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Abstract

Stroke is a significant cause of mortality and morbidity, necessitating early predictive strategies to 

minimize risks. Traditional methods for evaluating patients, such as Acute Physiology and Chronic 

Health Evaluation (APACHE II, IV) and Simplified Acute Physiology Score III (SAPS III), have 

limited accuracy and interpretability. This paper proposes a novel approach: an interpretable, 

attention-based transformer model for early stroke mortality prediction. This model seeks to 

address the limitations of previous predictive models, providing both interpretability (providing 

clear, understandable explanations of the model) and fidelity (giving a truthful explanation of 

the model’s dynamics from input to output). Furthermore, the study explores and compares 

fidelity and interpretability scores using Shapley values and attention-based scores to improve 

model explainability. The research objectives include designing an interpretable attention-based 

transformer model, evaluating its performance compared to existing models, and providing feature 

importance derived from the model.
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1 Introduction

Stroke has been ranked as the fifth leading cause of death and more than 795,000 people 

have a stroke in the United States every year [17]. Moreover, stroke causes long-term 

disability which constrains individuals in daily functional activities such as hand movement, 

walking, and speech delivery [8]. Among all strokes, 87% are ischemic strokes and 13% are 

hemorrhagic strokes. Raptures cause hemorrhagic stroke in a blood vessel in the brain. Early 

prediction of mortality can support decision-making and minimize the risk of death from 

hemorrhagic stroke [9].

Despite machine learning (ML) and deep learning (DL) approaches outperforming many 

statistical models for mortality prediction [18], clinicians still mostly prefer traditional 

risk scores such as Acute Physiology and Chronic Health Evaluation (APACHE II, 

IV), and Simplified Acute Physiology Score III (SAPS III). These severity scores are 

calculated based on linear functions using a limited number of risk factors and do not 

yield high sensitivity and specificity, [11]. Even though ML- and DL-based approaches 

can yield high accuracy in predictions of diagnoses and outcomes, these techniques 

are often considered uninterpretable and potentially biased [2]. To gain sufficient trust 

from clinicians, researchers are building explainable AI (XAI) models for mortality 

predictions. Interpretability and fidelity are the two necessary components of explainability 

[16]. Interpretability refers to the unambiguous, easily understandable but parsimonious 

explanation of the model, whereas fidelity refers to the accuracy of the explanation of 

the task model. Recently, even though many studies used Shapley values as the post hoc 

explainability method to provide global interpretation, they have not been used to explain 

models with longitudinal data and their fidelity is questionable [15].

To address the aforementioned research gaps, we propose a robust attention-based 

transformer model for early stroke mortality prediction while providing local interpretation 

of longitudinal data. In this study, we use 24-hour data from electronic health records 

(EHRs) in the intensive care setting to predict 2–7 day mortality of hemorrhagic stroke. 

We re-use the dataset in a recently published study [3], which included demographics, lab 

values, comorbidities, and vital signs of hemorrhagic stroke patients. Furthermore, this study 

explores and compares the fidelity of the proposed attention-based scores with other XAI 

methods.

2 Related Work

Harerimana et al. proposed a hierarchical attention network (HAN) for mortality prediction 

using MIMIC data [5]. HAN achieved 86% accuracy and 87% AUROC in in-hospital 

mortality prediction. However, this study did not provide a clear interpretability method for 

the proposed model. Heo et al. proposed an uncertainty awareness (UA) model with an 

uncertainty-awareness attention component for mortality prediction of sepsis and achieved 

an AUROC of 78%, which outperformed deterministic or stochastic attention mechanisms 

[6]. Similar to Heo’s study, Jun et al. implemented variational autoencoder (VAE) on UA 

attention framework to predict mortality using MIMIC III data with 79% AUC and 32% 

AUPRC [10].
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Regarding the explainability of the models, a recent systematic review on XAI for 

healthcare between 2011–2022 found the attention-based explainability method as an 

effective approach along with SHAP and LIME-based explanation approaches [13]. Deng 

et al. implemented RNN, Gated Recurrent Unit (GRU), and LSTM for mortality, length of 

stay (LOS), and 30-day readmission prediction providing attention-based interpretability 

[1]. Studies indicate that SHAP and attention-based mechanisms provide an extensive 

explanation, but there is a need to compare these methods. Our study bridges a connection 

between SHAP values and attention scores to provide a better explanation using transformer-

based multi-modal models.

