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Comparative transcriptomic analysis of human mesenchymal stem 

cells derived from dental pulp and adipose tissues 

1. Introduction 

 

Wound healing is a complex process that restores damaged tissue 

structure and function. The healing process can be divided into four 

overlapping stages: hemostasis, inflammation, proliferation, and 

remodeling (Figure 1). These stages are regulated via several 

different growth factors, cytokines, enzymes, and structural matrix 

proteins produced by multiple cell types, such as dermal fibroblasts, 

epidermal keratinocytes, and immune cells[1]. Many factors have 

been reported to be secreted by mesenchymal stromal cells (MSCs), 

including interleukin-like growth factor (IGF), platelet-derived 

growth factor (PDGF), transforming growth factor (TGF), stromal 

cell-derived factor-1 (SDF-1), vascular endothelial growth factor 

(VEGF), epidermal growth factor (EGF) which have a strong 

potential for wound healing[2]. MSCs are considered candidate cells 

for promoting regenerative medicine due to their ease of isolation 

and low immunogenicity[3]. It has been reported that MSCs can be 

easily isolated from various tissues, including umbilical cord blood, 

bone marrow, dermis, brain, teeth, menstrual blood, muscles, and 

placenta[4]. Among the various sources from which stem cells are 

harvested, the umbilical cord is an interesting source that has several 

advantages, including high cell numbers (per unit volume) compared 

to cells in bone marrow, low evidence of graft-versus-host disease 

(GVHD), non-invasive, no ethical consideration, ease of collection, 

lower risk of infectious diseases such as Epstein Barr virus (EBV) 

and Cytomegalovirus (CMV), high immunomodulatory activity, and 

painlessness in both mother and child (5). 
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Abstract 

 

Wound healing is a complicated process that involves many different types of cells and signaling pathways. Mesenchymal stromal cells 

(MSCs) have shown great potential as a treatment to improve wound healing because they can modulate inflammation, promote the growth 

of new blood vessels, and stimulate the regeneration of tissue. Recent evidence indicates MSCs-derived extracellular vesicles known as 

exosomes may mediate many of the therapeutic effects of MSCs on wound healing. Exosomes contain bioactive molecules such as 

proteins, lipids, and RNAs that can be transferred to recipient cells to modulate cellular responses. This article reviews current evidence on 

the mechanisms and therapeutic effects of human umbilical cord MSCs (hUCMSCs)-derived exosomes on wound healing. In vitro and 

animal studies demonstrate that hUCMSC-derived exosomes promote fibroblast proliferation/migration, angiogenesis, and re-

epithelialization while reducing inflammation and scar formation. These effects are mediated by exosomal transfer of cytokines, growth 

factors, and regulatory microRNAs that modulate signaling pathways involved in wound healing. Challenges remain in exosome isolation 

methods, optimizing targeting/retention, and translation to human studies. Nevertheless, hUCMSCs-derived exosomes show promise as a 

novel cell-free therapeutic approach to accelerate wound closure and improve healing outcomes. Further research is warranted to fully 

characterize hUCMSCs-exosomal mechanisms and explore their clinical potential for wound management. 

 

lower risk of infectious diseases such as Epstein Barr virus (EBV) and 

Cytomegalovirus (CMV), high immunomodulatory activity, and 

painlessness in both mother and child[5]. However, using stem cells 

directly has risks such as tumour induction, thrombosis, and poor graft 

survival[6]. The human umbilical cord MSCs (hUCMSCs) have 

relative limitations in quantifying bioactive substances, maintaining 

biological activity, and in logistics delivery in clinical therapies[7]. 

Accordingly, finding a cell-free method with the same output and 

efficacy is necessary. Exosomes are extracellular vesicles (EVs) 

proposed as a new approach for cell-free based therapies due to their 

multiple  biological   activities   and  cellular   communication[8]. 

Exosomes were first described by Harding et al. in 1983, and their 

existence was confirmed by Johnstone et al. in 1987[9]. A lipid bilayer 

membrane surrounds this smallest group of extracellular vesicles (30 

and 150 nm in diameter). They originate from multivesicular bodies 

secreted by various cell types[10]. Exosomes reflect the state of the cell 

from which they originated. For instance, exosomes derived from 

cancer cells haul pathogenic components such as mRNA, miRNA, and 

proteins[11]. Exosomes extracted from various cells such as urine-

derived stem cells, human induced pluripotent stem cells, human 

endothelial progenitor cells, and hUCMSCs. The small extracellular 

vesicles (sEVs) are found in body fluids, including saliva, plasma, 

breast milk, amniotic fluids, urine, and cell culture medium.  
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    Table 1- Strategies to improve exosome retention time 
 

Strategy Examples Description Advantages Challenges Reference 
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Hydrogels 

Embedding exosomes within 

hydrogel matrices to provide 

localized sustained release and 

protection from clearance. 

