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Higher central circadian 
temperature amplitude 
is associated with greater 
metabolite rhythmicity in humans
Daniel P. Windred 1,2*, Clare Anderson 2,3, Katherine J. Jeppe 2,4, Suzanne Ftouni 2, 
Leilah K. Grant 2,5,6, Brunda Nijagal 7, Shantha M. W. Rajaratnam 2,5,6, Malcolm McConville 7, 
Dedreia Tull 7, Steven W. Lockley 2,5,6, Sean W. Cain 1,2,8* & Andrew J. K. Phillips 1,2,8*

Robust circadian rhythms are essential for optimal health. The central circadian clock controls 
temperature rhythms, which are known to organize the timing of peripheral circadian rhythms in 
rodents. In humans, however, it is unknown whether temperature rhythms relate to the organization 
of circadian rhythms throughout the body. We assessed core body temperature amplitude and the 
rhythmicity of 929 blood plasma metabolites across a 40-h constant routine protocol, controlling for 
behavioral and environmental factors that mask endogenous temperature rhythms, in 23 healthy 
individuals (mean [± SD] age = 25.4 ± 5.7 years, 5 women). Valid core body temperature data were 
available in 17/23 (mean [± SD] age = 25.6 ± 6.3 years, 1 woman). Individuals with higher core body 
temperature amplitude had a greater number of metabolites exhibiting circadian rhythms  (R2 = 0.37, 
p = .009). Higher core body temperature amplitude was also associated with less variability in the 
free-fitted periods of metabolite rhythms within an individual  (R2 = 0.47, p = .002). These findings 
indicate that a more robust central circadian clock is associated with greater organization of circadian 
metabolite rhythms in humans. Metabolite rhythms may therefore provide a window into the strength 
of the central circadian clock.

Keywords Biological rhythms, Peripheral oscillators, Circadian organization, Circadian clock, Core body 
temperature

The circadian system plays a fundamental role in human health. Circadian disruption is associated with a wide 
range of poor health  outcomes1–3. The circadian system is hierarchically structured, with a central circadian 
clock in the suprachiasmatic nucleus (SCN)4 that orchestrates the rhythms of peripheral (non-SCN) circadian 
clocks throughout the brain and  body5. The SCN tightly controls endogenous circadian rhythmicity in core 
body temperature, with highest temperature in the late day or early evening and lowest temperature in the late 
night or early  morning6. Studies in animals have demonstrated that temperature cycles organize the timing of 
peripheral clocks, which are temperature  sensitive5,7–9. It is not known whether temperature cycles play a similar 
role in organizing other circadian rhythms in humans.

Peripheral circadian rhythms have been studied using a wide array of methodologies, including metabolomic 
and transcriptomic  approaches5. In humans, metabolomic studies have demonstrated circadian rhythmicity in 
many classes of metabolites, including amino  acids10,  acylcarnitines11,  lipids12, and highly polar  metabolites13. 
Alterations in circadian metabolite rhythms, and other peripheral rhythms, may reflect disruption of the cen-
tral circadian clock. For example, metabolomic, transcriptomic, and proteomic rhythms can be altered by 
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experimental exposure to circadian  misalignment14–17, which can also disrupt central circadian rhythms. How-
ever, further research is required to clarify relationships between central and peripheral rhythms, particularly 
due to potential masking of circadian rhythms when participants are not studied under controlled conditions.

Core body temperature measured under constant routine conditions is considered a gold-standard measure 
of the state of the central circadian clock in human  research18–20. Variations in core body temperature amplitude 
have been assessed under a variety of experimental and observational paradigms, but their relationship with 
other rhythms throughout the body is not well understood. Preliminary evidence from a small sample (n = 6) 
suggests that core body temperature amplitude relates to the observed number of peripheral rhythms. However, 
participants were not studied under constant routine conditions, meaning the endogenous central and peripheral 
rhythms would both have been subject to masking.

We measured core body temperature amplitude using a constant routine protocol that controlled for mask-
ing effects of sleep, movement, and environmental factors on core body temperature. We then examined the 
relationship between core body temperature amplitude and rhythms of 929 polar metabolites measured from 
blood plasma.

Results
Blood plasma metabolite rhythms and core body temperature were collected in 23 participants (age 
[M ± SD] = 25.4 ± 5.7 years, 5 women in the follicular phase of the menstrual cycle and 18 men). Blood plasma 
samples were collected every 2 h during a 40-h constant routine protocol. A total of 929 individual metabolites 
were isolated and detected by high performance liquid chromatography-mass spectrometry (HPLC–MS) in each 
plasma sample, providing 386,464 metabolite data points for analysis (see “Experimental protocol”). Metabolites 
were identified as having a circadian rhythm by assessing the fit of a cosine function with 24-h period for each 
metabolite within each individual. A total of 46 of 929 metabolites were identified as circadian metabolites, 
defined as those exhibiting a significant fit in > 65% of participants (15/23).

 Core body temperature was measured using ingestible telemetric pills (BodyCAP, Equivital, Cambridge, UK) 
over the 40-h constant routine, with amplitude estimated by a two-harmonic fit. Six participants were excluded 
due to low-quality or missing core body temperature data, leaving 17 participants (age [M ± SD] = 25.6 ± 6.3 years, 
1 woman) in final analyses (see “Methods”). Average core body temperature amplitude was 0.33 ± 0.09 °C 
(M ± SD), with a range of 0.13–0.53 °C. Differences in core body temperature amplitude between participants 
were primarily driven by differences in the depth of the core body temperature minimum (see Fig. 1B). Higher 
core body temperature amplitude was associated with lower fitted core body temperature minimum  (R2 = 0.80, 
F(1,15) = 59.64, p < 0.0001), whereas amplitude was not associated with fitted core body temperature maximum 
 (R2 = 0.003, F(1,15) = 0.05, p = 0.83).

