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Abstract

Introduction—Brain tumors remain especially challenging to treat due to the presence of the 

blood–brain barrier. The unique biophysical properties of nanomaterials enable access to the tumor 

environment with minimally invasive injection methods such as intranasal and systemic delivery.

Methods—In this review, we will discuss approaches taken in NP delivery to brain tumors in 

preclinical neuro-oncology studies and ongoing clinical studies.

Results—Despite recent development of many promising nanoparticle systems to modulate 

immunologic function in the preclinical realm, clinical work with nanoparticles in malignant brain 

tumors has largely focused on imaging, chemotherapy, thermotherapy and radiation.

Conclusion—Review of early preclinical studies and clinical trials provides foundational safety, 

feasibility and toxicology data that can usher a new wave of nanotherapeutics in application of 

immunotherapy and translational oncology for patients with brain tumors.
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Introduction

Brain tumors remain especially challenging to treat due to both anatomic and intrinsic 

factors [1, 2]. First, their location behind the blood–brain barrier (BBB) makes 

pharmacologic treatment challenging. Conventional therapies are primarily confined to 

local control options such as surgery and radiation [1, 2]. However, surgery alone is often 

not sufficient to cure these tumors and can cause damage to normal tissue architecture, 

while radiotherapy carries risks of radiation necrosis, vasculopathy, secondary malignancy, 

and adverse affects on cognition [1, 2]. Meanwhile chemotherapy has variable effectivity. 

Temozolomide, while standard therapy for glioblastomas (GBMs) in adults, maintains only 

~ 20% of its blood concentration in the CNS [3]. Moreover, temozolomide is associated with 

systemic side effects, and has not been shown to demonstrably provide benefit against many 
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glioma subtypes (e.g. pediatric high-grade glioma) [4, 5]. Thus, new therapies that overcome 

delivery limitations are paramount.

Immune therapies have produced impressive clinical benefits in the face of many treatment-

resistant tumors [6–8]. However, immunologic treatment of brain tumors is complicated 

by barriers to delivery and their uniquely immune suppressive nature [9, 10], which 

have demonstrated an ability to withstand robust combination therapy with traditional 

chemotherapy, radiation therapy, surgery, and even newer immune therapies [11, 12]. Future 

treatment of brain tumors will require therapies that can initiate potent antitumor immune 

responses and eliminate the immunologic resistance of the tumor microenvironment (TME).

Nanotechnology may be a solution to both problems. Nanomaterials provide substantial 

flexibility of engineering to overcome traditional drug delivery barriers, and enable 

enhanced detection, delivery and treatment in a myriad of disease applications [13–

17]. Their ability to access cancers through the enhanced permeability and retention 

effect has led to their use as modulators of pharmacokinetics for conventional drugs. 

Nanomaterials have also been leveraged to maximize particle delivery through the BBB 

[18–20]. Nanomaterials are particularly attractive in the setting of immune therapies. While 

increasing sophistication of engineering is enabling nanoparticles to deliver drugs with 

increasing efficiency, nanomaterials can also be engineered very simply for uptake by 

immune cells [21, 22]. Despite this promise, a dearth of cross-disciplinary expertise and 

concerns about their in vivo reactivity and toxicology have stunted the number of new 

nanoparticle (NP) technologies that have been actively translated into human use [23–26].

In this review, we will discuss approaches taken in NP delivery to treat brain tumors with 

a special focus on cell targets and injection methods (Fig. 1). We will also review the NPs 

currently used in human brain tumor trials. These data will provide foundational safety, 

feasibility and toxicology data that may usher a new wave of nanotherapeutics in application 

of immunotherapy and translational oncology.

Targeting approaches

NP based therapies have been designed for a variety of applications, reflected best in the 

diversity of their target cells. While the first NP therapies attempted to deliver chemotherapy 

directly to tumor cells to initiate cytotoxic effects, more recent approaches have targeted 

nanomaterials to peritumoral immune cells to modify the TME or enable application of heat 

to the entire tumor with photodynamic therapy, radiation therapy, or magnetic hyperthermia. 

More recent immunotherapy based approaches do not require NP passage across the BBB, 

but rather initiate peripheral education and activation of T cells that can then access the 

TME for induction of anti-tumor immunity. We begin this review with a discussion of each 

approach.