3 Method

In this section, we first introduce the problem setting and the notation used. Subsequently, 

we elucidate the detailed design of our attention-based model.

3.1 Preliminary

In this study, we use two types of data, vital signs data as time series data and aggregated 

data (i.e., demographics, lab & chart values) as tabular data. Formally, we define the vital 

signs time series data as V = v1,…, vN, the aggregated data as A = a1, …, an and the 

prediction label as M = m1, …,mN. N is the number of the data sample. The i-th vital signs 

time series sample vi = [[vi,1,1, …, vi,1,24], …, [vi,7,1, …, vi,7,24]] contains data collected for 

seven different channels over a 24-hour period, where vi,t,c indicates the i-th vital sign time 

series data collected from the c-th channel at the t-th time. The i-th aggregated data contains 

196 features as ai = ai
1, …, ai

196 , where ai
f is the f-th feature from the i-th aggregated data. All 

the data value are normalized, i.e. vi,t,c, ai
f ∈ [0, 1], and the task is a binary prediction where 

mi ∈ {0, 1}.

3.2 Model Architecture

In order to manage data with various modalities, we propose a hierarchical model 

comprising two distinct components. The first component is a time series data processing 

module, responsible for processing vital signs collected at different time points. This 

module is built upon the transformer model, incorporating a temporal and spatial attention 

mechanism [4]. Consequently, attention scores can be determined for each channel at every 

hour of the vital sign.

The transformer model consists of an encoder and a decoder. The encoder embeds time 

series data into a latent vector, represented as E vi, t, c ∈ ℝd. The decoder is capable of 

converting the latent vector back into the original time series data space, supporting the 

self-supervised learning task. This will be further discussed in Section 3.3.

The second component, the mortality prediction module is a self-attention module that 

processes both the encoded time series data and the aggregated data as shown in Figure 1. 

In order to align the aggregated data with the latent space of the encoded time series data, 

we employ a two-layer MLP (multi-layer perceptron) with LeakyReLU as the activation 

function. This embeds each aggregated data feature A into the same latent space as the 
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embedded time series data, represented as MLP ai
f ∈ ℝd. After embedding all the vital sign 

data and aggregated data into the latent space, a self-attention layer is applied to combine 

them into a prediction vector. Ultimately, a feed-forward layer outputs the probability for 

mortality prediction.

3.3 Training Approach

To train the hierarchical model, we devise a two-stage training strategy. The initial stage 

encompasses a self-supervised training process for the vital sign data processing module. 

To address the challenges posed by the heterogeneous nature of time series data and the 

limited availability of training data, we design a training objective that includes two tasks: 

a predictive task and a reconstruction task. To be specific, we split the i-th vital sign data 

for each channel into past time data [vi,t−p,c, …, vi,t,c] and future time data [vi,t+1,c, …, 

vi,t+q,c]. The self-supervised training comprises two tasks. The first task involves utilizing 

past time data to predict future time data, while the second task aims to reconstruct the vital 

sign data from the embedding vector. Specifically, we mask the future time data values with 

0 and input both past and masked future vital sign data into the vital sign data processing 

module. The encoder embeds the vital sign data into an embedded vector, and then the 

decoder generates predictions for the future data in the future vital sign data prediction task 

and reconstructs the past time vital sign data for the reconstruction task.

In our experiments, the past time data length is 12 hours, and the future time data length is 

8 hours. For instance, we employ vital sign data collected from hour 1 to hour 12 to predict 

the vital sign data gathered from hour 13 to hour 20 and progressively shift the starting and 

ending moments to hour 5 and hour 24. This approach increases the training volume by five 

times the amount of data. We utilize mean square error as the loss function.

The second stage is supervised training for the mortality prediction task. We reuse the 

encoder of the vital sign processing module, pre-trained in the first stage, to embed the vital 

signal data. For each feature of aggregated data ai
f, we train a new encoder for embedding. 

After generating the context vector via the attention layer, a classifier is applied to predict 

the mortality probability, and we employ cross-entropy loss as the loss function.