Higher core body temperature amplitude was associated with greater prevalence of metabo-
lites with circadian rhythmicity
The number of circadian metabolites that were identified as being significantly rhythmic averaged 35.5 ± 5.0 
(M ± SD; 3.8% of all metabolites) across the 17 participants, and ranged from 23 to 42. Higher core body tempera-
ture amplitude was associated with a greater number of circadian metabolites that were significantly rhythmic 
within each individual  (R2 = 0.37, F(1,15) = 8.90, p = 0.009; see Fig. 1A–C). A 0.1 °C higher core body temperature 
amplitude predicted the presence of 3.3 additional rhythmic circadian metabolites. This result was robust to our 
definition of a circadian metabolite across a wide range of cut-offs (see “Sensitivity analyses”) and also robust to 
exclusion of the female participant  (R2 = 0.38, p = 0.01). Lower core body temperature minimum was associated 
with greater number of rhythmic metabolites  (R2 = 0.23, p = 0.048), but core body temperature maximum was 
not associated with the number of rhythmic metabolites.

Higher core body temperature amplitude was associated with less variable periods of metab-
olite rhythms
In any hierarchical system of oscillators, where peripheral clocks are collectively entrained by a central  clock5, 
lower amplitude of the central clock would be theoretically expected to cause more variable rhythms among 
the peripheral clocks due to weaker entrainment, or decoupling of some peripheral rhythms from the central 
clock. In either of these theoretical cases, lower central circadian amplitude would thus be expected to associate 
with greater variability in the periods of peripheral rhythms within the same individual. We therefore tested 
the hypothesis that lower core body temperature amplitude is associated with greater variability of metabolite 
rhythm periods. Metabolite signals were fit by a cosine function with period as a free parameter. Across partici-
pants, an average of 34.2 ± 6.6 metabolites were significantly rhythmic (range: 16–42; 3.7% of all metabolites), 
with free-fitted periods from 16 to 32 h and average period of 24.3 ± 1.1 h (M ± SD). Metabolite period variability 
was defined as the standard deviation of free-fitted periods across all rhythmic metabolites in an individual, 
and averaged 3.72 ± 0.8 h (M ± SD). We found that lower core body temperature amplitude was associated with 
greater metabolite period variability  (R2 = 0.47, F(1,15) = 13.39, p = 0.002, see Fig. 1D–F). A 0.1 °C lower core 
body temperature amplitude predicted 0.47 h higher metabolite period variability. This result was robust to our 
definition of a circadian metabolite across a wide range of cut-offs (see “Sensitivity analyses”) and also robust 
to exclusion of the female participant  (R2 = 0.47, p = 0.003). Lower core body temperature minimum was asso-
ciated with lower metabolite period variability  (R2 = 0.37, p = 0.01), but core body temperature maximum was 
not associated with metabolite period variability. We note that greater variability in free-fitted periods could be 
reflective of peripheral oscillators with a greater range of intrinsic periods, weaker entrainment, and/or more 
stochastic waveforms leading to less certain period estimates.
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Sensitivity analyses
To test the robustness of our findings, the relationship between core body temperature amplitude and the number 
of rhythmic circadian metabolites was re-assessed, changing our definition of a circadian metabolite. We varied 
the cut-off for the percentage of participants exhibiting significant rhythms for each metabolite between 4.3% 
(1/23 participants) and 100%. We found that there were significant, robust relationships  (R2 ≥ 0.25, p < 0.05) 
between core body temperature amplitude and the number of rhythmic metabolites for metabolite cut-offs 
between 52% (12/23) and 96% (22/23) of participants (Table 1). Similarly, we tested the sensitivity of the relation-
ship between core body temperature amplitude and intra-individual variability in free-fitted circadian metabolite 
period to our definition of a circadian metabolite. Cut-offs in the range from 43% (10/23) to 83% (19/23) of 
participants resulted in robust and statistically significant relationships (Table 1). Relationships of core body tem-
perature amplitude with the number of rhythmic metabolites and metabolite period variability were non-signif-
icant but exhibited positive and negative trends, respectively, for cut-offs below 52% (12/23) and 43% (10/23).

Discussion
The core body temperature rhythm has been proposed as an entraining signal for peripheral circadian clocks 
in non-human  mammals5,8. We found that higher core body temperature amplitude in humans was associated 
with a greater prevalence of circadian metabolite rhythms and with lower variability in the periodicity of these 
metabolite rhythms. These findings suggest that core body temperature rhythms may play an important role in 
organizing metabolite rhythms in humans.

