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Abstract 
With the increasing prevalence of age-related chronic diseases burdening healthcare systems, there is a pressing need for innovative 
management strategies. Our study focuses on the gut microbiota, essential for metabolic, nutritional, and immune functions, which 
undergoes significant changes with aging. These changes can impair intestinal function, leading to altered microbial diversity and 
composition that potentially influence health outcomes and disease progression. Using advanced metagenomic sequencing, we explore 
the potential of personalized probiotic supplements in 297 older adults by analyzing their gut microbiota. We identified distinctive 
Lactobacillus and Bifidobacterium signatures in the gut microbiota of older adults, revealing probiotic patterns associated with various 
population characteristics, microbial compositions, cognitive functions, and neuroimaging results. These insights suggest that tailored 
probiotic supplements, designed to match individual probiotic profile, could offer an innovative method for addressing age-related 
diseases and functional declines. Our findings enhance the existing evidence base for probiotic use among older adults, highlighting 
the opportunity to create more targeted and effective probiotic strategies. However, additional research is required to validate our 
results and further assess the impact of precision probiotics on aging populations. Future studies should employ longitudinal designs 
and larger cohorts to conclusively demonstrate the benefits of tailored probiotic treatments. 
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Introduction 
As our global population grows older, we are seeing a signifi-
cant rise in age-related chronic diseases such as heart disease, 
cancer, diabetes, and Alzheimer’s disease, along with physical 
disabilities. These conditions are putting a massive strain on 
healthcare systems worldwide due to their increasing prevalence, 
costly treatments, and the need for effective management solu-
tions and responses [1–3]. In older adults, the importance of gut 
microbiota becomes even more pronounced due to changes in 
physiology, immunity, and microbiology that accompany aging. 
These changes can directly affect gut health, leading to decreased 
taste and smell sensitivity, reduced stomach acid production, and 
slower digestive movement. Consequently, these alterations can 
impact the diversity and function of the gut microbiota, including 
shifts in the dominant bacterial species present [4]. 

Recent studies have highlighted the potential of probiotics in 
influencing the gut microbiota to support health and combat 
age-related diseases [5–7]. Probiotics are emerging as a promising 

strategy to rebalance the gut microbiome, boost immune function, 
and enhance overall health [8–10]. However, their effectiveness 
can vary based on several factors, such as the specific probiotic 
strains used and an individual’s unique gut microbiota composi-
tion, which can be influenced by lifestyle, diet, and medication 
use, including antibiotics [11, 12]. It is crucial to understand that 
the efficacy of probiotics depends on precisely matching specific 
strains to the right conditions and that their integration into 
the gut varies among individuals due to unique microbial envi-
ronments [13, 14]. For example, using a probiotic strain already 
prevalent in an individual may lessen its beneficial impact. 

In response to these challenges, we advocate for a tailored 
approach to probiotic supplementation, informed by a detailed 
understanding of an individual’s gut microbiota composition. In 
this study, we analyze the gut microbiota of 297 older adults with 
the goal of identifying probiotic signatures and exploring the gut 
microbiota profile, demographic, and clinical attributes associ-
ated with different probiotic signatures. This analysis is crucial
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Figure 1. Workflow for generating and implementing the experiment design. 

for identifying probiotic strains that could effectively complement 
or enhance the existing gut microbiota in older adults, thereby 
paving the way for personalized probiotic interventions. 

Materials and methods 
Study design and participants 
This study was conducted as part of the Taiwan Precision 
Medicine Initiative on Cognitive Impairment and Dementia cohort 
(TPMIC), a dynamic prospective cohort study aimed at establish-
ing a biobank of blood, gut microbiota, genetic, neuroimaging, and 
clinical data associated with cognitive impairment. The TPMIC 
enrolled adults aged 50 years and above from communities and 
hospitals in North Taiwan, who were either cognitively normal, 
had mild cognitive impairment (MCI), or dementia. Participants 
recruited from the hospital included individuals from health 
checkup centers, as well as psychiatry and neurology outpatient 
clinics. MCI is an intermediate state between normal cognition 
and dementia, and the diagnosis of MCI and dementia was 
adjudicated by an expert panel based on NIA-AA criteria [15, 
16]. Older adults with major psychiatric or neurological disorders 
outside of the dementia spectrum, a life expectancy of less than 
6 months, recent surgery, or contraindications to MRI screening 
were excluded from the recruitment. This study was approved 
by the Far Eastern Memorial Hospital Research Ethics Committee 
(110065-F) and the Institutional Review Board of the Cardinal 
Tien Hospital (CTH-110-2-1-014). Informed consent was obtained 

from all participants. This study initially used 189 cognitively 
normal adults to establish a workflow of identifying groups of 
older adults with similar probiotic profiles (Fig. 1), which was 
then applied to 108 patients with mild dementia or MCI from 
August 2021 to October 2022 (Supplementary Figure S2, Table S1, 
Table S2, and  Table S3). Participants collected a fresh fecal sample 
and mailed it to Allbio Biotechnology Corp. (Taichung, Taiwan). 
DNA was extracted using DNeasy PowerSoil Pro Kit (Qiagen, MD, 
USA). Sequencing and library construction of amplicon DNA 
samples were entrusted to AllBio Life (Taichung, Taiwan). The 
detailed DNA extraction and metagenomic data processing was 
provided in the Supplementary Material. 