3.4 Attention score as explanation

The core component of our model is the attention mechanism that guides the model’s focus 

toward relevant tokens during the learning phase. The mechanism operates by using two 

tokens, represented as x and z. It is important to denote that the token z is mapped onto key 

vectors using learned parameters, referred to as Wk. Concurrently, x is engaged to generate 

corresponding query vectors through Wq.

Diving deeper into the mechanics of the attention model, there exist different types of 

attention expressions, such as scaled dot-product attention and additive attention. The 

former, which we are using, normalizes the dot product of query and key vectors with 

the square root of the dimension d, as demonstrated in the following equation:
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Attention(x, z) = softmax
W q(x) W k(z) T

d .

(1)

In this context, the attention score functions as a metric of the weight ascribed to a specific 

token. The efficacy of this score is evidenced by its comprehensive implementation in a 

broad range of fields. It has been applied effectively in graph neural networks, natural 

language processing, and computer vision [20]. The adaptability of the attention mechanism 

is further highlighted by its utility as an intrinsic explanatory method, as emphasized in the 

study by Liu et al. (2022) [12].

In our research, the attention score, extracted from the self-attention module, serves as 

the explanation method. Thus, we introduce an element of interpretability into the model: 

features attributed with higher attention scores are considered more influential for the 

prediction task. This approach aids in better comprehending the model’s predictions, 

enabling the evaluation of the impact and relevance of each feature in the model’s decision-

making process.

4 Experiments

In this section, we first introduce the data employed in our experimental procedures. Then 

we provide the baseline methods, along with the evaluation metrics. Finally, we show the 

results of the main experiment, both in terms of quantitative measurements and qualitative 

assessments.

4.1 Dataset

In this study, we used the same dataset in a recently published study [3] which extracted 

data from Medical Information Mart for Intensive Care (MIMIC)-III database. Variables 

include demographics, comorbidities, lab results, and vital signs. The time frame based on 

which mortality prediction is performed is known as the observation window and the time 

frame on which actual prediction is made is called the prediction window. In our study, 

our observation window was 24 hours and the prediction window was between 24 to 168 

hours (2–7 days) (see Figure 2). Initially, the dataset included a total of 2187 ICU stays 

after sorting the data with ICD-9 CM codes (‘430’, ‘431’, ‘436’, ‘432.0’, ‘432.1’, and 

‘432.9’) related to hemorrhagic stroke. After removing the inconsistent data, the total data 

remained of 2089 ICU stays. This dataset was highly imbalanced as the mortality rate was 

only 14%. To reduce the imbalance ratio, we undersampled the negative instances. After 

undersampling, the total number of ICU stays became 614, where the ratio of positive 

and negative instances was 50–50%. We used the MICE imputation technique based on 

multivariate imputation by chained equations for imputing the missing values in the prepared 

data set. In addition, we normalized the data with a min-max scaler which scales the data 

ranging between 0 to 1.
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This dataset included a total of 7 time series and 196 numerical features containing 

minimum, maximum, median, and mean values for each of the lab & chart values, 

comorbidities, 3 demographic variables for age, gender, and race. The features were selected 

based on the clinical relevance identified from the literature and data availability. Time 

series data included vitals and aggregated data included demographics, comorbidities, and 

lab & chart values. This dataset was prepared with the objective to assist in clinical decision-

making and predicting health outcomes.

4.2 Baselines

Model Baselines.—In our study, we use two baseline models. Firstly, we implement 

logistic regression [19], where all vital sign data is aggregated and used as the input. This 

model handles all features as one combined vector. Secondly, we introduce an LSTM-based 

[7] model, known as the Fusion model. In this model, we utilize LSTM to handle time-series 

data while static data is processed by an MLP. After processing, both outputs are combined 

and used to generate the final model output. The LSTM approach efficiently leverages 

temporal dependencies in our time-series data, while logistic regression provides a simple 

but robust baseline.

Explanation Baselines.—We compare the explainability of our model with other 

intrinsic explanation methods as well as the post-hoc explanation method. We use the weight 

of the logistic regression model as its intrinsic explanation. The absolute values of the model 

weights corresponding to each feature represent the importance of the features. We also 

adopt the SHAP (SHapley Additive exPlanations) [14] as the explanation baseline. SHAP 

is a post-hoc method for explaining machine learning model predictions. It computes the 

contribution of each feature to the output. SHAP uses Shapley values from game theory to 

determine the feature contributions, generating an explanation for each prediction made by 

the model.