To our knowledge, the relationship between human core body temperature amplitude and circadian metabo-
lite rhythmicity has not been previously studied. Our findings are consistent with one study that reported an 
association between diurnal core body temperature amplitude and rhythmicity of peripheral transcripts in shift 
 workers21. Our findings are also consistent with studies demonstrating altered or reduced peripheral rhythmicity 
in  transcripts14,  proteins17, and  metabolites15,16 following experimentally induced circadian misalignment, which 
would be predicted to attenuate endogenous and/or diurnal core body temperature  amplitude18,22. Disruption 
of circadian rhythms has been linked to a wide range of negative health outcomes in  humans1,23. For example, 
modeled circadian amplitude has recently been shown to predict incidence of type 2  diabetes2. Based on our 

Figure 1.  (A) Circadian metabolites that were significantly rhythmic for each participant. Rows represent 
the 17 participants, ordered by core body temperature amplitude, and columns represent the 46 circadian 
metabolites, ordered by number of significantly rhythmic instances across participants. (B) Core body 
temperature, split by tertiles into low (red; N = 6), moderate (purple; N = 5), and high (blue; N = 6) circadian 
amplitude. Color groupings map to rows indicated by the colored brackets in panel A. Points and error 
bars represent mean and standard deviation of core body temperature within 2-h bins relative to core body 
temperature minima. (C) Higher core body temperature amplitude was associated with a greater number of 
rhythmic circadian metabolites. (D) Higher core body temperature amplitude was associated with lower within-
individual variability in metabolite periods. Linear models (black line) and corresponding 95% confidence 
intervals (gray shading) are shown for both associations. Variability in the metabolite period distribution is 
shown for the participants with the lowest (E) and highest (F) core body temperature amplitudes, plotted as the 
difference in period for each rhythmic metabolite from each participant’s mean metabolite period.
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data, we speculate that health effects could be mediated by reduced core body temperature amplitude leading to 
disorganization of peripheral metabolite rhythms. 

Individual differences in core body temperature amplitude were found in this study to be primarily due to 
differences in the depth of the temperature minimum. Temperature maxima were relatively consistent across 
participants and did not contribute to the relationship between core body temperature amplitude and circadian 
metabolite rhythmicity. If temperature plays a causal role in organizing metabolite rhythms, this finding has 
important implications. While endogenous rhythms in core body temperature are under the control of the central 
circadian clock, diurnal temperature rhythms in daily life can be significantly augmented or dampened by non-
circadian masking factors including food  intake24, menstrual  phase25, physical activity, and  sleep26, thereby aiding 
or opposing central circadian control of metabolite rhythms. For example, nocturnal sleep lowers the core body 
temperature minimum below its endogenous circadian minimum, which we hypothesize would lead to more 
robust metabolite rhythms in people with regular, high-quality sleep that is aligned with the biological night, 
due to amplification of the endogenous core body temperature signal. These findings may also have important 
implications for circadian health in the context of aging, where core body temperature amplitude is reduced, 
sleep is significantly disrupted, and higher risk of cardiometabolic morbidity is  observed27.

We found that relationships between core body temperature amplitude and metabolite rhythmicity were 
most robust for metabolites that were rhythmic across most participants. Metabolites with significant cosine fits 
in a minority of participants did not contribute to amplitude-rhythmicity relationships. This finding could be 
due to the higher likelihood of false-positive rhythmicity classification for metabolites with significant cosine 
fits in smaller numbers of individuals. Additionally, unmeasured individual-level factors may contribute to 
inter-individual heterogeneity in rhythmic metabolite species. For example, inter-individual differences in gut 
 microbiota28, which are known to influence circadian rhythms in peripheral organs and metabolic  pathways29, 
could plausibly contribute to heterogeneity in rhythmic metabolite expression across individuals. We note that 
substantial heterogeneity in metabolite rhythmicity across individuals has also been observed in previous  work12. 
If the state of the central pacemaker is reflected in the human metabolome, this information may be captured 
within a subset of species that exhibit group-level rhythmicity.

Table 1.  Relationships of core body temperature amplitude with metabolite rhythmicity across potential 
definitions of ‘circadian’ metabolites. Data are estimates, statistical significance, and effect sizes of linear 
regression models predicting number of rhythmic metabolites, and intra-individual metabolite period 
variability, from core body temperature amplitude. a Rhythmicity cut-offs were used to define sets of ‘circadian’ 
metabolites. Each metabolite was required to exhibit significant circadian rhythmicity in ≥ N/23 participants 
for inclusion as a ‘circadian’ metabolite. b Expected type 1 errors were simulated across 1000 sets of 929 
metabolites*23 participants, and average percentage of metabolites defined as ‘circadian’ due to expected type 1 
error alone were calculated for each rhythmicity cut-off.

Rhythmicity cut-offa

Model outcome: Number of rhythmic 
metabolites

Model outcome: Intra-individual metabolite 
period variability Metabolites classified as rhythmic due to type 1 