Controlled release, 

enhanced retention, 

minimizes degradation. 

Limited diffusion rate, 

potential immunogenicity. 
[39] 

Microspheres 

Encapsulation of exosomes within 

microspheres for controlled 

release and protection, offering 

extended retention. 

Prolonged release, 

protection, controlled 

delivery. 

Size uniformity, potential 

burst release, 

biodegradability. 

[45] 

Microneedles 

Incorporating exosomes into 

microneedles that can be inserted 

into the skin provides sustained 

release and localized 

concentration. 

Painless administration, 

sustained delivery, 

localized concentration. 

Microneedle fabrication 

complexity, possible skin 

irritation. 

[47] 
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PEGylation 

Coating exosomes with 

polyethylene glycol (PEG) 

reduces immune recognition, 

prolongs circulation, and 

enhances retention. 

Increased stability, 

prolonged half-life, 

reduced immune 

response. 

Possible alteration of 

exosome function, 

variability in PEG 

conjugation. 

[50] 

Lipid 

Coating 

Surrounding exosomes with lipid 

bilayers prevents phagocytosis 

and enhances stability and 

retention. 

Improved stability, 

prolonged circulation, 

and reduced immune 

recognition. 

The complexity of the 

lipid coating process and 

potential alteration of 

exosome cargo. 

[51] 

"Don't Eat 

Me" Markers 

Displaying molecules like CD47 

on exosome surfaces inhibits 

phagocytosis, leading to 

prolonged circulation and 

increased retention. 

Prolonged circulation, 

reduced clearance, 

enhanced stability. 

Variable efficacy, potential 

interference with other 

cellular interactions. 

[52] 

Figure 1. The image represents the 

successive stages of the wound healing 

process in the skin. The first stage is 

hemostasis, which is the formation of a 

clot to stop bleeding. It is followed by 

inflammation, where cells like 

macrophages and neutrophils clean the 

wound and cell migration for repair 

begins. The third stage is proliferation, 

characterized by the formation of 

granulation tissue and the proliferation 

of fibroblasts that build the 

extracellular matrix. The last stage is 

regeneration/remodeling, in which scar 

tissue forms and matures, and the 

epidermis restructures to regain its 

normal appearance and function as 

much as possible. 
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      Table 2- Characteristics of Exosomes Derived from Different MSCs Sources 
  

Authors 
MSC Source- 

Exosome 
Model Main Findings Reference 

Yang et al. 2020 Umbilical Cord Diabetic rats 
hUCMSC-exos in PF-127 improved exosome 

ability in diabetic wound healing 
[94] 

Zhang et al. 2020 Umbilical Cord Diabetic rat 

Exosomes accelerated wound closure, decreased 

inflammation, increased collagen deposition and 

angiogenesis 

[95] 

Hu et al. 2018 Umbilical Cord Mice 
accelerate cutaneous wound healing via  

miR-21-3p 
[60] 

Zhang et al. 2015 Umbilical Cord Rat skin burn 
Enhances wound closure by activating Wnt/β-

catenin in skin cells 
[96] 

Han et al. 2022 Bone Marrow Diabetic mice 

Exosomal lncRNA KLF3-AS1 derived from 

BMSCs induces angiogenesis to promote diabetic 

cutaneous wound healing. 

[97] 

Wu et al. 2020 Bone Marrow Rat 

BMSc-Exo Stimulated by Fe3O4 Nanoparticles 

and Static Magnetic Field Improve Wound 

Healing through miR-21-5p. 

[61] 

Jiang et al. 2020 Bone Marrow 
Mice full-thickness 

skin wounds 

Reduced inflammation and collagen deposition to 

prevent scarring 
[98] 

Ding et al. 2019 Bone Marrow Diabetic rats 

This contributed to enhanced wound healing and 

angiogenesis in streptozotocin-induced diabetic 

rats in vivo. 

[99] 

Shabbir et al. 2015 Bone Marrow Diabetic mice 

Topical exosomes improved wound healing 

through anti-inflammatory and pro-angiogenic 

effects (via Akt, ERK, and STAT3 signaling 

pathways) 

[100] 

Khalyfa et al. 2022 Adipose Tissue Mice 

Selenium-stimulated exosomes enhance wound 

healing by modulating inflammation and 

angiogenesis 

[101] 

Dong et al. 2021 Adipose Tissue 
Diabetic foot ulcer 

rat 

Can Prevent Medication-Related Osteonecrosis 

of the Jaw, accelerating bone remodeling, 

facilitating angiogenesis, and promoting wound 

healing. 