4.3 Evaluation Metrics

Model and Explanation Metrics.—We report the AUROC and AUPRC for performance 

evaluation of the models. AUROC measures the model’s ability to distinguish between 

positive and negative classes, while AUPRC measures the trade-off between precision and 

recall.

To evaluate the quality of the model explanation without human-labeled ground truth, we 

follow the rule that the explanations should be faithful to the model and should identify 

important input features. We use fidelity as the metric, Fidelity+ and Fidelity−: Fidelity+ 

is defined as the difference in accuracy (or predicted probability) between the original 

predictions and the new predictions after masking out important input features; In contrast, 

Fidelity− studies prediction change by keeping important input features and removing 

unimportant features.

To provide more detail, our process starts by ordering the features based on their importance 

as determined by the explanation method. For Fidelity+, we substitute the k most important 

features with random values and calculate the decrease in AUROC or predicted probability. 
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And for Fidelity−, we substitute the k least important features and calculate the decrease 

in AUROC (predicted probability). Therefore, the distinction between a good explanation 

under the Fidelity+ and Fidelity− methods lies in the degree of decrease in the AUROC 

or predicted probability after substituting either the most crucial or the least essential 

features respectively. The larger the decrease when focusing on the most important features 

(Fidelity+), the better the explanation, and conversely, the smaller the decrease when dealing 

with the least important features (Fidelity−), the better the explanation.

4.4 Result

Quantitative Result.—In this section, we present the quantitative results of our 

experiments. Table 1 provides performance metrics for the Logistic, LSTM, and Attention 

models. We used a 10-fold cross-validation approach in our experiments. The results 

indicate that the attention-based model outperforms the logistic and LSTM baselines in 

terms of both AUROC and AUPRC. Specifically, the attention model’s AUROC of 0.8487 

(±2.75e−2) outperforms the logistic model’s score of 0.8215 (±9.37e−3) and the LSTM 

model’s score of 0.8170 (±2.45e−3), demonstrating superior classification performance 

and an increased ability to distinguish between positive and negative classes. In terms of 

AUPRC, the attention model also leads with a score of 0.9726 (±9.65e−3), compared to 

the logistic model’s score of 0.9675 (±2.31e−3) and the LSTM model’s score of 0.9723 

(±1.42e−3). This shows that the attention model is more effective in maintaining a high 

precision rate as recall increases.

To evaluate the explanation performance of the Logistic Regression, LSTM, and Attention 

models, we use the absolute value of feature weights, the LSTM model’s SHAP score, 

and the Attention score as intrinsic explanations, respectively. We also employ SHAP as 

a post-hoc explanation method for each model. Table 2 summarizes our findings on the 

comparison of these explanation methods.

Our Attention model outperforms both the Logistic and LSTM models in terms of Fidelity+, 

which signifies the importance of the model’s features, across all aspects - AUROC, 

AUPRC, and Probability. In terms of AUROC, where a larger decrease indicates better 

model explanations, our Attention model, with a score of −0.3617, shows a much more 

significant drop compared to both Logistic and LSTM models. The same trend is observed 

for AUPRC, where our model’s scores are noticeably lower, implying that our model’s 

explanations can indeed identify key input features better.

For Fidelity−, a metric that evaluates the unimportance of the least contributing features, our 

Attention model again outperforms the Logistic and LSTM models across all metrics. Our 

model demonstrates negligible changes in AUROC and AUPRC, and a smaller decrease in 

probability when the least important features are removed, which is desirable for Fidelity-. 

This confirms that our model’s explanations accurately identify non-essential features.

Finally, it’s worth highlighting that our Attention-based method also surpasses the SHAP-

based method in terms of fidelity. As observed in Table 2, for both Fidelity+ and Fidelity− 

metrics, our Attention model consistently outperforms the SHAP-based methods associated 

with the Logistic and LSTM models.
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Qualitative Result.—In this section, we present a case study to demonstrate the 

qualitative result. Specifically, we visualize the explanation for a patient whose mortality 

prediction is positive (i.e., this patient died between 2–7 days in ICU). We use the attention 

score as the explanation, the feature with a higher attention score is more important to 

the prediction. We rank both the aggregated data attributes as well as the vital signs data 

attributes according to their attention score. The top 20 important attributes are picked for 

visualization.