error (%)bEstimate (SE) F (1,15) p-value R2 Estimate (SE) F (1,15) p-value R2

 ≥ 1/23 89.0 (393) 0.0514 0.824 0.0034 − 2.67 (2.75) 0.948 0.346 0.059 69.23

 ≥ 2/23 91.5 (386) 0.0561 0.816 0.0037 − 2.67 (2.74) 0.946 0.346 0.059 32.04

 ≥ 3/23 101 (358) 0.0789 0.783 0.0052 − 2.72 (2.72) 0.997 0.334 0.062 10.52

 ≥ 4/23 101 (286) 0.125 0.729 0.0082 − 2.80 (2.72) 1.07 0.318 0.066 2.60

 ≥ 5/23 84.0 (204) 0.169 0.687 0.011 − 2.85 (2.66) 1.14 0.302 0.071 0.50

 ≥ 6/23 69.5 (122) 0.326 0.576 0.021 − 3.04 (2.52) 1.46 0.246 0.088 0.08

 ≥ 7/23 66.7 (63.8) 1.09 0.313 0.068 − 3.22 (2.47) 1.69 0.213 0.10 0.01

 ≥ 8/23 52.3 (37.0) 2.00 0.178 0.12 − 3.53 (2.32) 2.32 0.149 0.13 0.00

 ≥ 9/23 50.7 (26.7) 3.61 0.0769 0.19 − 4.27 (2.10) 4.13 0.0601 0.22 0.00

 ≥ 10/23 41.2 (22.1) 3.46 0.0825 0.19 − 4.54 (1.71) 7.05 0.0180 0.32 0.00

 ≥ 11/23 33.2 (20.4) 2.64 0.125 0.15 − 4.43 (1.41) 9.91 0.00664 0.40 0.00

 ≥ 12/23 35.7 (16.1) 4.92 0.0423 0.25 − 4.23 (1.45) 8.57 0.0104 0.36 0.00

 ≥ 13/23 30.1 (15.0) 4.05 0.0625 0.21 − 4.75 (1.49) 10.2 0.00610 0.40 0.00

 ≥ 14/23 33.7 (11.3) 8.83 0.00952 0.37 − 4.67 (1.45) 10.4 0.00571 0.41 0.00

 ≥ 15/23 32.7 (11.0) 8.90 0.00927 0.37 − 5.57 (1.52) 13.4 0.00233 0.47 0.00

 ≥ 16/23 30.0 (10.0) 8.89 0.00932 0.37 − 5.31 (1.65) 10.3 0.00579 0.41 0.00

 ≥ 17/23 19.4 (7.04) 7.60 0.0147 0.34 − 6.24 (2.15) 8.43 0.0109 0.36 0.00

 ≥ 18/23 16.4 (6.13) 7.18 0.0171 0.32 − 6.75 (2.40) 7.93 0.0130 0.35 0.00

 ≥ 19/23 13.2 (4.65) 8.02 0.0126 0.35 − 6.02 (2.32) 6.77 0.0201 0.31 0.00

 ≥ 20/23 9.38 (3.49) 7.24 0.0167 0.33 − 4.49 (2.48) 3.29 0.0896 0.18 0.00

 ≥ 21/23 7.02 (2.74) 6.56 0.0217 0.30 − 4.76 (2.53) 3.55 0.0791 0.19 0.00

 ≥ 22/23 4.54 (1.21) 14.2 0.00188 0.49 − 0.32 (2.82) 0.0129 0.911 0.00086 0.00
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This study had several limitations. First, relationships between metabolite rhythmicity and core body tem-
perature amplitude were correlational. Experimental work will be required to determine whether metabolite 
rhythmicity changes after suppression of endogenous core body temperature amplitude, which can be achieved 
by exposure to bright light close to the core body temperature  nadir18,19. Second, it is unclear whether relation-
ships between core body temperature amplitude and metabolite rhythmicity will generalize to free-living con-
ditions. Our constant routine protocol was designed to capture the endogenous circadian components of core 
body temperature and metabolite rhythms, but these rhythms may vary due to free-living patterns of nutritional 
intake, physical activity, and sleep. Third, we note that periodicity is generally estimated across multiple circadian 
cycles, whereas we estimated free-fitted metabolite period from approximately 1.5 circadian cycles. Despite this 
limitation, the average free-fitted metabolite period of 24.3 h closely matched the established intrinsic period of 
the human central circadian  pacemaker30. Finally, participants were predominantly men. While women were 
assessed in their follicular phase, future work should also explore whether temperature-metabolite relationships 
remain robust with changing menstrual phase, which influences core body temperature nadir and  amplitude31.

In humans, the state of the central circadian clock is described by two key parameters: phase and  amplitude18,19. 
Accurate measures of phase are routinely used in human circadian  research32,33, but comparable measures of 
amplitude are not, due to the difficulty in obtaining non-masked, endogenous cycles. Assessing phase but not 
amplitude provides an incomplete picture of the circadian system. Low-burden estimation of central circadian 
rhythms may be possible, as demonstrated in research estimating central circadian phase from multivariate 
data using a small number of  samples34–39. Our results suggest that rhythms in peripheral markers, such as 
metabolites, could reflect the strength of the central circadian clock and may therefore provide a key measure 
for understanding circadian health.

Methods
Recruitment and screening
Participants were recruited according to the following criteria: (1) aged 20–45 years, (2) no medical, psychiatric, 
or sleep disorders, (3) did not travel across time zones within three months prior to laboratory admission, (4) 
did not work rotating shifts within the prior 3 years, (5) were fluent in English, and (6) did not use prescription 
or over-the-counter medications, nicotine, alcohol, or caffeine for three weeks prior to laboratory admission. 
Recent recreational drug use and pregnancy were screened via urine test at time of admission, and a breath test 
was administered to screen for alcohol use. Female participants commenced the laboratory protocol during the 
follicular phase of their menstrual cycle (self-reported)31.

Written informed consent was obtained prior to study enrolment via interview. Ethics approval was received 
from the Monash University Human Research Ethics Committee (CF14/2790—2014001546), and all procedures 
were conducted in accordance with the Declaration of Helsinki.

Experimental protocol
Core body temperature and metabolite rhythms were assessed during a 40-h constant routine protocol to control 
for factors that mask endogenous rhythms. Participants remained awake, in a constant semi-recumbent position 
(~ 45° angle) under dim light (2.84 ± 0.72 lx) for the protocol duration. The laboratory environment was free of 
time cues, sound-attenuated, and temperature regulated (22.0 ± 0.8 °C). Participants were fed identical isocaloric 
snacks every hour, composed of ~ 20% protein, ~ 33% fat and ~ 46% carbohydrate. Regular self-selected sleep 
schedules (8:16 h) were maintained for two weeks at home prior to laboratory admission, confirmed by wrist-
worn actigraphy, sleep diaries, and daily time-stamped phone calls. The study protocol commenced with two 
nights of sleep in the laboratory, timed according to each participant’s regular 8:16 h schedule, and lighting was 
maintained at 101.8 ± 38.5 lx during wake and 0 lx during sleep. Constant routine protocol commenced upon 
awakening on day three.