[102] 

Sheikh et al. 2020 Adipose Tissue Rat 

facilitated faster wound closure, enhanced 

collagen deposition, faster re-epithelialization, 

increased neo-vascularization, 

[103] 

Hu et al. 2016 Adipose Tissue Mice 

Exosomes accelerated wound closure by 

modulating inflammation, cell proliferation and 

migration 

[104] 

Zhang et al. 2015 Adipose Tissue 
Mice full-thickness 

skin wounds 

can promote fibroblast proliferation and 

migration and optimize collagen deposition via 

the PI3K/Akt signaling pathway 

[105] 

Rajendran et al. 

2020 
Gingival Diabetic mice 

Exosomes improved wound healing through pro-

angiogenic and anti-inflammatory effects 
[106] 

Shi et al. 2017 Gingival Diabetic Rat 
The combination of GMSC-derived exosomes 

and hydrogel promote skin wound healing 
[74] 
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The ability of skin cell proliferation, migration, angiogenesis, and skin 

wound closure is significantly improved after exosome injection into 

and around the wound site in rats[12-14]. By activating Akt, Erk, and 

Stat3 signalling via inducing the expression of HGF, IGF1, NGF, and 

SDF1, MSCs-derived exosomes from adipose, umbilical cord, and 

bone marrow tissues were able to promote cell migration, cell 

proliferation, promoted collagen synthesis. Also, increased re-

epithelialization, decreased scar width, and maturation of newly 

formed blood vessels[15, 16]. Due to the differences in parental MSC 

characteristics and potentials, EVs derived from various MSC tissue 

origins might have different quality and therapeutic effects. In 

addition, changes in MSC culture conditions, cell seeding density, and 

passaging can also affect the secretory profile of MSCs, including 

exosome yields and content. Therefore, different conditions should be 

considered to increase the yield of MSC-exosomes and control their 

content[17]. Research has shown that only UCMSC-derived exosomes 

carry TGF-β, and the superior capacity in keratinocyte proliferation 

belongs to UCMSC-derived exosomes (UCMSCs-Exos)[17]. Recent 

studies have shown that the approximately 40-5000 nm particles 

released from cells are exosomes and can effectively regulate 

bioactive cargoes, including DNA, RNA, miRNAs, and proteins[18]. It 

has been reported that hUCMSCs-Exos exert a pro-angiogenic effect, 

promoting wound healing[13]. However, there are challenges in using 

exosomes for wound healing because exosomes are rapidly cleared 

from the application site and can only survive in the body for a short 

time[19]. Therefore, a combination of biomaterials and exosomes that 

increases the persistence of exosomes on the wound surface without 

affecting the biological activity of exosomes has been a novel area of 

research for the development of exosome-based therapies. For 

example, in a study, the combination of PF-127 hydrogel and 

hUCMSCs-Exos resulted in a remarkably accelerated wound healing, 

raised expression of Ki67 and CD31, and increased expression levels 

of VEGF and TGF-β[20]. 

 

2.  Small extracellular vesicles (sEVs) are one of the most critical 

secreted factors released by hUCMSCs 

 

MSCs secrete a variety of biologically active components. A large 

part of the bioactive factors are packaged into vesicles for export by 

the MSCs. While most molecules are discharged from the cells via the 

classical exocytosis fusion mechanism, others are transported through 

direct transmembrane proteins pathways. The intracellular molecular 

mechanisms and transmembrane process of MSCs still need to be 

fully understood. EVs are an exciting mechanism for MSCs to 

communicate with other cells. Exosomes are the smallest EVs 

subtypes that have been studied recently. Exosomes generally 

originate from endosomes because their membranes are enriched in 

lipid rafts involved in fusion and release cascades between 

intraluminal vesicles (ILVs) and multivesicular bodies (MVBs)[21]. 

The fusion of MVBs with the plasma membrane results in the release 

of exosomes. Other cells may subsequently uptake exosomes through 

cell-type specific membrane fusion, endocytosis, or phagocytosis[22]. 

Exosomes can easily pass through tissues and, thus, bypass biological 

barriers to transport their miRNAs, lipids, and proteins. The structure 

of an exosome under the transmission electron microscope (TEM) is 

like a “cup” or a “disk.” The exosomal surface carries specific 

markers such as CD81, CD9, CD63, TSG101, Alix, and HSP70[23, 24]. 