Tumor targeting NPs

Direct tumoricidal therapies must overcome the BBB to act specifically on tumor cells 

without toxicity to normal tissue. This has traditionally been achieved with synthetic NP 

components. For example, encapsulation of hydrophopic molecules (i.e. camptothecin) 

inside PLGA NPs increases delivery to brain tumors ten-fold leading to a survival benefit 
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in syngeneic GL261 murine tumors [27]. More recent approaches utilize biomimetic 

proteolipid NPs, which utilize glioma cell membrane proteins to penetrate the BBB [28]. 

In one study, this penetration enabled photodynamic therapy leading to a ~ 94% inhibition of 

tumor growth in an orthotopic model of C6 glioma [28].

Other NPs can be surface modified to enhance targeting to specific cells. For example, 

coating particles with granzymeb enabled superparamagnetic iron oxide NPs (SPIONs) 

to infiltrate tumors by binding to Hsp70 [29]. These particles initiated tumor cell death 

more effectively than granzyme-b alone, leading to prolonged survival in intracranial tumor 

models for U87 and H1339 [29]. Likewise, coating particles with a peptide recognized by 

PD-L1 enables NP localization to PD-L1-expressing glioma cells, simultaneously delivering 

payloads while blocking a critical immunoregulatory axis [30].

External-beam radiotherapy can be applied to further increase particle accumulation at 

the tumor site. For example, intracranial radiation before intravenous injection of iRGD-

conjugated solid lipid-NPs loaded with PD-L1 and EGFR siRNA led to improved NP 

uptake in tumors and enhanced survival in GL261 preclinical models [31]. Alternatively, 

photodynamic therapy can also be harnessed to selectively activate NPs in desired locations. 

For example, administration of non-targeted indocyanine green-loaded phospholipid NPs 

produces therapeutic effects only in the areas that are exposed to near-IR light [32]. In 

one study, local application of photodynamic therapy in the TME increased infiltration 

of T cells and macrophages and increased expression of HSP70, leading to inhibition of 

tumor growth and extended survival in a rat 9L GBM [32]. This antitumor effect was 

absent in immunocompromised mice and was achieved without engineering NPs specifically 

to target tumors [32]. These “up-conversion” NPs nonspecifically accumulate, but are 

activated in the presence of photons to deliver photothermal therapy only inside tumors 

[33]. Although promising in preclinical models, photodynamic therapy faces challenges 

for clinical implementation due to the limited penetration depth of light through a thick 

tissue like the human skull. Further work may be necessary to specifically activate energy 

generation among particles through such a light-impenetrable material.

Targeting peri‑tumoral immune cells

NPs can also be delivered to target peri-tumoral immune cells that are known to 

suppress immune activation, such as M2 macrophages. In one study, particles with a 

PbAE-mRNA polyplex core coated with PGA-Di-mannose to target M206 on macrophages 

were engineered to deliver mRNA encoding interferon regulatory factor-5 (IRF-5) and 

IKKβ (M1-polarizing transcription factors) [34]. Delivery of IVT-derived mRNA encoding 

these transcription factors was utilized to convert tumor associated macrophages to a 

pro-inflammatory M1 phenotype [34]. Although this treatment had limited effect as a 

monotherapy, NP-medi-ated delivery of these transcription factors elicited impressive 

tumor regression in an established brain tumor model when combined with radiation 

[34]. Similarly, albumin NPs containing transferrin receptor-binding peptide (T12) with 

mannose-targeting receptors crossed the BBB and converted M2 macrophages to an M1 

phenotype, leading to slightly extended survival in intracranial models for U87 and GL261 

[35]. Others have utilized inherent effects of particle components to modify macrophage 
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function. For example, gold-NPs with a polypeptide coating may activate peritumoral 

microglia and astrocytes to “wall off” tumor growth, effectively exploiting a mechanism 

utilized by microglia to protect the CNS from infection/inflammation [36]. NP formulations 

encapsulating chemotherapy (e.g. Nano-Dox) and magnetic NPs in combination with 

radiotherapy have also been shown to act directly on peritumoral cells such as M2 

macrophages/MDSCs in the TME, leading to enhanced efficacy [37, 38].