Lactobacillus species detectability enhancement 
and subtype generation 
We initially generated an abundance matrix for probiotics, 
including Lactobacillus and Bifidobacterium species. The low 
prevalence of Lactobacillus species, generally less than 5% in 
our dataset, challenges accurate taxonomic classification and 
affects the precision of the downstream analyses, particularly in 
individual samples. As a result, we need to increase the prevalence 
of Lactobacillus species by regrouping strains into subtypes. We 
employed standard nucleotide and amino acid similarity metrics 
to assess the relationships between Lactobacillus species from their 
whole genome sequence. At the nucleotide level, an all-against-
all BLASTP alignment was executed, followed by concatenating

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data
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114 single-copy core gene families from Lactobacillaceae and 
Leuconostocaceae. Subsequently, we conducted phylogenetic tree 
analysis using the RAxML algorithm, employing the PROTGAM-
MAILGF (LG + I + G + F) model [17]. In the amino acid similarity 
level, pairwise amino acid identity and core amino acid identity 
were calculated to evaluate the similarity between two Lacto-
bacillus species. Core amino acid identity was calculated from 
the protein sequences of the core gene families, defined as genes 
present in over 90% of the studied genome. We combined two sim-
ilarity measures to aggregate Lactobacillus species into subtypes 
that reflect the summed-up abundance of member species. 

Deciphering probiotic signatures by non-negative 
matrix factorization technique 
After generating the abundance matrix for Lactobacillus subtypes 
and Bifidobacterium species, we used non-negative matrix 
factorization (NMF) to identify probiotic signatures. The NMF 
process starts by decomposing the probiotics abundance matrix 
M—comprising n probiotics species or subtypes across m 
samples—into two sub-matrices: the weighted matrix W (m × k) 
and the coefficient matrix H (k × n), each containing k com-
ponents. Each component in H corresponds to a specific 
combination of probiotics, termed as a ‘probiotic signature’ 
(Supplementary Fig. S1, see online supplementary material for 
a color version of this figure). The weighted matrix W represents 
the weight of each component in samples, while the coefficient 
matrix H represents the composition of each component of 
probiotics. Each coefficient value in H quantifies the contribution 
or importance of a specific species within the corresponding 
signature. Furthermore, these coefficients were normalized by 
the total coefficients within the same signature to determine 
the relative importance of each species. Through NMF, the total 
abundance of sample i calculated from all signatures can be 
expressed as follows: 

lacto_s(i) = 
k∑

j=1 

Wij · Hj + residual, (1)  

where Wij represents value of position (i, j) in weighted matrix 
W, Hj represents coefficient vector of signature j in H. Wij · Hj, 
representing the sum product of Wij and Hj, indicates the contri-
bution of signature j to the abundance in sample i. The abundance 
of probiotic signature j in sample i is expressed as a percentage 
calculated using the following equation: 

p
(
i, j

) = 
Wij × Hj 

lacto_s(i) 
. (2)  

Consensus clustering of probiotics profiles 
We then used probiotic signatures and the consensus clustering 
technique to identify groups of participants with similar signature 
proportions. Consensus clustering is a widely used algorithm 
designed to determine the optimal number of clusters in a 
dataset. It consists of two main components: resampling and 
clustering. In this study, the probiotics abundance matrix, our 
original dataset, is randomly divided into multiple subsets, each 
representing 80% of the total data. Proportions of the identified 
signatures were calculated using the original abundance matrices 
of Lactobacillus subtypes and Bifidobacterium species. The matrix of 
signature proportion was then used as the input of the consensus 
clustering algorithm. Each subset then undergoes clustering for 
each potential number of clusters, denoted as K = {1, 2, . . . , K}. 
During the clustering stage, the connectivity coefficient M and 
inventory coefficient I were computed to record the cluster 

relationship and resampling results between samples for each 
subset. In the subset Dh, the connectivity coefficient M of samples 
i and j is defined as follows: 

Mh
(
i, j

) =
{

1, if sample i and j belong to the same cluster 
0, else 

. (3)  

The inventory coefficient I of samples i and j is defined as 
follows: 

Ih
(
i, j

) =
{

1, if both sample i and j are elements belonging to Dh 
0, else . (4) 

Finally, the consensus coefficient C is calculated by aggregating 
the connectivity and inventory coefficients across all H subsets. 
That is, the consensus coefficient C represents a measure of the 
level of consensus between subsamples in terms of how often two 
samples are clustered together. The consensus coefficient C of the 
samples i and j is defined as follows: 

C
(
i, j

) =
(∑H 

h=1 Mh
(
i, j

)
∑H 

h=1 Ih
(
i, j

)
)

. (5)  

After computing the consensus coefficient for all pairs of sam-
ples, the final agglomerative clustering prunes the sample into 
k groups called ‘consensus clusters’ based on the consensus coef-
ficient matrix for each K cluster number. Consensus clustering 
was performed with ConsensusClusterPlus version 1.60.0 [18], 
employing hierarchical clustering based on the Pearson correla-
tion coefficient of signature proportions between samples. 

Statistical analysis of associations between 
probiotic consensus clusters and participant 
characteristics 
We examined the differences between clusters in both normal 
and MCI/mild dementia cohorts. To investigate the dissimilarities 
among consensus clusters, we analyzed the correlation between 
probiotic clusters and various participant characteristics, includ-
ing demographics, microbial composition, key microbial species, 
cognitive functions, and neuroimaging measurements. For more 
information on how these data were generated, please refer to the 
Supplementary Material. ANOVA was used to compare consen-
sus clusters, followed by Bonferroni-corrected post-hoc tests for 
variables that showed significant results. Furthermore, we applied 
multiple linear regression to adjust these variables for potential 
confounding factors. We performed these analyses in R version 
4.3.1 and Stata 18, setting the threshold for statistical significance 
at P < .05 for all tests. 