Ingestible telemetry pills (BodyCAP, Equivital, Cambridge, UK) had a temperature measurement range of 
25–50 °C, logged data in 15 s epochs, and transmitted data to a torso-worn Sensor Electronics Module linked 
with Equivital LifeMonitor Software, for real-time temperature monitoring. Pills were administered prior to 
sleep on day two, approximately 8 h before constant routine commencement (N = 15), or at the commencement 
of constant routine on day three (N = 8). A second pill was administered in 5 of 23 participants, due to signal 
dropout coinciding with bowel movement. These differences between participants were accounted for in data 
cleaning, as described below.

Blood samples were collected every 2 h during the 40-h constant routine via indwelling intravenous cannula 
in the forearm or antecubital vein. Collections commenced 2 h post-wake and terminated 2 h before constant 
routine completion (19 samples per participant). Whole blood was collected and aliquoted into K2 EDTA tubes. 
Samples were stored and centrifuged (1300 ×  g, 10 min) at 4 °C within 30 min of collection. Plasma was extracted 
in 500 µL aliquots, stored on dry ice, and transferred to permanent storage at – 80 °C within 4–12 h. Of 437 
possible sample collections across 23 participants, 416 were successfully collected and analyzed for metabolites. 
Number of samples collected per participant ranged from 14 to 19, with mean [± SD] = 18.1 ± 1.6 samples. Polar 
metabolite species were extracted using 1:1 acetonitrile/methanol and separated by HILIC high-performance 
liquid (SeQuant ZIC-pHILIC column + Agilent 1260), prior to detection by electrospray ionization mass spec-
trometry using an Agilent 6545 Q-ToF instrument. A total of 929 metabolite species were detected. A subset of 
the metabolomic data were published  previously13.

Metabolite analysis
Metabolite analysis followed a similar procedure to prior work.13,40 Plasma samples were thawed on ice; 20 μL 
aliquots were extracted using a 180 μL acetonitrile/methanol (1:1 v/v) solution containing 2 μM 13C-sorbitol, 
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2 μM 13C15N-AMP, and 2 μM 13C15N-UMP as internal standards. Samples were vortexed for 30 s, sonicated 
for 5 min at 4 °C, and then incubated for 10 min at 4 °C (using an Eppendorf Thermomixer). The samples were 
then centrifuged at 4,500 × g for 10 min at 4 °C, and 100 μL of the supernatant was transferred into a glass 
vial. Sample extracts (7 μL) were resolved on a ZIC®-pHILIC column (5 μm particle size, 150 × 4.6 mm, Merck 
SeQuant®) connected to an Agilent 1200 (Santa Clara, CA, USA) HPLC system running a 33 min gradient with 
mobile phases 20 mM ammonium carbonate (pH 9.0; Sigma-Aldrich; Solvent A) and 100% acetonitrile (solvent 
B) at a constant flow rate of 300 μL/min. Metabolites were detected by electrospray ionization using the Agilent 
6545 Q-ToF MS system (Santa Clara, CA, USA) in negative all-ion fragmentor mode, which included three 
collision energies (0, 10, 20 V). The instrument was cleaned and calibrated weekly to ensure a mass accuracy 
of ± 2–5 ppm. The LC–MS processing was completed in two batches, with samples randomized by participant 
and time. A pooled biological quality control (PBQC) was run every eighth sample to monitor instrument per-
formance. The PBQCs contained a 10 μL aliquot of each sample extract. To monitor background, solvent blanks 
were analyzed every 12 h.

Metabolite discrimination was based on accurate mass, retention time, and MS/MS fragmentation patterns 
of metabolites in standard mixtures. Area under the metabolite peak was used to obtain relative metabolite 
abundances, using MassHunter Quantitative Analysis B 0.7.00 (Agilent). Untargeted metabolite features were 
generated by XCMS centWave  algorithm41 and refined in CAMERA to group related features by annotation of 
isotope and adduct peaks.

A total of 929 metabolite species were detected. A total of 416 out of a possible 437 plasma samples were 
collected and analyzed in 23 participants. A total of 303 out of a possible 323 plasma samples were collected and 
analyzed in 17 participants with core body temperature data.

For each individual sample, raw area count data were normalized relative to the median concentration of all 
metabolites across all samples. Metabolites with > 20% zero values within an individual were removed. Remaining 
data were then imputed for left-censored missing values using QRLIC (ImputeLCMD R package). Datapoints 
beyond ± 3 standard deviations were excluded (3,682 out of 386,464 metabolite datapoints, 0.95%). Metabolite 
time series were linearly detrended in each participant, by fitting a linear trend and subtracting fitted slope*time 
from each metabolite datapoint. This method was applied to control for wake-dependent or time-dependent 
increase or decrease in metabolite  concentration13.

Metabolite rhythmicity
Thirty-six-hour metabolite time series were assessed for 24 h rhythmicity by fitting the following (equation 1):

where t  represents time since start of constant routine in hours, y represents scaled metabolite concentration, fit-
ted parameters are mesor ( y0 ), amplitude ( α ), and phase ( θ ), with fixed period of τ = 24 h. Parameters were fit with 
least-squares, using the ‘nlsLM’ package in R. Initial conditions were y0 = 0 , θ = π , and α equal to the standard 
deviation of the metabolite time series. Significant rhythmicity was defined by fits where the amplitude parameter 
( α ) was significantly different from zero at p < 0.05. This method was applied to each of 929 metabolite signals 
across 23 participants. We note that due to the relatively short metabolite time series (36 h), assessing significant 
fits with fixed τ = 24 h was expected to capture rhythmic metabolites with periods slightly above or below 24 h.