MSCs-Exos ameliorate experimental autoimmune pathological 

changes by inhibiting inflammatory cell accumulation[25]. Small 

extracellular vesicles (sEVs) have emerged as a new therapeutic cell-

free MSC-based therapy platform. HUCMSCs-Exos have been shown 

to provide measurable benefits in the regeneration of tissue injury 

administered in various animal models. HUMSCs can inhibit the 15-

LOX-1 enzyme secreted by macrophage, leading to the repair of 

inflammatory bowel disease (IBD) induced by dextran sulfate sodium 

(DSS)[26]. In a study, it has been shown that hUCMSCs-Exos can 

transport  Wnt4  (a  key  factor  in  activating the β-catenin signalling  

pathway) to heal wounds and inhibit apoptosis of skin cells caused 

by heat stress through the activation of the AKT pathway[14]. 

HUCMSCs-exosomal 14-3-3ζ protein recruited p-LATS to induce 

Ser127 phosphorylation of YAP by forming a complex, which 

contributes to the regulation of skin cell proliferation by effectively 

coordinating the self-control of Wnt4 activity[27]. Also, in the rat 

second-degree burn injury model, 3,3'-diindolylmethane (DIM) 

increased the proliferation of MSCs by increasing the Wnt11 

exosomal autocrine signalling pathway, which was related to Wnt/β-

catenin activation[28]. Exosomal protein 14-3-3ζ controls YAP 

activities and phosphorylation, such that p-LATS binds to YAP at 

high cell density, and this complex limit fibroblast hyperproliferation 

and collagen deposition during dermal regeneration. In summary, 

hUCMSCs-Exos act as a signalling “brake” via modulating YAP for 

controlled cutaneous regeneration[27]. One of the main noncoding 

RNA in hUCMSCs-Exos is miR-181c, which could participate in the 

anti-inflammation response. miR-181c regulates attenuating burn-

induced inflammation through decreasing TLR4 expression and 

reducing NF-κB/p65 activation[29]. HUCMSCs-Exos carriy out the 

specific miRNAs such as miR-23a, miR-125b, and miR-145, which 

are necessary for suppressing myofibroblast forma¬tion via blocking 

the TGF-β/Smad2 pathway[12]. The process might provide an 

approach to prevent scar formation during wound healing. It 

confirmed that hUCMSCs-Exos as a tool can significantly improve 

wound healing and promote collagen deposition, reducing scar 

formation[30]. 

 

3.  Enhancing Strategies for exosome retention time 
 

Exosomes derived from MSCs have shown promise as cell-free 

therapies for regenerative medicine. However, rapid clearance from 

circulation due to phagocytosis and filtration limits the retention time 

and efficacy of MSCs-derived exosomes[31]. This review discusses 

current and emerging strategies to improve exosome retention 

through physical protection, immune evasion, targeting, and 

combination approaches. Specific focus is given to enhancing 

exosomes derived from UCMSCs due to their advantages, including 

availability, hypo immunogenicity, and potent immunomodulatory 

effects[32]. A multipronged combination of physical, biological, and 

chemical strategies tailored to the therapeutic application and 

intended use can significantly improve UCMSC exosome circulation 

time, biodistribution, and retention at target tissues[33]. Further 

research is warranted to develop optimal methods that balance 

reduced clearance with retention of therapeutic activity. This will 

enable the full clinical potential of UCMSC exosomes as cell-free 

therapies. Strategies to improve UCMSCs exosomes retention time, 

including physical protection and sustained release: administration in 

hydrogels, microspheres, and microneedles to avoid clearance, 

provide sustained release, and maintains local concentration[34]. 

surface modification: PEGylation, lipid coating to evade 

phagocytosis, displaying "don't eat me" markers like CD47            

(Table 1)[35]. Genetic Engineering of Parent UCMSCs: Overexpress 

proteins that stabilize exosomes like HSPs. Exosomes inherit 

properties of engineered UCMSCs[36]. targeted Biodistribution: 

Displaying ligands against disease-specific cells and tissues 

improved retention at target sites[37]. Co-administration with 

immunosuppressive drugs: temporary suppression of phagocytosis, 

and the last one is alternative administration routes: intranasal, 

subcutaneous etc., to avoid first pass clearance[38]. 

 

3.1.  Hydrogels 

 

Hydrogels are three-dimensional (3D) networks of hydrophilic 

polymers that absorb and retain large amounts of water or biological 

fluids. They are highly biocompatible and suitable for various 

biomedical applications due to their tunable characteristics, such as 

porosity, mechanical strength, and degradation rates[39]. 
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Researchers have explored the interaction between exosomes and 

hydrogels to increase the retention time at the target site. Hydrogels 

can serve as exosome carriers, protecting from enzymatic degradation 

and mechanical clearance. They offer controlled release mechanisms, 

enabling sustained delivery over an extended period[40]. Researchers 

can tailor interactions to optimise exosome release kinetics based on 

the therapeutic application. Several strategies have been developed to 

incorporate exosomes into hydrogels effectively, such as loading 

exosomes into pre-formed hydrogels or using encapsulation 

techniques like microfluidics and electrospraying[41]. The combination 

of exosomes and hydrogels has shown promising results in various 

biomedical applications, such as tissue regeneration, wound healing, 

and targeted drug delivery, particularly in cancer therapy; by 

incorporating therapeutic cargo into hydrogels, site-specific drug 

release can be achieved, minimising systemic toxicity[42]. 