Results 
The results of the cognitively normal cohort are detailed below, 
with a summary of the MCI/mild dementia cohort results pre-
sented subsequently. 

Relative abundance and prevalence of 
Lactobacillus and Bifidobacterium genera 
Among 189 cognitively normal older adults, we identified 22 
Lactobacillus species and 9 Bifidobacterium species. These included 
key probiotics like Lactobacillus casei group and Bifidobacterium 
longum. The analysis detailed in Supplementary Fig. S3 (see 
online supplementary material for a color version of this 
figure) illustrates the mean relative abundance and prevalence 
of species within the Lactobacillus and Bifidobacterium genera. 
Notably, five out of the nine Bifidobacterium species showed a

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data


4 | Chuang et al.

Table 1. Prevalence and mean relative abundance of species and subtypes in the normal cohort; species under the subtype is the 
members of subtype 

Prevalence (%) Mean relative abundance (%) 

Lactobacillus subtype 15.87 4.65E−02 
Lactobacillus acidophilus 4.23 6.64E−03 
Lactobacillus amylovorus 1.59 1.27E−02 
Lactobacillus crispatus 2.65 1.36E−03 
Lactobacillus delbrueckii 6.35 2.47E−02 
Lactobacillus gasseri 2.65 6.28E−04 
Lactobacillus iners 0.53 3.37E−05 
Lactobacillus johnsonii 0.53 3.72E−04 
Lactobacillus paragasseri 2.65 1.18E−04 

Ligilactobacillus subtype 15.87 4.95E−02 
Lactobacillus ruminis 1.06 4.68E−03 
Lactobacillus salivarius 14.81 4.48E−02 

Lacticaseibacillus subtype 6.35 9.81E−03 
Lactobacillus casei group 4.23 8.76E−03 
Lactobacillus rhamnosus 3.17 1.05E−03 

Latilactobacillus subtype 1.06 8.36E−04 
Lactobacillus curvatus 0.53 3.29E−04 
Lactobacillus sakei 0.53 5.07E−04 

Companilactobacillus subtype 1.06 5.21E−04 
Lactobacillus farciminis 1.06 5.21E−04 

Limosilactobacillus subtype 13.23 2.79E−02 
Lactobacillus fermentum 6.88 1.41E−02 
Lactobacillus mucosae 6.88 1.32E−02 
Lactobacillus oris 1.59 1.45E−04 
Lactobacillus vaginalis 3.17 4.02E−04 

Lactiplantibacillus subtype 6.35 9.30E−03 
Lactobacillus plantarum 6.35 9.30E−03 

Fructilactobacillus subtype 0.53 2.13E−04 
Lactobacillus sanfranciscensis 0.53 2.13E−04 

prevalence exceeding 20%; in contrast, the highest prevalence 
of Lactobacillus species was merely 14.81%. Analysis of mean 
relative abundance revealed that more than 1% was observed 
in three Bifidobacterium species. Conversely, the Lactobacillus genus 
exhibited a significantly lower mean relative abundance, with an 
average below 0.1%. 

Subtypes of lactobacillus species 
Among the 22 Lactobacillus species identified, Lactobacillus 
paragasseri was assigned to the Lactobacillus subtype due to its 
high sequence identity (99.9%) with Lactobacillus gasseri, another  
species within Lactobacillus subtype. Lactobacillus rogosae was 
excluded from the subtypes due to its uncertain evolutionary 
relationship with the Lactobacillus genus [19]. As a result, 21 
Lactobacillus species were organized into 8 distinct subtypes, as 
detailed in Table 1. The  Lactobacillus subtype included the most 
species. When compared with the most dominant species within 
this subtype, there was an increase in prevalence by ∼9.5%. 
In comparison, the Limosilactobacillus subtype, comprising four 
members, showed a prevalence increase of ∼6.35% relative to 
its most dominant species. The genomic subtyping approach 
has effectively enhanced the identification and analysis of 
Lactobacillus species, leading to observed increases in their 
prevalence and relative abundance. 

Probiotic signatures and consensus clusters 
Based on an analysis of 189 cognitively normal samples, we 
have identified three signatures each for Lactobacillus and 
Bifidobacterium. These signatures, detailed in Fig. 2A, emphasize 

their relative importance to overall probiotic signature. The first 
Lactobacillus Signature (LS1) is characterized by a strong presence 
of the Ligilactobacillus subtype, which includes species such as 
Lactobacillus ruminis and Lactobacillus salivarius. LS2 is dominated 
by the Limosilactobacillus subtype, including well-documented 
probiotics such as Lactobacillus fermentum. LS3 comprises a com-
plex blend of Lactobacillus, Latilactobacillus, and  Limosilactobacillus 
subtypes. Within the Bifidobacterium Signatures (BS), BS1 combines 
Bifidobacterium adolescentis and Bifidobacterium bifidum; BS2 promi-
nently features Bifidobacterium pseudocatenulatum; while BS3 is a 
composite of B. longum, B. bifidum, and  Bifidobacterium dentium, with  
relative importance values of 1.96, 0.94, and 0.25, respectively. We 
successfully identified these probiotic signatures using NMF. 