Combination therapies

These TME modulators can reduce tumor growth as monotherapies but can also be applied 

to create a TME conducive to systemic immune attack. For example, lipid-NPs coated with 

the tumor-targeting peptide iRGD encapsulating both a phosphoinositide 3-kinase (PI3K) 

inhibitor to antagonize regulatory tumor cell populations and an α-GalCer to activate T cells 

synergistically reprogrammed the TME of intracranial tumors enabling adoptive cellular 

therapy treatments to prolong survival by ~ 50% in preclinical models [13]. In a similar 

approach, delivery of antisense oligonucleotides to TGF-beta via systemically administered 

polybutyl cyanoacrylate NPs coated in polysorbate-80 reduced TGF-beta production in 

tumors and facilitated improved response to whole tumor cell vaccines [39]. Likewise, 

gold-NPs enhance the effects of both chemotherapy with doxorubicin and immunotherapy 

with PD-L1 checkpoint inhibition [40].

More sophisticated multimodal particles have incorporated both targeting and imaging 

capabilities using a single particle. One group reported significantly improved survival in 

murine GL261 models using multimodal particles incorporating IONPs for MRI imaging, 

angiopep for BBB penetration/glioma cell targeting, siTGF-beta for immune modulation and 

temozolomide for tumor killing [41].

Targeting peripheral immune cells outside the TME

Using NPs to target peripheral cells that cross the BBB can be another avenue to indirectly 

deliver therapy across the BBB. Systemic targeting of peripheral immune cells outside the 

TME avoids barriers of intratumoral delivery. Our group has leveraged this approach using 

systemic non-targeted cationic liposomes bearing mRNA encoding tumor antigens [21]. We 

have shown that these tumor mRNA loaded NPs mediate potent antitumor adaptive immune 

responses against intracranial tumors [21], and may unlock effects of immune checkpoint 

inhibitors [22]. Other groups utilized similar approaches to demonstrate that liposomal 

delivery of microRNAs targeting the immune modulator STAT3 in monocytes/macrophages, 

achieves antitumor efficacy in mice and activity in canines [42]. Alternatively, subcutaneous 

administration of NP loaded DCs can also achieve tumor rejection. HSP-70-SPIONs within 

tumor lysate loaded DCs delayed tumor progression and increased survival in intracranial 

models for murine C6 glioma [43] while NP loaded DCs bearing grp170/neuritin peptide 

induced therapeutic levels of cytotoxic T cells [44].

Routes of administration

Although the simplest delivery method of any drug is direct injection into tumors, the unique 

biophysical properties of nanomaterials have also enabled access to the tumor environment 

with less invasive injection methods including intranasal and systemic delivery.
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Intra‑tumoral injection

Direct intratumoral injection of NPs can act at the disease site and remains superior for 

therapeutics that require high concentrations of particles in tumors. Most of these therapies 

seek to induce direct tumor killing. For example, direct injection of iron-oxide (IO) NPs 

produced by magnetotactic bacteria enables delivery of IONPs needed for tumor heating 

with alternating magnetic fields leading to inhibition of glioma growth in a U87 model [45]. 

Direct cytotoxicity can also be combined with immune modulation for prevention of tumor 

recurrence. This is evidenced by convection-enhanced delivery of lipophilic NPs delivering 

both Rh-188 with a CXCR4-blocking antibody [46] or direct injection of HDL-mimicking 

nanodiscs delivering both chemotherapy and immunotherapy with TLR-9 agonists [47]. 

Direct injection may limit systemic inflammatory response, and secondary side effects, 

and has been prioritized for virus-like particles derived from cowpea mosaic virus [48]. 

Although direct injection offers specification of an anatomic target, even greater precision 

can be achieved by engineering NPs with components to target specific cell types. For glial 

tumors, this can be achieved by modifying NPs to enhance binding to fibroblast growth 

factor-inducible 14 (Fn14R) in GBMs [49].

Intranasal

Intranasal injection has great potential for semi-local delivery but has not been utilized 

as frequently for therapeutic administration. While studies remain few, results appear 

promising. In one study, intranasal administration of chitosan-siGal-1 NPs produced survival 

benefits in glioma models by promoting an M1 phenotype in the tumor microenvironment 

(TME), enabling synergistic antitumor responses when coupled with either temozolomide or 

immunotherapy with dendritic cell vaccines and PD-1 checkpoint blockade [50, 51]. These 

early successes warrant further evaluation and utilization in future work.