 

3.2.  Microspheres 
 

Microspheres, also known as microparticles or microcapsules, are tiny 

spherical particles made from biocompatible materials. They have 

been used to enhance the therapeutic potential of exosomes, offering 

enhanced stability and protection. Microspheres come in various 

forms, such as solid, porous, and hollow, and can be tailored to 

effectively encapsulate exosomes[43]. Encapsulation within 

microspheres provides a protective microenvironment, shielding 

exosomes from external degradation and harsh biological         

conditions[44]. Microspheres enable controlled release of exosomes 

over an extended period, providing sustained therapeutic effects. 

Microspheres can also be engineered to achieve targeted delivery to 

specific tissues or cells, thereby improving therapeutic precision. 

Microspheres have shown promising results in biomedical 

applications, including cancer therapy, regenerative medicine, and 

neurological disorders[45]. In cancer treatment, microspheres loaded 

with exosomes can directly deliver therapeutic cargo to tumor cells, 

promoting cell death or modulating the tumor microenvironment. In 

regenerative medicine, exosomes encapsulated in microspheres can 

facilitate tissue repair and regeneration, promoting cell growth and 

differentiation[46]. 

 

3.3.  Microneedles 

 

Microneedles are small, needle-like structures gaining attention for 

their ability to enhance drug delivery and promote localized 

therapeutic effects. They can facilitate controlled and targeted 

delivery of exosomes into the skin or underlying tissues, enhancing 

their penetration and retention[47]. This leads to improved exosome 

bioavailability and therapeutic effects. Microneedle-assisted exosome 

delivery enables localized therapy, focusing treatment on specific 

areas for better outcomes. Controlled release of exosomes over time 

can be achieved through various microneedles designs (solid, coated, 

hollow, or dissolvable microneedles) and encapsulation methods[48]. 

ongoing research and development aims to optimize exosome delivery 

and retention, including testing dissolvable microneedles and patches 

that release exosomes over time. Key challenges include ensuring 

consistent and reproducible delivery, optimizing microneedle design 

for specific therapeutic goals, and addressing potential immune 

responses or adverse reactions[49]. In summary, microneedles show 

potential to significantly enhance exosomes retention time at the 

application site, extending therapeutic effects. However, practical 

implementation and clinical translation of this approach require 

further research and development. 

 

3.4.  PEGylation 

 

PEGylation, the process of attaching polyethylene glycol (PEG) 

chains to molecules, has emerged as a promising strategy to enhance 

the retention time of exosomes within the circulatory system. 

PEGylation imparts stealth-like properties to exosomes by reducing 

The Role of hUCMSc-derived Exosome in Wound Healing 

 
their recognition and clearance by the immune system and hepatic 

cells, consequently prolonging their circulation time. This improved 

retention enhances the potential for exosomes to reach target tissues 

and deliver their therapeutic cargo[50]. 

 

3.5.  CD47 

 

CD47, initially discovered as an oncogenic marker in human 

ovarian cancer during the 1980s, that has since been recognized in a 

variety of human cancers. These include acute myeloid leukemia 

(AML), chronic myeloid leukemia, acute lymphoblastic leukemia 

(ALL), non-Hodgkin's lymphoma (NHL), multiple myeloma (MM), 

bladder cancer, and several other solid malignancies. Pediatric and 

adult brain tumors also exhibit notable CD47 expression. CD47's 

elevated presence in cancer cells contributes to their evasion from 

phagocytosis, even with increased calreticulin levels, which 

typically promote phagocytosis[51,52] . 

 

CD47, a cell surface protein, plays a pivotal role in enhancing the 

retention time of exosomes, small vesicles secreted by cells for 

intercellular communication. CD47 interacts with the integrin, 

thrombospondin-1 and signal regulatory protein α (SIRPα) receptor 

on macrophages, initiating a "don't eat me" signal that prevents 

phagocytosis of exosomes. This interaction inhibits the immune 

system's clearance mechanism and prolongs the circulation of 

exosomes in the bloodstream, thereby facilitating their potential 

therapeutic effects[35,53]. 