After entering the signature proportion matrix into the cluster-
ing algorithm, we categorized the 189 samples into five distinct 
clusters, as shown in Fig. 3A. Notably, samples in clusters N1, N3, 
and N4 predominantly featured BS1, BS2, and BS3, respectively. 
Samples in cluster N5 were enriched with LS1 and BS1; while 
samples in cluster N2 displayed a diverse combination of probiotic 
signatures, indicating varied probiotic profiles. 

Gut microbial, demographic, cognitive, and brain 
characteristics among consensus clusters 
We analyzed microbial composition, demographic characteristics, 
cognitive functions, and brain structures to elucidate differences 
among clusters within the cognitively normal cohort. Our analysis 
revealed only a few differences in the alpha diversity of the 
entire microbiome, as shown in Fig. 4A. Only clusters N3 and 
N4, compared with cluster N5, showed notable differences in
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Figure 2. Relative importance of Lactobacillus subtypes in three LS and relative importance of Bifidobacterium species in three BS, presenting the 
components of each probiotic signature; (A) relative importance in the normal cohort; (B) relative importance in the MCI/mild dementia cohort. 

Figure 3. Signature proportion heatmap of (A) the normal cohort and (B) the MCI/mild dementia cohort, and consensus clustering was done based on 
the probiotic signature proportion matrix; the color bar represents the results of consensus clusters. 
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Figure 4. Differences in microbial composition between clusters in the normal cohort; (A) Shannon, Simpson, fisher, and Chao1 are alpha diversity indices; 
the Wilcoxon rank-sum tests were used to compare the differences, and only significant differences (P-value < .05) were displayed; (B) PERMAVONA 
tests were conducted to display the differences in beta diversity, and each point represents the coordinates of a sample in vector space after PCoA 
transformation based on the weighted-Unifrac distance matrix, and (C) representative species in each consensus cluster; the x-axis means species 
log-transformed LDA score from LEfSe, which represents the effect size of species; y-axis is the list of candidate species. 
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Table 2. Analysis of variance of characteristics, neuropsychological tests scores, and brain structure between consensus clusters in the 
normal cohort 

Characteristics Cluster N1 
n = 34  

Cluster N2 
n = 61  

Cluster N3 
n = 45  

Cluster N4 
n = 27  

Cluster N5 
n = 22  

P-value 

Age, years, mean ± SD 66.6 ± 7.1 67.5 ± 6.7 66.5 ± 6.1 69.5 ± 6.6 69.6 ± 7.3 .18 
Male, N(%) 13 (38) 22 (36) 16 (36) 7 (26) 14 (64) .091 
Education years, mean ± SD 13.1 ± 3.4 12.1 ± 4.4 13.3 ± 3.6 11.3 ± 3.4 11.2 ± 3.9 .080 
Smoking ever, N(%) 2 (7) 15 (26) 6 (14) 2 (8) 7 (33) .034 
Drinking ever, N(%) 3 (10)a 21 (36) 14 (33) 5 (20) 11 (52)a .011 
BMI, mean ± SD 24.6 ± 3.8 23.9 ± 3.8 24.7 ± 4.1 23.4 ± 3.6 24.7 ± 5.1 .57 
Diabetes mellitus, N(%) 5 (17) 10 (17) 12 (29) 3 (12) 4 (19) .48 
Hypertension, N(%) 9 (30) 24 (42) 16 (38) 9 (36) 8 (38) .87 

Score, mean ± SD n = 34 n = 61 n = 45 n = 27 n = 22 P-value 

MMSE 27.8 ± 2.1 28.4 ± 1.7 27.9 ± 2.3 28.7 ± 1.4 28.4 ± 2.0 .27 
LMII 21.5 ± 5.9 20.2 ± 6.9 22.2 ± 8.2 22.7 ± 6.3 19.6 ± 7.8 .34 
LMI 37.4 ± 8.1 35.1 ± 9.7 38.1 ± 9.4 37.6 ± 8.0 33.2 ± 12.3 .22 
DS 28.3 ± 4.4 26.7 ± 5.7 26.2 ± 5.7 27.2 ± 5.6 26.5 ± 4.3 .54 
DSST 66.2 ± 14.0 61.2 ± 16.6 70.2 ± 17.0aa 58.7 ± 18.2a 54.9 ± 16.5a .002 
CTT1 (s) 47.1 ± 15.4 53.1 ± 18.0 57.6 ± 33.8 60.6 ± 31.8 57.9 ± 19.9 .20 
VF 39.4 ± 6.7a 38.7 ± 8.5 37.9 ± 7.0 37.3 ± 6.2 33.5 ± 7.5a .043 
CTT2 (s) 105.1 ± 33.9 114.8 ± 39.4 109.2 ± 48.2 135.6 ± 55.9 129.8 ± 45.6 .035 
SCWT-interference 78.2 ± 14.8 79.1 ± 15.2 80.0 ± 17.7 78.4 ± 17.6 70.3 ± 12.0 .18 
Memory 0.04 ± 0.83 −0.14 ± 0.97 0.14 ± 1.16 0.22 ± 0.89 −0.22 ± 1.10 .34 
Attention 0.21 ± 0.49 −0.05 ± 0.75 0.09 ± 0.81 −0.08 ± 0.73 −0.25 ± 0.77 .15 
Executive function 0.17 ± 0.51a 0.01 ± 0.66 0.06 ± 0.61 −0.06 ± 0.77 −0.34 ± 0.69a .065 