Systemic delivery

Systemic delivery requires that therapies utilize active or passive uptake in the desired 

location. For therapies that act on the TME, this requires that particles cross the BBB and, 

in many cases, specifically infiltrate the tumor. Crossing a BBB composed of endothelial 

tight junctions is not easily achieved. While specific cell types can pass across the BBB 

through natural mechanisms, exploiting these can be difficult [52–54]. Since small lipophilic 

molecules may diffuse across the BBB, nanomaterials can be designed to penetrate or be 

engineered to cross [20, 55]. Alternatively, since tumors actively disrupt the BBB which 

is further compromised by standard of care radiotherapy, nanomaterials have preferential 

advantages in localizing to tumors [56, 57]. NPs can further exploit the leaky capillaries 

in tumors via the enhanced permeability and retention (EPR) effect, which enables NP 

retention in the TME [55–57]. Once in the TME, particles can deliver therapeutics to 

specific cell types based on their surface ligands and physical properties [55–57]. Thus, new 

nanomaterial designs can leverage these properties to preferentially target tumor cells, or 

peritumoral immune cells, after systemic administration.
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Clinical trials

Clinical evaluation of NP based treatments for GBM has focused predominantly on direct 

and systemic administrations in adult patients. Despite recent development of many NP 

systems to modulate immune function in the preclinical realm, clinical work with NPs in 

GBM has largely focused on imaging, chemotherapy, thermotherapy and radiation. Here, we 

have grouped these studies based on injection method, treatment modality, and combination 

approaches, and summarized their results (Table 1).

Direct injection of chemotherapy loaded NPs

NP encapsulation can serve to increase drug penetration and delivery to tumor. Several 

delivery methods have been explored for increasing local drug concentrations, including 

convection enhanced delivery (CED) of liposomal chemotherapeutic formulations [58, 59]. 

CED is a minimally invasive technique for increasing local drug concentration through 

direct tumor cannulation and the application of continuous positive pressure, which can 

be achieved via syringe pump [59]. Despite the ability to increase local concentrations of 

chemotherapeutic agents, more information is needed regarding the distribution patterns 

and tumor coverage of NPs injected systemically versus via CED. In one small trial, ten 

canines with spontaneous gliomas were enrolled and treated with polymeric magnetite NPs 

(PMNPs) encapsulating temozolomide administered through image-guided CED [60]. Nine 

of the animals received the infusion without incident and 70% showed particle distribution 

within the tumor after delivery, suggesting CED can accurately target particles to sites of 

tumor [60]. Two animals showed clinical improvement, with one of them still living ~ 2 

years after treatment [60]. In addition, analysis of the tumor microenvironment demonstrated 

necrosis, hemorrhage, and a substantial infiltration of phagocytic gitter cells [60]. As 

distribution of particles injected via CED is unpredictable and accurate tumor coverage 

is requisite for optimal response, similar methods for improving and assessing infusion 

accuracy should be applied in future clinical trials.

Direct injection of NPs for thermotherapy

Intratumorally injected magnetic-NPs can be used as a form of thermotherapy by heating 

injected particles in an alternating magnetic field. To ensure thermotoxicity is restricted to 

tumor tissue, PET-CT with an 18F-labeled amino acid tracer has been shown to be useful for 

defining tumor volume and guiding thermotherapy [61]. In addition, radioactive PET-based 

imaging may reveal additional tumor tissue beyond that detected by MRI. In another early-

phase thermotherapy study investigating the feasibility and safety of aminosilane coated 

iron-oxide NPs in recurrent GBM, 14 patients were administered the therapy followed by 

radiotherapy [62]. Overall, the treatment was found to be well-tolerated by all patients and 

produced some evidence of local tumor control [62]. Median survival was 14.5 months 

and compared favorably to historical controls, and one patient remained in remission 28 

months after treatment [62]. This initial trial was followed by a phase II study evaluating 

thermotherapy in a larger cohort of 66 patients [63]. The treatment was again fairly well-

tolerated and an increase in time-to-recurrence was noted [63]. Among those patients treated 

for recurrent GBM (59 of 66), median survival following initial tumor recurrence was 13.4 

months (compared to 6.2 months for a historic control cohort), and 23.2 months for median 
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overall survival from initial diagnosis [63]. While 41% of patients had received some 

form of therapy prior to trial enrollment, only tumor volume at the initiation of the study 

was found to correlate with survival time [63]. It remains unclear whether thermodamage-

induced inflammation was the primary mechanism for response in the prolonged survival 

outcomes observed relative to historic controls.