 

4. 4.  hUCMSC-derived exosomes and compared with exosomes   

derived from other MSCs sources 

 

Several sources of MSCs, including bone marrow, embryos, 

umbilical cord, adipose tissue, menstrual blood, dental pulp, and 

gingiva, have been extensively studied for their potential therapeutic 

applications and have shown different translational potentials and 

exhibit varying properties and functions[54]. MSCs-derived 

extracellular vesicles (EVs) have shown translational potential in 

immune regulation and inflammation mediation[55-57]. hUCMSCs-

Exos have a crucial role in wound healing through the Wnt4/β-

catenin pathway[58]. These exosomes have angiogenic properties, 

promoting endothelial cell proliferation, migration, invasion, and 

angiogenesis. They enhance cutaneous wound healing through the 

activation of the Wnt4/β-catenin pathway, as well as the 

upregulation of phosphorylation of ERK1/2, which stimulates cell 

proliferation and growth. hUCMSCs have protective effects on cell 

viability, stimulate cell proliferation, reduce inflammation, 

neutrophil infiltration, and oxidative stress, and promote wound 

healing in various in vitro and in vivo models[59]. UCB-Exos 

promotes fibroblast proliferation and migration, enhancing 

endothelial cell angiogenic activities. MiR-21-3p, enriched in UCB-

Exos, mediates regulatory effects by inhibiting PTEN and SPRY1 

through its regulatory effects[60]. HBMMSCs-Exos contain anti-

inflammatory miRNAs to suppress inflammation factors[61].  They 

promote angiogenesis, accelerate wound healing, and reduce 

scarring. Specific miRNAs in MSCs-derived EVs, such as miR-27b 

and miR-181c, regulate inflammation and inhibit myofibroblast 

accumulation. The administration of exosomes from hBMMSCs 

targeting pknox1 with miR-223 regulates macrophage 

polarization[62]. These exosomes contain miR-146a, a well-known 

anti-inflammatory miRNAs, which reduces inflammation factors 

such as tumour necrosis factor-α (TNF-α), Interleukin-6 (IL-6), and 

Interleukin-1β[63]. Low levels of miR-224-3p in bone marrow MSCs 

(BMMSCs)-Exos promote endothelial cell proliferation, migration, 

invasion, and angiogenesis by targeting focal adhesion kinase 

family interacting proteins 200 KDa (FIP200)[64]. A study by Jiang 

et al. demonstrated that BMMSCs exosomes suppress TGF-β1, 

Smad2, Smad3, and Smad4 proteins by targeting the TGF-β/Smad 

signalling pathway  while  increasing  the  expression  of of TGF-β3  
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and Smad7, resulting in improved scar formation and promotion of 

wound healing[65]. Furthermore, miR-21-5p is overexpressed in mag-

BMSCs-Exos, promoting angiogenesis in both in vivo and in vitro 

settings, thereby accelerating skin wound healing by targeting SPRY2 

to activate the PI3K/AKT and ERK1/2 signalling pathways[61]. miR-

27b and miR-181c are believed to regulate inflammation and inhibit 

myofibroblast accumulation[66]. Adipose-derived mesenchymal stem 

cells (ADMSCs)-Exos can modulate collagen production to reduce 

scar formation. The systemic administration of ADMSCs-Exos 

promotes various activities involved in wound healing, such as 

fibroblast function, collagen deposition, re-epithelialization, and 

vascularisation[67]. ADMSCs-Exos down-regulate pro-inflammatory 

proteins and up-regulate proteins and promote wound healing. 

Specific miRNAs in ADMSCs-Exos have crucial roles in fibrosis and 

scar formation. Additionally, fibroblasts absorb and internalise 

ADMSCs exosomes, resulting in increased gene expression of 

proteins associated with wound healing[68-70]. menstrual blood MSCs 

(MenSCs)-Exos can resolve inflammation by inducing polarisation of 

M1 to M2 macrophages, enhance neo-angiogenesis by upregulating 

VEGFA, accelerate re-epithelialization through the upregulation of 

NF-κB p65 subunit and activation of the NF-κB signalling           

pathway[71-73]. Gingival MSCs (GMSCs)-Exos promote re-

epithelialization, angiogenesis, neuronal ingrowth, skin wound 

healing, and decreased cil1:col3 ratio[74]. Fetal dermal MSCs 

(FDMSCs)-Exos activate adult dermal fibroblasts and promote 

proliferation, migration, and secretion by targeting the Jagged 1 

ligand in the Notch signalling pathway in wound healing. Similar 

effects have been observed with human-derived MSCs-Exos carrying 

miRNAs[75]. In summary, hUCMSC-Exos offer advantages like low 

immunogenicity, high yield, and a broad therapeutic spectrum. 