Volume, cm3, mean ± SD n = 28 n = 57 n = 45 n = 27 n = 21 P-value 

Total brain volume 1072.2 ± 87.9 1052.5 ± 92.9 1053.1 ± 93.3 1042.3 ± 91.4 1086.1 ± 90.3 .44 
Ventricle 21.4 ± 6.1aa 30.0 ± 14.7a 28.8 ± 13.2 28.3 ± 11.5 33.9 ± 12.5a .010 
Cortex 433.3 ± 34.8 430.8 ± 36.0 432.2 ± 33.6 425.5 ± 36.7 438.8 ± 36.7 .78 
Gray matter 594.0 ± 44.7 590.2 ± 46.7 591.1 ± 42.4 581.1 ± 47.2 604.8 ± 47.0 .50 
White matter 450.6 ± 50.0 435.2 ± 49.8 435.0 ± 53.2 435.8 ± 49.1 454.6 ± 49.7 .39 
Hippocampus 8.4 ± 0.9 8.0 ± 0.8 8.1 ± 0.7 7.8 ± 0.8 8.0 ± 1.0 .16 
Entorhinal 3.8 ± 0.5 3.7 ± 0.6 3.6 ± 0.6 3.7 ± 0.7 3.6 ± 0.6 .90 
Amygdala 3.3 ± 0.4a 3.1 ± 0.4 3.1 ± 0.3 3.0 ± 0.3a 3.1 ± 0.4 .037 

Thickness, mm, mean ± SD n = 28 n = 57 n = 45 n = 27 n = 21 P-value 

AD-score 2.53 ± 0.11 2.55 ± 0.11a 2.52 ± 0.08 2.51 ± 0.07 2.47 ± 0.10a .025 

BMI, body max index; LM, Logical Memory Test; DS, Digit Span; VF, Semantic Verbal Fluency; SCWT, Stroop Color and Word Test. aThere is a significant 
difference (P-value < .05) between groups after ANOVA post-hoc tests under Bonferroni correction. 

both Chao1 and Fisher indices. The beta diversity analysis further 
highlighted significant variations between cluster N4 when com-
pared with clusters N1 and N2, as determined by the PERMANOVA 
test ( Fig. 4B). These findings demonstrate the potential role of 
probiotic composition variations in shaping the gut microbiome 
ecosystem. We employed the LEfSe (Linear discriminant analy-
sis Effect Size) method to identify characteristic species within 
each cluster, highlighting those with statistically significant differ-
ences. Several species exhibited differentiated abundance across 
five clusters. To name a few, Prevotella copri, Streptococcus sobrinus, 
and Fusobacterium varium are the representative species in cluster 
N2. Ruminococcus gnavus, another non-probiotic species, was found 
to be predominant in cluster N4. More key species were linked 
to cluster N5, including Bacteroides plebeius, Megamonas funiformis, 
Streptococcus salivarius, Enterobacter mori, Streptococcus parasanguinis, 
Scardovia wiggsiae, and  Tyzzerella spp. (Fig. 4C). 

Table 2 details the demographic characteristics, cognitive 
assessments, and brain structure indices across five consensus 
clusters, providing insights beyond microbiome-driven distinc-
tions. Clusters N1 and N3 mainly consisted of younger individuals 
with higher education, in contrast to cluster N5, which mainly 

comprised older men with lower education levels. Although no 
significant differences were found in age, gender, or education 
levels among the clusters after performing ANOVA, a pattern 
emerged concerning smoking and drinking habits. Specifically, 
clusters N2 and N5 had a higher percentage of smokers and 
drinkers, while cluster N1 individuals predominantly refrained 
from both. Following Bonferroni corrections, the post-hoc analysis 
showed a significant difference in drinking habits: only 10% of 
individuals in cluster N1 reported drinking compared with 52% in 
cluster N5. 

Cognitive assessments revealed significant differences among 
clusters in Digit Symbol Substitute Test (DSST), Semantic Verbal 
Fluency (VF), and Color Trails Test 2 (CTT2) scores, with the 
executive function domain demonstrating larger heterogeneity. 
Older adults in cluster N5 scored the lowest on the DSST and 
VF tests when compared with clusters N3 and N1, respectively. 
Brain imaging revealed that participants in clusters N2 and N5 
had enlarged ventricles compared with those in cluster N1. 
Additionally, the AD signature cortices were the thinnest in cluster 
N5 and the thickest in cluster N2. Diffusion Tensor Imaging (DTI) 
analysis highlighted significant variances in the bilateral fornix,
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Table 3. Multiple regression analysis of characteristics different 
between consensus clusters after adjusting for potential 
confounding factors in the normal cohort 

P-value 

Smoking evera .094 
Drinking evera .030 
DSSTa .18 
VFa .19 
CTT2 (sec)a .49 
Executive functiona .27 
Ventricleb .059 
Amygdalab .029 
AD-scoreb .078 
Cingulum (hippocampus) Rb ,c .089 
Fornixb ,d .28 
Cingulum (hippocampus) Rb ,d .14 
Fornix (cres)/Stria terminalis Rb ,d .050 
Fornix (cres)/Stria terminalis Lb ,d .19 
Tapetum Rb ,d .073 

aadjusted for age, gender, and years of education. badjusted for age, gender, 
and estimated total intracranial volume. cJHU WM tractography atlas. 
dICBM-DTI-81 WM labels atlas. 

right hippocampus, and right tapetum, with FA values being 
lowest in cluster N5 and highest in cluster N1 ( Supplementary 
Table S4, see online supplementary material for a color version of 
this table). These results emphasized the consensus clustering’s 
efficacy in distinguishing other characteristics among older 
adults. However, multiple linear regression analyses, accounting 
for confounders as shown in Table 3, did not yield statistically 
significant differences. After adjustment, only differences in 
drinking habits and amygdala volume remained significantly 
varied across clusters. 