For assessment of variability in period, this fitting method was repeated with period ( τ ) as a free-fitted 
parameter. The initial condition for metabolite period was set to τ = 24 h. Significant fits with periods in the 
range 16–32 h were included in the analysis of variability.

For both fixed and free-fitted period methods, each metabolite was defined as a circadian metabolite if it was 
significantly rhythmic in > 65% of participants in which metabolites were collected (i.e., ≥ 15 of the 23 partici-
pants). Sensitivity analyses confirmed findings were robust to this definition of circadian rhythmicity.

Core body temperature data cleaning
Core body temperature records were cleaned by removing all epochs outside the approximate physiological 
range of human core body temperature at rest (< 36 °C or > 38 °C). The first 4 h after pill administration were 
excluded to minimize the impact of hourly liquid and food provision on the pill in the stomach. There was no 
overlap between core body temperature data in participants with two pills after applying this exclusion. The first 
hour after awakening was also excluded, allowing core body temperature to stabilize at waking levels. Remaining 
data were manually cleaned by removing epochs with sudden fluctuations (≥ 0.3 ºC increase or decrease across 
intervals of ≤ 0.5 h).

Six participants were excluded due to (a) regular reductions of logged pill temperature possibly resulting from 
hourly fluid and food intake (N = 4), (b) < 24 h recording length due to non-synchronization of pill and SEM 
device (N = 1), and (c) possible masking, observed as two apparent core body temperature minima separated by 
16 h, coupled with outlying low weight (43.5 kg), low BMI (19.1), and complaints of feeling cold despite main-
taining room temperature at 22 °C (N = 1).

Across 17 participants, cleaned data comprised 28.9 ± 3.7 h (M ± SD) of core body temperature epochs, across 
a collection interval of 35.6 ± 2.9 h, and 5.3 ± 3.1 h of core body temperature epochs were removed by manual 
cleaning. 5 of 17 participants had 4 h of data removed post-wake, and 12 of 17 participants had 1 h of data 
removed post-wake.

y = y0 + α sin

(

2π

τ
t + θ

)

,
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Core body temperature fit and amplitude extraction
Core body temperature time series were fit using a two-harmonic equation (equation 2):

where t  represents time since start of constant routine (h), y represents scaled metabolite concentration, fitted 
parameters are mesor ( y0 ), amplitudes of the two harmonics ( α1 and α2 ), and phases of the two harmonics ( θ1 
and θ2 ), with τ = 24 h. Previous analyses suggest this two-harmonic Fourier approximation is sufficient to describe 
core body temperature rhythms under constant routine  conditions42. Minimum and maximum of core body 
temperature rhythms were defined as the fitted minimum and maximum of the two-harmonic equation. Core 
body temperature amplitude was defined as half of the difference between the fitted minimum and maximum 
of the core body temperature rhythm across 24 h (i.e., composite amplitude).

Statistical analyses
Simple linear regression models were applied to test the relationships of the number of rhythmic metabolites 
and variability of free-fitted metabolite periods with core body temperature amplitude (two-tailed, α = 0.05, 
N = 17 for both models).

Data availability
The data that support the results of this study, including core body temperature time series and metabolite area-
count time series, will be made available by the corresponding author upon reasonable request.

Received: 26 February 2024; Accepted: 10 July 2024

References
 1. Allada, R. & Bass, J. Circadian mechanisms in medicine. N. Engl. J. Med. 384, 550–561 (2021).
 2. Windred, D. P. et al. Personal light exposure patterns and incidence of type 2 diabetes: Aanalysis of 13 million hours of light sensor 

data and 670,000 person-years of prospective observation. Lancet Reg. Health Eur. https:// doi. org/ 10. 1016/j. lanepe. 2024. 100943 
(2024).

 3. Burns, A. C. et al. Day and night light exposure are associated with psychiatric disorders: An objective light study in> 85,000 
people. Nat. Mental Health. 11, 853–862 (2023).

 4. Ralph, M. R., Foster, R. G., Davis, F. C. & Menaker, M. Transplanted suprachiasmatic nucleus determines circadian period. Science 
247, 975–978 (1990).

 5. Mohawk, J. A., Green, C. B. & Takahashi, J. S. Central and peripheral circadian clocks in mammals. Annu. Rev. Neurosci. 35, 
445–462 (2012).

 6. Dijk, D. J., Duffy, J. F. & Czeisler, C. A. Circadian and sleep/wake dependent aspects of subjective alertness and cognitive perfor-
mance. J. Sleep Res. 1, 112–117 (1992).

 7. Steven, U. & Schibler, A. Brown and the synchronization of circadian rhythms by body temperature cycles. Eur. J. Neurosci. https:// 
doi. org/ 10. 1111/ ejn. 16431 (2024).

 8. Brown, S. A., Zumbrunn, G., Fleury-Olela, F., Preitner, N. & Schibler, U. Rhythms of mammalian body temperature can sustain 
peripheral circadian clocks. Curr. Biol. 12, 1574–1583 (2002).

 9. Saini, C., Morf, J., Stratmann, M., Gos, P. & Schibler, U. Simulated body temperature rhythms reveal the phase-shifting behavior 
and plasticity of mammalian circadian oscillators. Genes Dev. 26, 567–580 (2012).