However, their widespread application faces limitations like lack of 

standardized protocols, inefficient delivery methods, and exosome 

instability. Researchers are exploring solutions like developing 

standardized protocols, using novel delivery methods, and improving 

exosome stability. Challenges include clinical translation, large-scale 

manufacture, and lack of definitive markers for characterizing MSCs-

Exos. Solutions include optimizing culture conditions, bioengineering 

approaches, novel labeling techniques, and scalable purification 

processes. Moreover, Further research is needed to validate quality 

attributes and establish potency assays for clinical-grade exosome 

products, as referenced in some studies listed in Table 2. 

 

5. The effects of hUCMSCs-derived exosomes on wound healing 

 

Exosomes, which are derived from hUCMSCs, have been shown to 

have various beneficial effects[76, 77]. They promote angiogenesis, 

reduce apoptosis, and protect cells by increasing the expressions of 

Bcl-2 and caspase-3 while decreasing the expression of Bax, cleaved 

caspase-3, and cleaved PARP[78]. In vivo, hUCMSCs-Exos have been 

found to enhance angiogenesis under blue light exposure by 

upregulating miRNAs such as miR-135b-5p and miR-499a-3p in 

endothelial cells. Moreover, hUCMSC-derived exosomes play a 

crucial role in regulating inflammation by suppressing tumour 

necrosis factor cytokines α (TNF-α) and interleukin-1β (IL-1β) levels 

and upregulating IL-10 levels[79]. Over-expression of miR-181c in 

hUCMSCs-Exos effectively inhibits the TLR4 signalling pathway, 

reducing the inflammatory response in burned rats and attenuating 

burn-induced excessive inflammation[29]. 

 

HUCMSCs-Exos reduce scarring and myofibroblast accumulation in 

mouse models with skin defects. Specific miRNAs (miR-21, -23a, -

125b, -145) play a key role in inhibiting myofibroblast aggregation 

through the factor-β2/SMAD2 pathway[12]. They promote cell 

proliferation and protect against oxidative stress-induced cell 

apoptosis in vitro by activating ERK1/2 and p38 pathways. However, 

UV exposure can abrogate these regulatory roles, suggesting the 

potential of hUCMSCs-Exos as therapeutic agents in regulating cell 

growth and apoptosis through exosomal shuttle of RNA, as well as 

their high cytokine content, including IL-6 and IL-8 (14, 80). 
Additionally, hUCMSCs-Exos promote angiogenesis, which is the 
formation of new blood vessels from pre-existing ones, by 

growth and apoptosis through exosomal shuttle of RNA, as well as 

their high cytokine content, including IL-6 and IL-8[14, 80]. 

Additionally, hUCMSCs-Exos promote angiogenesis, which is the 

formation of new blood vessels from pre-existing ones, by 

upregulating miRNAs such as miR-135b-5p and miR-499a-3p in 

endothelial cells[79, 81]. This process is essential for wound healing 

and tissue repair, as it delivers oxygen and nutrients to new tissues. 

Moreover, hUCMSCs-Exos have been found to reduce cell death or 

apoptosis by increasing the expression of anti-apoptotic proteins 

such as Bcl-2 and caspase-3 while decreasing the expression of pro-

apoptotic proteins such as Bax, cleaved caspase-3, and cleaved 

PARP[82]. The findings from lab studies demonstrate that exosomes 

from a unique type of cell found in human umbilical cords can 

positively impact other cells. Moreover, the exosomes contain many 

cytokines, natural chemicals that can help heal. Obtaining these 

exosomes from the cells is a simple and efficient process, which is 

very promising for potential use in treating illnesses and injuries. 

 

The mechanisms by which UCMSCs-Exos promote wound healing 

have yet to be fully understood. However, several potential 

mechanisms have been proposed. One potential mechanism is that 

exosomes can deliver growth factors and other signalling molecules 

to target cells. These molecules can then activate signalling 

pathways that promote cell proliferation, migration, and 

differentiation. For example, exosomes from UCMSCs have been 

shown to deliver the growth factor TGF-β, promoting fibroblasts' 

proliferation and differentiation[83]. Another potential mechanism is 

that exosomes can modulate the immune response. Exosomes can 

contain immunomodulatory molecules, such as cytokines and 

chemokines. These molecules can regulate the activity of immune 

cells and promote wound healing by suppressing inflammation and 

tissue repair. For example, exosomes from UCMSCs have been 

shown to suppress the production of pro-inflammatory cytokines, 

such as IL-1β and TNF-α[84]. 

 

5. 6.  Limitations of using exosomes and solutions to overcome the 

limitations 

 

Among the major challenges of using exosomes is the short lifespan 

in the body, and they are quickly removed from the injection site [20]. 

