The control group (Cntr) are non-transfected cells.

(C) NG and HG-HRECs were transfected with 10 nM scrambled or NRF2-targeted siRNA. 

Cell death was measured using an LDH assay as previously described (Serikbaeva et al., 

2022). Oxidative stress was measured by staining with DHE and Mitosox for global and 

mitochondrial superoxide, respectively. The response of cell to antimycin A was included as 

a positive control. Statistical significance for all panels was determined using student t-test, 

*p<0.05.
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Figure 8. Resilience involves increased clearance of dysfunctional mitochondrial (mitophagy) 
within the retinal vasculature in the face of DM/HG.
DM/HG increases oxidative stress within the mitochondria and thereby initiates self-

amplifying damage leading to dysfunction and subsequent death of cells within retinal 

capillaries (Kang and Yang, 2020; Kowluru, 2019). Resilience counters these events by 

increasing mitophagy to eliminate the dysfunctional, ROS-producing mitochondria (Li 

et al., 2023; Serikbaeva et al., 2022). Loss of resilience, perhaps due to compromised 

mitochondrial homeostasis, results in accumulation of damage to the retinal vasculature, 

which is diagnostic of DR.
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Table 1
Diagnosis of DR

DR classification Clinical findings*

   No apparent DR No DR-associated abnormalities

   NPDR

      Mild NPDR Microaneurysms only

      Moderate NPDR Microaneurysms and any of the following: microaneurysms, retinal dot and blot hemorrhages, hard 
exudates, or cotton wool spots; no signs of severe non-proliferative DR

      Severe NPDR Any of the following: intra-retinal hemorrhages (≥20 in each of 4 quadrants), definite venous beading 
(in 2 quadrants) or intra-retinal microvascular abnormalities (in 1 quadrant); no signs of proliferative 
DR

   PDR One or more of the following: neovascularization, vitreous or pre-retinal hemorrhages

Diabetic macular edema

   No DME No retinal thickening or hard exudates in the macula

   None center-involving DME Retinal thickening in the macula that does not involve the central subfield zone that is 1 mm in diameter

   Center-involving DME Retinal thickening in the macula that does involve the central subfield zone that is 1 mm in diameter

*
Findings are based on dilated ophthalmoscopy for DR
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Table 2:
Pros and cons of AI-based diagnosis of DR

Pros Cons

Higher accuracy, consistent disease diagnosis Less explainability in details

Increase disease detection efficiency Vulnerable to adversarial attacks from crafted input data

Reduce unnecessary doctor visits Susceptible to Out-of-Distribution robustness problems

Concerns of privacy and security
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Table 3:
Hallmarks of Health (Lopez-Otin and Kroemer, 2021)

Categories Maintenance of homeostasis Spatial compartmentalization Responses to stress

Hallmarks Recycling and turnover Integrity of barriers Repair and regeneration

Integration of circuitries Containment of perturbations Hormetic regulation

Rhythmic oscillations Homeostatic resilience
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Table 4:
Grx1- (oxGSH) and Orp1-roGFP2 (H2O2) targeted to various subcellular compartments

Name Targeting approach Subcellular location

Mito-H2O2

Mito-oxGSH
Addition of a fragment from cytochrome oxidase subunit IV Mitochondria

PM-H2O2

PM-oxGSH
Addition of a palmitoylation sequence Cytoplasmic side of the plasma membrane and the 

Golgi*

G-oxGSH Addition of a fragment from giantin Cytoplasmic side of the Golgi

PRX-oxGSH Addition of a fragment from peroxisomal membrane protein 2 
(PXMP2)

Cytoplasmic side of the peroxisome

*
When expressed in Hela cells the PM-roGFP sensors are localized primarily in the plasma membrane (Hatori et al., 2018). We observed that the 

PM-roGFP sensors were present in both the plasma membrane and Golgi of primary human retinal endothelial cells (Figures 5 and 6).
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Table 5:
Summary of the effect of HG on the basal redox status of HRECs

Compartment and reactive
oxygen species

Effect of exposure to HG for
at least 10 days

Dyes *

Global Superoxide (DHE) Unchanged

Global H2O2 (DCF-DA) Unchanged

Mito; Superoxide (MitoSox) Unchanged

roGFP sensors

Mito-H2O2 Unchanged

Mito-oxGSH Unchanged

G-H2O2 Elevated

G-oxGSH Unchanged

Deduced PM-oxGSH** Elevated

PRX-oxGSH Unchanged

“Unchanged” indicates that there was no statistically significant difference between cells cultured in medium containing NG (5 mM) and HG (30 
mM). “Elevated” indicates that a statistically significant difference was observed. The results presented in this Table are a compilation of at least 3 
independent experiments.

*
Superoxide was assessed using dihydroethidium (DHE). Unmodified DHE was used to detect global superoxide, whereas mitochondrial 

superoxide was detected with DHE that was modified to target it to the mitochondria (mitoSox).

The prefixes of the roGFP sensors indicate the subcellular compartment to which the roGFP was localized; mito, PM/G, G and prx: mitochondria, 
plasma membrane/Golgi, Golgi and peroxisome, respectively.

**
By comparing the data obtained with the sensors targeted to the PM/G and G we deduced the status in the PM compartment.
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Table 6:
Sequence of primers used in qRT-PCR.

Name of the gene, sequence of forward and reverse primer

Sequence Name (Nrf2-targeting
enzyme)

Sequence

HMOX1 FWD 5'-TTC TCC GAT GGG TCC TTA CA-3'

HMOX1 REV 5'-CTT CCA CCG GAC AAA GTT CA-3'

NQO1 FWD 5'-GGG ATG AGA CAC CAC TGT ATT T-3'

NQO1 REV 5'-TCT CCT CAT CCT GTA CCT CTT T-3'

CAT FWD 5'-CTG GAG CAC AGC ATC CAA TA-3'

CAT REV 5'-TCA TTC AGC ACG TTC ACA TAG A-3'

SOD1 FWD 5'-GTG CAG GGC ATC ATC AAT TTC-3'

SOD1 REV 5'-GGC CTT CAG TCA GTC CTT TAA T-3'

GPX2 FWD 5'-CCT ACC CTT ATG ATG ACC CAT TT-3'

GPX2 REV 5'-TCA AAG TTC CAG GCC ACA TC-3'

GSTP1 FWD 5'-GGG CAA GGA TGA CTA TGT GAA G-3'

GSTP1 REV 5'-GAT CTG GTC TCC CAC AAT GAA G-3'
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