 10. Dallmann, R., Viola, A. U., Tarokh, L., Cajochen, C. & Brown, S. A. The human circadian metabolome. Proc. Natl. Acad. Sci. 109, 
2625–2629 (2012).

 11. Davies, S. K. et al. Effect of sleep deprivation on the human metabolome. Proc. Natl. Acad. Sci. 111, 10761–10766 (2014).
 12. Chua, E.C.-P. et al. Extensive diversity in circadian regulation of plasma lipids and evidence for different circadian metabolic 

phenotypes in humans. Proc. Natl. Acad. Sci. 110, 14468–14473 (2013).
 13. Grant, L. K. et al. Circadian and wake-dependent changes in human plasma polar metabolites during prolonged wakefulness: A 

preliminary analysis. Sci. Rep. 9, 4428 (2019).
 14. Kervezee, L., Cuesta, M., Cermakian, N. & Boivin, D. B. Simulated night shift work induces circadian misalignment of the human 

peripheral blood mononuclear cell transcriptome. Proc. Natl. Acad. Sci. 115, 5540–5545 (2018).
 15. Kervezee, L., Cermakian, N. & Boivin, D. B. Individual metabolomic signatures of circadian misalignment during simulated night 

shifts in humans. PLoS Biol. 17, e3000303 (2019).
 16. Skene, D. J. et al. Separation of circadian-and behavior-driven metabolite rhythms in humans provides a window on peripheral 

oscillators and metabolism. Proc. Natl. Acad. Sci. 115, 7825–7830 (2018).
 17. Depner, C. M., Melanson, E. L., McHill, A. W. & Wright, K. P. Jr. Mistimed food intake and sleep alters 24-hour time-of-day pat-

terns of the human plasma proteome. Proc. Natl. Acad. Sci. 115, E5390–E5399 (2018).
 18. Jewett, M. E., Kronauer, R. E. & Czeisler, C. A. Light-induced suppression of endogenous circadian amplitude in humans. Nature 

350, 59–62 (1991).
 19. Jewett, M. E., Kronauer, R. E. & Czeisler, C. A. Phase-amplitude resetting of the human circadian pacemaker via bright light: A 

further analysis. J. Biol. Rhythms 9, 295–314 (1994).
 20. Refinetti, R. & Menaker, M. The circadian rhythm of body temperature. Physiol. Behav. 51, 613–637 (1992).
 21. Resuehr, D. et al. Shift work disrupts circadian regulation of the transcriptome in hospital nurses. J. Biol. Rhythms 34, 167–177 

(2019).
 22. Weibel, L., Spiegel, K., Gronfier, C., Follenius, M. & Brandenberger, G. Twenty-four-hour melatonin and core body temperature 

rhythms: Their adaptation in night workers. Am. J. Physiol.-Regul. Integr. Compar. Physiol. 272, R948–R954 (1997).
 23. Vetter, C. Circadian disruption: What do we actually mean?. Eur. J. Neurosci. 51, 531–550 (2020).
 24. Vinales, K. L., Begaye, B., Thearle, M. S., Krakoff, J. & Piaggi, P. Core body temperature, energy expenditure, and epinephrine during 

fasting, eucaloric feeding, and overfeeding in healthy adult men: Evidence for a ceiling effect for human thermogenic response to 
diet. Metabolism 94, 59–68 (2019).

 25. Baker, F. C., Siboza, F. & Fuller, A. Temperature regulation in women: Effects of the menstrual cycle. Temperature 7, 226–262 
(2020).

y = y0 + α1 sin

(

2π

τ
t + θ1

)

+ α2 sin

(

4π

τ
t + θ2

)

,

https://doi.org/10.1016/j.lanepe.2024.100943
https://doi.org/10.1111/ejn.16431
https://doi.org/10.1111/ejn.16431


8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16796  | https://doi.org/10.1038/s41598-024-67297-y

www.nature.com/scientificreports/

 26. Weinert, D. & Waterhouse, J. The circadian rhythm of core temperature: Effects of physical activity and aging. Physiol. Behav. 90, 
246–256 (2007).

 27. Fontana, L. Interventions to promote cardiometabolic health and slow cardiovascular ageing. Nat. Rev. Cardiol. 15, 566–577 (2018).
 28. Kerimi, A., Kraut, N. U., da Encarnacao, J. A. & Williamson, G. The gut microbiome drives inter-and intra-individual differences 

in metabolism of bioactive small molecules. Sci. Rep. 10, 19590 (2020).
 29. Zhao, E., Tait, C., Minacapelli, C. D., Catalano, C. & Rustgi, V. K. Circadian rhythms, the gut microbiome, and metabolic disorders. 

Gastro Hep Adv. 1, 93–105 (2022).
 30. Czeisler, C. A. et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 2177–2181 

(1999).
 31. Shechter, A., Varin, F. & Boivin, D. B. Circadian variation of sleep during the follicular and luteal phases of the menstrual cycle. 