If the important attribute from the explanation belongs to the aggregated data attribute, we 

plot the distribution of this attribute in the dataset as well as the value of the important 

attribute of the patient. If the important attribute from the explanation belongs to the vital 

sign data attribute, we use the box plot to demonstrate the distribution of the vital sign data 

for each hour time. We plot the value of the attribute at each hour and mark the important 

ones in red. If the attributes belong to the same vital sign, we plot them in the same figure.

Figure 3 shows the visualization of the important attributes for an explanation of a patient 

whose mortality prediction is true. From this figure, we can discern several key insights.

• The important attributes are physiological indicators. For example, The Glasgow 

Coma Scale of motor (gcsmotor) is used to objectively describe the extent of 

impaired consciousness in all types of acute medical and trauma patients.

• Crucial attributes in vital sign data are usually located at a later time point, 

indicating that the patient’s vital signs are in a state of deterioration in the final 

stage.

• The values of all important attributes are located outside the natural distribution, 

indicating that the patient is in an abnormal state at this point.

5 Discussion and Conclusion

This study introduced an attention-based transformer model for early mortality prediction in 

hemorrhagic stroke patients using longitudinal data from electronic health records (EHRs). 

The model’s performance, interpretability, and fidelity were compared to traditional logistic 

regression models. Our results demonstrated the superior performance of the attention-based 

transformer model in mortality prediction, as measured by AUROC and AUPRC. Our 

model also offered more precise explanations for its predictions. The Fidelity scores showed 

that the attention-based model could identify key features better and accurately detect 

non-essential ones.

One of the key findings of this study was the observed improvement in performance when 

using the attention score as an intrinsic explanation, compared to the use of Shapley values. 

This demonstrates that the attention-based approach performs similarly to other post hoc 

explanation methods. The case study further highlighted the importance of features derived 

from the proposed attention-based transformer model, revealing that critical physiological 

indicators played a significant role in mortality prediction. Vital sign data attributes, 

especially those at later time points, were found to be particularly important, indicating 
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that the patient’s vital signs were deteriorating in the final stages. These attributes’ values 

typically fell outside their natural distribution, confirming the patient’s abnormal state.

In conclusion, the proposed attention-based transformer model has shown promise in early 

mortality prediction in hemorrhagic stroke patients, providing improved performance and 

interpretability over traditional logistic regression models. Future research should focus on 

validating these findings in other settings and disease states, and on enhancing the model’s 

predictive power and explainability.
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CCS Concepts:

• Computing methodologies→Neural networks.
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Figure 1. 
Stage two mortality prediction training framework, integrating vital sign time series data and 

aggregated data. The pre-trained encoder from stage one is shared among vital sign data, 

while each aggregated data feature has its own dedicated encoder module. The attention 

layer fuses the embedded vectors of vital sign data and aggregated data into a context vector, 

used for mortality prediction.
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Figure 2. 
Observation and prediction windows
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Figure 3. 
Visualization of the explanation of a patient whose mortality prediction is true.
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Table 1.

Utility Performance Result

Logistic LSTM Attention

AUROC 0.8215 ±9.37e−3 0.8170 ±2.45e−3 0.8487±2.75e−2

AUPRC 0.9675 ±2.31e−3 0.9723 ±1.42e−3 0.9726±9.65e−3
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Table 2.

Explanation and Efficiency Performance Result

Logistic LSTM Attention

Weight SHAP SHAP Atten SHAP

Fidelity+ AUROC (↓) −0.07 −0.22 −0.25 −0.36 −0.40

AUPRC (↓) −0.07 −0.05 −0.06 −0.09 −0.07

Prob. (↓) −0.24 −0.40 −0.24 −0.25 −0.29

Fidelity− AUROC (↑) −0.00 −0.09 −0.01 0.00 −0.01

AUPRC (↑) −0.00 −0.02 −0.03 0.00 −0.03

Prob. (↑) −0.01 −0.07 −0.02 −0.00 −0.07
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