Results of the MCI/mild dementia cohort 
Applying the same workflow of analysis (Fig. 1) in 108 MCI/mild 
dementia patients, we also identified distinct probiotic signatures 
and clustering patterns. First, we identified 26 Lactobacillus species 
and 9 Bifidobacterium species, and the Lactobacillus species were 
also organized into 8 distinct subtypes. We then discerned three 
distinctive LSs and three BSs. LS1, LS2, and LS3 were characterized 
by the predominance of Ligilactobacillus, Limosilactobacillus, and  
Lactobacillus subtypes, respectively, detailed in Fig. 2B. Similarly, 
B. adolescentis, B. pseudocatenulatum, and  B. longum were identified 
as the principal components of BS1, BS2, and BS3. 

Contrasting with the cognitively normal group, the MCI cohort 
was categorized into four unique clusters based primarily on their 
LS, employing a consensus clustering technique. Cluster M1 was 
predominantly characterized by BS, showing an absence of LS. In 
cluster M2, a notable association with LS3 was noted, whereas 
LS2 and LS1 were the defining features of clusters M3 and M4, 
respectively, as demonstrated in Fig. 3B. 

For gut microbial analysis, the alpha diversity revealed sig-
nificant differences in Fisher and Chao1 indices of clusters M1 
and M3 (Supplementary Fig. S4, see online supplementary mate-
rial for a color version of this figure). Beta diversity analysis 
showed no significant differences among the clusters. Unlike 
the normal cohort, the MCI cohort revealed a fewer number of 
characteristic species. For example, Bacteroides uniformis, Clostrid-
ium asparagiforme, and  Oxalobacter formigenes served as hallmark 
species in cluster M2. Atopobium parvulum and Allisonella histamini-
formans were more abundant in cluster M4. Table 4 delineates the 
demographic characteristics, neuropsychological tests, and brain 

structure variances across four consensus clusters. However, lim-
ited sample size resulted in significant differences only between 
clusters M1 and M2 in CTT1 scores. Right corticospinal tract, left 
medial lemniscus, and left superior corona radiata were different 
in FA values among clusters (Supplementary Table S5, see online 
supplementary material for a color version of this table). 

Discussion 
This study advanced our understanding of population clustering 
through the lens of probiotics species, specifically Lactobacillus and 
Bifidobacterium, in older adults. Notably, there are distinct demo-
graphic characteristics, lifestyle habits, cognitive performance, 
and brain structure variance among the clusters. Our methodol-
ogy was demonstrated in both cognitively normal and MCI/mild 
dementia cohorts. Probiotic profiles in the MCI/mild dementia 
cohort significantly differed from those in the cognitively normal 
group, indicating that our methodology shows potential to iden-
tify phenotype-specific traits embedded within the samples. Our 
findings advocate for a holistic approach to understanding the 
gut-brain axis, emphasizing the importance of considering both 
probiotics microbiome composition and broader health indicators 
in cognitive health research. 

The concept of ‘probiotic patterns’ and ‘probiotic clusters’ 
remain relatively unexplored in the current scientific literature. 
The pioneering work by Zhang et al. and  Ghosh  et al. has begun to 
shed light on this area. Zhang et al. utilized heatmap visualization 
and an unsupervised K-means clustering algorithm to categorize 
40 Lactobacillus strains based on their probiotic attributes [20]. 
Ghosh et al. applied a similar clustering approach to discern 25 
Lactobacillus species of varying prevalence within the microbiomes 
of ostensibly healthy individuals. Their analysis identified six 
distinct ‘Lactobacillotypes’: three dominated by Lactobacillus del-
brueckii, L. ruminis, and  Lacticaseibacillus casei, respectively, with the 
remaining three representing a mix of various species. Notably, 
the predominant species in Ghosh et al.’s study align with the 
Lactobacillus, Ligilactobacillus, and  Lacticaseibacillus subtypes delin-
eated in our research. These classifications unveil unique, age-
specific microbiotic patterns influenced by geographical location 
and correlating with demographic and health-related factors such 
as age, gender, BMI, and disease prevalence [21]. 

Although the development of probiotic clusters occurred 
independently of other sample characteristics or phenotypes, 
integrating the demographic, cognitive, and neuroimaging 
information revealed distinct probiotic compositions and char-
acteristics among consensus clusters. These findings align with 
and extend upon findings from previous research, indicating a 
significant role of specific probiotic strains in mental health and 
aging. For example, the contrast between clusters N1 and N5 
is most evident; members in the cluster N1 are younger, more 
educated, and lead healthier lifestyles. Bifidobacterium adolescentis, 
identified predominantly in cluster N1, is noted for its produc-
tion of gamma-aminobutyric acid (GABA), a neurotransmitter 
implicated in modulating the gut microbiome and mental health 
disorders such as depression and anxiety [22, 23]. Studies utilizing 
mouse models have shown that B. adolescentis exerts anxiolytic 
and antidepressant effects. These effects are achieved by 
rebalancing of gut microbiota, reducing inflammatory cytokines 
such as interleukin-1β (IL-1β), tumor necrosis factor α (TNF-α), 
and p-nuclear factor-kappa B, and increasing brain-derived 
neurotrophic factor (BDNF) expression within the hippocampus 
[24]. Specifically, dietary supplementation with B. adolescentis has 
been shown to ameliorate osteoporosis and neurodegeneration