In a recent human trial, the “NanoPaste” treatment with SPIO nanoparticles was evaluated 

in 6 patients with a diagnosis of recurrent GBM [64]. In this trial, patients had their 

resection cavities coated with SPIO-NPs, followed by six 1-hour hyperthermia sessions 

administered through an alternating magnetic field [64]. Imaging, histopathology, and flow 

cytometric analysis revealed evidence of an inflammatory reaction seen by tumor flare 

reaction, prominent macrophage infiltration with NP uptake, increased CD3 + T cells, 

increased proportion of IFN-γ in T cells, and upregulation of HLA-DR and PD-L1 on 

myeloid cells and microglia in TME [64]. Although two patients had prolonged responses 

greater than 23 months, four required surgery to remove deposited NPs [64].

Systemic injection of chemotherapy loaded NPs

A NP based paclitaxel (nab-paclitaxel) treatment, which showed a significant improvement 

in survival of patients with primary breast cancer when compared with solvent-based 

paclitaxel (NCT01583426), has also been tested in brain tumors [65–67]. Treatment of 

advanced solid tumors with cycles of nab-paclitaxel in combination with lapatinib in a phase 

I clinical trial (NCT00313599) was fairly tolerable [65, 66]. Intravenously administered 

nab-paclitaxel was then combined with PD-L1 blockade (atezolizumab) for treatment of 

triple-negative breast cancer, including patients with brain metastasis [67]. An improvement 

in progression-free survival was noted with the addition of atezolizumab to standard nab-

paclitaxel treatment (7.2 months vs. 5.5 months) when considering all treated patients. 

However, no significant survival difference was achieved in patients with brain metastasis in 

the intention-to-treat population [67]. Although preclinical evidence suggests that albumin-

bound paclitaxel NPs may localize to tumors via enhanced transportation across endothelial 

cells, next generation therapeutics should include methods to evaluate these effects in human 

brain tumor patients [68].

Systemic injection of NPs for bio‑imaging

NPs may currently have their most significant role in imaging. There is preclinical evidence 

that brain tumor margins could be enhanced on MRI from systemically administered ultra-

small superparamagnetic iron oxide (USPIO) [69]. USPIO enhancement has been found 

to increase gradually, peak at 24 h, and remain sharp following administration [69]. This 

is distinct from gadolinium (Gd)-enhancement, which is immediate and begins decreasing 

within hours after administration [69]. Ferumoxytol is a clinical USPIO formulation that has 

been used extensively as an alternative to Gd-based contrast and found to be generally well-

tolerated in multi-center review [70]. USPIO-enhanced MRI (FeMRI) has been suggested to 

function as a non-invasive imaging modality for monitoring macrophage infiltration in the 

CNS and atherosclerotic plaques [71]. As expected, FeMRI enhancement in CNS lesions 

was found to differ from that observed with GdMRI [72]. Additionally, FeMRI revealed 

Grippin et al. Page 7

J Neurooncol. Author manuscript; available in PMC 2024 July 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://clinicaltrials.gov/ct2/show/NCT01583426
https://clinicaltrials.gov/ct2/show/NCT00313599


increased heterogeneity after ischemic brain injury, leading to a suggestion for its use to 

guide initiation of anti-inflammatory therapy [73].

Whether FeMRI functions to delineate normal tissue from tumor tissue based on leaky 

vasculature or the presence of macrophages remains unclear. Uptake of USPIO depends 

highly on context and may be influenced by whether a lesion is metastatic or primary and 

by the specific tumor type. For example, systemically injected USPIO was recently shown 

to aid in assessing inflammatory brain lesions and found to be taken up by astrocytes and 

TAMs (but not tumors) in preclinical tumor xenograft models [74]. Conversely, TAM-rich 

meningiomas did not show improved USPIO enhancement and tumor vasculature alterations 

may better associate with FeMRI signal in these tumors [75].