Sleep 33, 647–656 (2010).
 32. Benloucif, S. et al. Measuring melatonin in humans. J. Clin. Sleep Med. 4, 66–69 (2008).
 33. Dijk, D.-J. & Duffy, J. F. Novel approaches for assessing circadian rhythmicity in humans: A review. J. Biol. Rhythms 35, 421–438 

(2020).
 34. Ueda, H. R. et al. Molecular-timetable methods for detection of body time and rhythm disorders from single-time-point genome-

wide expression profiles. Proc. Natl. Acad. Sci. 101, 11227–11232 (2004).
 35. Kasukawa, T. et al. Human blood metabolite timetable indicates internal body time. Proc. Natl. Acad. Sci. 109, 15036–15041 (2012).
 36. Wittenbrink, N. et al. High-accuracy determination of internal circadian time from a single blood sample. J. Clin. Investig. 128, 

3826–3839 (2018).
 37. Wu, G. et al. Population-level rhythms in human skin with implications for circadian medicine. Proc. Natl. Acad. Sci. 115, 12313–

12318 (2018).
 38. Laing, E. E. et al. Blood transcriptome based biomarkers for human circadian phase. Elife 6, e20214 (2017).
 39. Huang, Y. & Braun, R. Platform-independent estimation of human physiological time from single blood samples. Proc. Natl. Acad. 

Sci. 121, e2308114120 (2024).
 40. Jeppe, K. et al. Accurate detection of acute sleep deprivation using a metabolomic biomarker—a machine learning approach. Sci. 

Adv. 10, 6834 (2024).
 41. Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 

1–16 (2008).
 42. Brown, E. N. & Czeisler, C. A. The statistical analysis of circadian phase and amplitude in constant-routine core-temperature data. 

J. Biol. Rhythms 7, 177–202 (1992).

Acknowledgements
We acknowledge Caroline Beatty (recruitment); Dr. William McMahon and Dr. Jinny Collett (data collection); 
Dr. Simon Joosten and Dr. Eric Kuo (medical assistance); Dr Ihaia Hoskin (sleep protocol design); Dr. Sylvia 
Nguyen (psychological screening); the Adelaide Research Assay Facility (plasma melatonin analysis); and Michael 
Leeming (metabolomics experimental design/processing).

Author contributions
All listed authors have reviewed and contributed to this document. DPW, CA, KJJ, SF, BN, SMWR, MM, SWL, 
SWC, and AJKP designed the research; KJJ, SF, LKG, BN, and DT performed the research; DPW, KJJ, SWC, and 
AJKP analyzed the data; and DPW, CA, KJJ, SWC, and AJKP wrote the paper.

Funding
This work was funded by the Cooperative Research Center for Safety, Alertness, and Productivity (reference 
code: P1.1.01-15), and the Australian Research Council (DP220102812 and DP210102924).

Competing interests 
SF served as a Project Leader, SMWR and SWL served as Program Leaders, and CA served as a Theme Leader 
in the Cooperative Research Centre (CRC) for Alertness, Safety, and Productivity, Melbourne, Australia. CA has 
received a research award/prize from Sanofi-Aventis; contract research support from VicRoads, Rio Tinto Coal 
Australia, National Transport Commission, Tontine/Pacific Brands and VicRoads; lecturing fees from Brown 
Medical School/Rhode Island Hospital, Ausmed, Healthmed and TEVA Pharmaceuticals; conference travel 
reimbursements from Philips Healthcare; and consulted with the Transport Accident Commission (TAC) and 
the National Transportation Committee (NTC) through her institution. SMWR has received research funding 
from Philips Lighting; Vanda Pharmaceuticals; ResMed Foundation; Respironics Sleep and Respiratory Research 
Foundation; Cephalon Inc.; and Takeda Pharmaceuticals North America. SWL has received consulting fees from 
the BHP Billiton, EyeJust Inc., Noble Insights, Rec Room, Six Senses, Stantec and Team C Racing; consults with 
Akili Interactive, Apex 2100 Ltd., Consumer Sleep Solutions, Headwaters Inc., Hintsa Performance AG, KBR 
Wyle Services, Light Cognitive, Lighting Science Group corporation/HealthE, Mental Workout/Timeshifter and 
View Inc.; has received honoraria and travel and/or accommodation expenses from Bloxhub, Emory University, 
Estée Lauder, Ineos, MIT, Roxbury Latin School, and University of Toronto, IES, Mental Workout, Solemma, 
and Wiley and royalties from Oxford University Press; holds equity in iSleep pty; has received an unrestricted 
equipment gift from F. Lux Software LLC, a fellowship gift from Stockgrand Ltd; holds an investigator-initiated 
grant from F. Lux Software LLC and a Clinical Research Support Agreement and Clinical Trial Agreement with 
Vanda Pharmaceuticals Inc; is an unpaid Board Member of the Midwest Lighting Institute (non-profit); holds a 
pending patent for a ’Method and system for generating and providing notifications for a circadian shift protocol’ 
(US20190366032A1); and has served as a paid expert in legal proceedings related to light, sleep and health. AJKP 
and SWC have received research funding from Versalux and Delos, and are co-directors of Circadian Health 
Innovations Pty Ltd. SWC has consulted for Dyson and received research funding from Beacon Lighting. DPW, 
KJJ, LKG, BN, MM, and DT declare that they have no conflict of interest.

Additional information
Correspondence and requests for materials should be addressed to D.P.W., S.W.C. or A.J.K.P.



9

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16796  | https://doi.org/10.1038/s41598-024-67297-y

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Higher central circadian temperature amplitude is associated with greater metabolite rhythmicity in humans
	Results
	Higher core body temperature amplitude was associated with greater prevalence of metabolites with circadian rhythmicity
	Higher core body temperature amplitude was associated with less variable periods of metabolite rhythms
	Sensitivity analyses

	Discussion
	Methods
	Recruitment and screening
	Experimental protocol
	Metabolite analysis
	Metabolite rhythmicity
	Core body temperature data cleaning
	Core body temperature fit and amplitude extraction
	Statistical analyses

	References
	Acknowledgements