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae351#supplementary-data
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Table 4. Analysis of variance of characteristics, neuropsychological tests scores, and brain structure between consensus clusters in the 
MCI cohort 

Characteristics Cluster M1 
n = 68  

Cluster M2 
n = 12  

Cluster M3 
n = 15  

Cluster M4 
n = 13  

P-value 

Age, years, mean ± SD 73.5 ± 7.4 73.2 ± 8.8 75.5 ± 9.2 73.9 ± 5.5 .83 
Male, N(%) 26 (38) 3 (25) 7 (47) 6 (46) .65 
Education years, mean ± SD 10.3 ± 4.3 7.4 ± 5.0 8.1 ± 4.0 8.5 ± 3.8 .059 
Smoking ever, N(%) 15 (23) 4 (33) 0 (0) 4 (31) .14 
Drinking ever, N(%) 15 (23) 4 (33) 4 (29) 3 (23) .86 
BMI, mean ± SD 23.3 ± 4.0 24.9 ± 4.3 25.1 ± 3.8 24.9 ± 3.6 .24 
Diabetes mellitus, N(%) 15 (23) 4 (33) 3 (21) 4 (31) .83 
Hypertension, N(%) 25 (38) 4 (33) 6 (43) 6 (46) .91 

Score, mean ± SD n = 68 n = 12 n = 15 n = 13 P-value 

MMSE 21.4 ± 6.7 19.7 ± 7.0 20.5 ± 6.1 19.7 ± 6.5 .73 
LMII 8.0 ± 7.8 4.3 ± 4.7 7.2 ± 6.2 5.5 ± 5.4 .44 
LMI 17.9 ± 10.5 13.9 ± 7.5 17.5 ± 8.3 15.8 ± 10.2 .69 
DS 21.2 ± 5.0 20.3 ± 8.0 17.4 ± 6.0 19.0 ± 4.8 .17 
DSST 41.2 ± 18.6 34.9 ± 27.9 38.0 ± 16.8 36.2 ± 18.1 .73 
CTT1 (sec) 101.3 ± 56.1a 180.2 ± 139.8a 119.4 ± 90.6 94.6 ± 59.1 .027 
VF 24.4 ± 9.3 19.2 ± 5.4 23.1 ± 7.5 18.8 ± 4.0 .088 
CTT2 (sec) 224.9 ± 96.5 220.3 ± 106.8 193.9 ± 92.1 192.0 ± 78.6 .63 
SCWT-interference −11.3 ± 10.0 −7.1 ± 5.0 −3.3 ± 13.9 −7.7 ± 12.6 .14 
Memory 0.11 ± 1.10 −0.40 ± 0.66 −0.00 ± 0.87 −0.23 ± 0.76 .44 
Attention 0.13 ± 0.74 −0.37 ± 1.27 −0.19 ± 0.64 −0.08 ± 0.71 .26 
Executive function −0.09 ± 0.78 −0.17 ± 0.62 0.23 ± 0.69 −0.10 ± 0.60 .50 

Volume, cm3, mean ± SD n = 60 n = 10 n = 12 n = 9 P-value 

Total brain volume 1003.5 ± 101.3 974.4 ± 91.1 991.2 ± 116.4 994.9 ± 68.0 .85 
Ventricle 42.7 ± 20.2 37.5 ± 12.7 46.8 ± 23.5 41.1 ± 10.2 .72 
Cortex 404.1 ± 43.9 401.6 ± 40.3 395.4 ± 38.1 408.5 ± 40.9 .90 
Gray matter 557.0 ± 55.6 552.5 ± 45.5 548.1 ± 48.7 556.6 ± 47.1 .96 
White matter 421.6 ± 54.3 399.7 ± 49.4 417.8 ± 65.7 415.9 ± 32.3 .70 
Hippocampus 7.0 ± 1.2 7.0 ± 1.0 7.0 ± 1.5 6.9 ± 0.9 1.00 
Entorhinal 3.1 ± 0.9 3.4 ± 1.2 2.8 ± 0.8 3.3 ± 0.7 .33 
Amygdala 2.7 ± 0.5 2.6 ± 0.6 2.6 ± 0.7 2.6 ± 0.5 .94 

Thickness, mm, mean ± SD n = 60 n = 10 n = 12 n = 9 P-value 

AD-score 2.45 ± 0.13 2.43 ± 0.11 2.45 ± 0.05 2.48 ± 0.09 .84 

aThere is a significant difference (P-value < .05) between groups after ANOVA post-hoc tests under Bonferroni correction. 

in models of premature aging, with observations indicating 
diminished levels of this probiotic in individuals over 60 [ 25]. In 
contrast, cluster N5’s microbiota, characterized by the presence of 
L. ruminis (LS1), has been implicated in the brain’s inflammatory 
processes. A study within a Japanese stroke cohort identified a 
positive correlation between increased levels of L. ruminis and 
ischemic stroke, alongside interleukin-6 (IL-6) levels [26, 27]. 
Lactobacillus ruminis has been proposed as a potential biomarker 
for ultra-high-risk psychosis due to its tumor necrosis factor 
(TNF)-stimulating properties [28, 29]. 