In retrospective analysis of 45 GBM patients, the mismatch between USPIO- and Gd-

enhancement was found to effectively discriminate between true disease recurrence and 

pseudoprogression [76]. In patients with IDH-1 wildtype GBMs, increased mismatch ratios 

from FeMRI:GdMRI contrast signaled the onset of pseudoprogression and not recurrence; 

this pattern was reversed for patients with isocitrate dehydrogenase (IDH)-mutant GBMs 

[76].

Since FeMRI contrast enhancement may be affected by both macrophage infiltration 

and vascular changes, treatment-specific imaging changes should be systematically 

investigated. Unfortunately, a clinical trial investigating the effect of anti-VEGF therapy with 

bevacizumab on MR imaging with gadolinium and ferumoxytol was recently terminated 

due to insufficient enrollment (NCT00769093). Given the effects of immune infiltrates on 

contrast enhancement, the effect of checkpoint inhibitors and other immunotherapies on 

FeMRI and GdMRI enhancement should also be investigated to establish how immune 

modulation alters enhancement patterns on MRI.

Systemic injection of radiotherapy sensitizing NPs

In addition to NPs as contrast MRI agents and delivery vehicles for chemotherapy, 

radiosensitization is another potential NP application in brain tumors. While preclinical 

data suggests potential [77], clinical trials for NP-based radiosensitizers in brain tumors are 

ongoing. To this end, the NANO-RAD trial (NCT02820454) utilizes a gadolinium-based 

theranostic agent (AGuIX) in combination with whole brain radiation therapy [78]. This 

intravenously administered particle has a short half life of around 2.5 h in non-human 

primates [79] but preferentially accumulates in tumors via the EPR effect [78]. A phase-II 

trial is also planned (NCT03818386), as well as a trial coupling AGuIX with stereotactic 

radiotherapy (NCT04094077).

Future trials

Clinical trials evaluating NP based applications for brain tumors have so far focused on 

enhanced imaging contrast, chemotherapy delivery, thermotherapy and radiosensitization. 

These studies have largely considered tolerability and overall antitumor effects of these 

therapies, with less focus on particle pharmacokinetics and effects on intratumoral 

and peripheral immunity. Future studies should include therapies that combine multiple 

modalities and modulate intratumoral immunity or produce systemic immune responses. 
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These may include particles specially formulated for active targeting to tumor, for example 

with IL-13 receptor or anti-EGFRvIII moieties on the NP surface [80–82], or those 

specifically targeted to immune cells outside the tumor. In each of these studies, it will 

be important to assess particle localization in human patients and evaluate the effects of each 

therapy on the intratumoral and systemic immune response.

Conclusions

The treatment of intracranial tumors is complicated by poor BBB penetration of many 

therapeutic agents and by an inability to identify rogue tumor cells at infiltrating margins. 

NPs are particularly suited to address these limitations as they display enhanced tumor 

permeation and retention, enable increased drug delivery, act as contrast agents on MRI, and 

can sensitize tumors to radiotherapy. While clinical trials exploring these agents have been 

used in several applications, few have been successfully translated as treatment mainstays. 

However, given the boon of preclinical data and foundational feasibility and safety/

toxicology features, newer studies can be rationally designed to unlock therapeutic activity 

in brain tumors. The difficulty in accessing the CNS from conventional methodologies may 

be addressed with new engineering designs allowing innovative NP formulations to tackle 

grand challenges in neuro-oncology.
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Fig. 1. 
Summary of nanoparticle applications for treatment of brain tumors. Previous clinical 

work utilized systemic or intratumoral injections to deliver nanoparticles with direct 

cytotoxic activity on tumor cells either alone or in combination with radiation or magnetic 

hyperthermia. New preclinical avenues include intranasal nanoparticle delivery, the targeting 

of immune cells both inside the tumor and in the periphery, and photodynamic therapy 

to specifically mediate cell death at the tumor site. i.d. intradermal, s.c. subcutaneous, i.v. 
intravenous, r.t. radiotherapy, IO-NP iron-oxide nanoparticles
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