Using biomaterial that increases the duration of exome presence on 

the wound without affecting their biological activity is the priority of 

exome therapy research. Many studies have shown that exosomes 

can be delivered to injury sites by different carriers[85]. Shi et al. 

reported that exosomes loaded on chitosan/silk hydrogel enhanced 

wound healing via re-epithelialization, collagen deposition, and 

angiogenesis[74]. Using chitosan hydrogel as a carrier of exosomes 

reduces their degradation rate and increases wound healing             

speed[86]. The combination of placenta-derived MSCs (hPMSCs) 

exosome and hydrogel could promote the stability of proteins and 

miRNAs in them[87]. Using smart hydrogel as a carrier helps increase 

the life span of exosomes. HUCMSCs-Exos, along with the Pluronic 

F-127 (PF-127) hydrogel as a carrier, promote the survival rate of 

the exosome, angiogenesis, and cell growth in wound healing. PF-

127 is a thermosensitive hydrogel that continuously releases 

exosomes on the lesion's surface and accelerates skin         

regeneration[20]. Another challenge is to improve the extraction and 

purification methods of exosomes. A standard isolation and analysis 

technique is effective in obtaining the highest yield of exosomes[88]. 

In some cases, isolated exosomes overlap with other extracellular 

vesicles. The common method to isolate is ultra-centrifugation, 

which is time-consuming and expensive. It is recommended to use 

alternative methods that are more economical, have less time, and 

have higher efficiency. Recently, methods such as polymers, 

magnetic-activated cell sorting (MACS), immunological procedures, 

and microfluidics have been used [89]. In this context, the source of 

cell acquisition and culture conditions are important. The source of 

MSCs isolation impresses the cargo secreted from exosomes [88]. 
 

 

 

The Role of hUCMSc-derived Exosome in Wound Healing 

 

P19 



 

Copyright © Journal of Stem Cells and Regenerative Medicine. All rights reserved 

 

  

Improving the storage methods of exosomes is necessary to extend 

their application domain from the laboratory to the clinic. On the 

other hand, exosomes as natural vesicles are limited in clinical 

applications. In some cases, targeting therapeutic exosomes for 

special tissue/cells or loaded exosomes with modern drugs, RNA, or 

proteins is necessary. Recently, engineering approaches for parental 

cells or direct exosomes have been recommended to solve these 

problems. Targeting exosomes through engineering manipulation 

leads to chemical modification of their surface. Different techniques 

are used for designer exosomes, such as bio composition, 

electroporation, and sonication[90]. Other methods for exosome 

engineering are changes in DNA fragments and plasmid transfer. 

Also, exosome-producing cells can be enriched with the desired factor 

for better efficiency[91]. The studies showed that exosome 

modification reduces immune rejection and improves skin retention 

after transplantation[92]. The safety of exosome donor cells, dose and 

number of injections, injection site, and high charge of exosome 

acquisition are still challenging and under investigation. Compliance 

with quality control is necessary for retaining biological activity and 

more efficacy in manufactured products, especially in clinical 

applications. Storage conditions, stability of donor cells in culture, 

and donor cell aging should be checked constantly. There are 

important to assign certain standard criteria for size, purity, 

characteristics, and level of contamination[91]. 

 

6. 7.  Conclusions 
 

Current evidence demonstrates that hUCMSCs-Exos exhibit 

therapeutic potential for accelerating wound healing. Specifically, 

hUCMSCs-Exos have been shown to promote several key processes 

involved in wound repair, including angiogenesis, cell proliferation 

and migration, while also reducing inflammation and apoptosis. 

Transfer of regulatory microRNAs by exosomes plays an important 

role in modulating myofibroblast accumulation and scar formation. 

Multiple in vivo rodent studies have confirmed that hUCMSCs-Exos 

accelerate wound closure and healing outcomes compared to control. 

However, limitations remain in the clinical translation of hUCMSCs-

exosomal therapies for wound management. Rapid clearance from 

target tissues and variability in isolation methods present challenges. 

Recent research has begun investigating strategies to enhance 

exosome retention time and targeting, including incorporation into 

hydrogels, microspheres, and surface modification approaches. While 

significant potential exists for hUCMSCs-Exos as cell-free therapies 

for wound healing, further research is still needed to standardize 

isolation protocols, improve retention, and evaluate clinical efficacy. 

Optimization of exosome-based approaches through engineering and 

combination delivery systems will likely accelerate advancement 

toward regenerative medical applications. Overall, continued 

elucidation of mechanisms and clinical translation efforts for 

hUCMSCs exosomal therapeutics remain promising directions for 

benefiting wound treatment through cell-free strategies. 
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