In cluster N3, defined by the predominance of B. pseudocatenu-
latum (BS2), notable findings highlight its beneficial impact on 
cognitive health. Research indicates that individuals with nor-
mal cognitive function exhibit a higher abundance of B. pseudo-
catenulatum compared with those with dementia. This bacterium’s 
relative abundance is positively associated with key cognitive 
assessment scores, including the Mini-Mental State Examination 
(MMSE) and both short and long delay recall tests [30]. This 
correlation suggests a potential protective role of B. pseudocatenu-
latum against cognitive decline. Additionally, B. pseudocatenulatum 
levels tend to decrease with age and are negative correlated with 
several cytokines involved in inflammatory processes, such as 

IL-6, IL-1β, IL-17, TNF-α, IL-12, and TGF-β,  as well as Amyloid-β 
(Aβ), a marker associated with Alzheimer’s disease. Conversely, its 
abundance positively correlates with BDNF levels, further indicat-
ing its capacity to support neural and immune system health [31]. 
The cluster N4, characterized by the presence of B. longum (BS3), 
has been shown to mitigate depression and modulate responses 
to negative emotional stimuli, particularly in the amygdala and 
fronto-limbic regions of patients with irritable bowel syndrome 
[32]. Additionally, R. gnavus exhibited a significant positive corre-
lation with the Depression Anxiety Stress Scales, suggesting its 
influence on emotional health [33]. Our findings are consistent 
with previous studies, underscoring the potential complex inter-
actions between specific probiotic strains, other microbes, and 
mental health. 

The clusters developed from our method may be used to 
design precision probiotic strategies. Probiotics supplement 
regimens can be tailored based on individuals’ cluster groups, 
and future trials using this strategy can further help confirm 
the specific effects or mechanisms of probiotics on improving 
health outcomes or diseases. This approach aligns with the 
top-down approach of precision probiotics development, which 
involves identifying strains associated with specific health
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conditions based on observational evidence and then testing 
their effectiveness in animal models and humans [34, 35]. 
Other methods, such as genome-wide association studies and 
transcriptome-wide association studies (TWAS), can be valuable 
in precision probiotics research by examining the genes of the host 
or gut microbiota. Pan et al. conducted a TWAS using host genome 
data to associate host gene expression with gut microbiota 
traits [36]. Alternatively, Zahavi et al. focused on the microbial 
genome and conducted metagenome-wide association studies to 
identify connections between bacterial SNPs and human traits, 
suggesting potential mechanistic links with host phenotypes [37]. 
Regardless of the approach, developing algorithms that match 
person-specific data and factors influencing probiotic efficacy is 
crucial for identifying the optimal probiotic modality for different 
populations [34]. 

Our study presents significant strengths, notably its appli-
cation to a well-characterized community-based cohort study 
that includes a broad spectrum of data on older adults, from 
cognitive performance to brain imaging. Utilizing shotgun 
metagenomic sequencing and advanced analytical pipelines has 
allowed for highly accurate assessments of the microbiome’s 
taxonomic composition. Moreover, the application of our clus-
tering methodologies across both cognitively normal individuals 
and those with MCI underscores the potential of our approach 
for developing targeted probiotic supplements for cognitive 
health. Nonetheless, the study faces limitations. The single 
collection point of samples limits our ability to draw causal 
conclusions, compounded by a lack of data on prior antibiotic or 
probiotic use and metabolic profiles, which may be unmeasured 
confounding factors. Additionally, the absence of comprehensive 
diet information and metabolome data in this study means 
that we can only postulate potential mechanisms, guided by 
previous studies, rather than direct inference. Furthermore, 
socioeconomic factors, known to affect cognitive health, may also 
influence individuals’ diet choices, lifestyles, behaviors, overall 
health status, and consequently, the gut microbiota. Residual 
confounding may persist in our study as we only adjusted for 
educational attainment in our association analyses. Although our 
findings provide valuable insights for older adults in Taiwan, their 
generalizability to diverse global populations remains uncertain. 
While the sample size is adequate, it may not be sufficient to 
definitively establish probiotic signatures and consensus clusters, 
underscoring the need for expanded future research. 

In conclusion, this study effectively classified older adults into 
distinct clusters by analyzing the signatures of Lactobacillus and 
Bifidobacterium derived from the microbiome abundance matrix. 
This classification, applicable to both cognitively normal and 
MCI cohorts, highlighted how unique probiotic profiles correlate 
with variations in population attributes, microbial compositions, 
cognitive functions, and neuroimaging outcomes. These findings 
emphasize the potential of customized probiotic interventions to 
enhance cognitive health. Validating the durability and effective-
ness of this clustering approach requires ongoing longitudinal 
monitoring of the cohort. 

Key Points 
• Advanced metagenomic sequencing was utilized to 

examine the gut microbiota of 297 older adults, 
underscoring the significance of gut microbiota in 
metabolic, nutritional, and immune functions, which are 
notably affected by aging. 

• We used Lactobacillus and Bifidobacterium to identify clus-
ters of older adults with distinct probiotic signatures, 

and there are differences in demographic characteris-
tics, lifestyles, cognitive functions, and brain structures 
among clusters. 

• Potential implications include the feasibility of person-
alized probiotic supplements to address age-related dis-
eases and functional declines. 

Supplementary data 
Supplementary data is available at Briefings in Bioinformatics 
online. 
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