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DRG	� Dorsal root ganglion
ER	� Endoplasmic reticulum
HD	� Huntington disease
HFSC	� Hair follicle stem cells
HS	� Haemorrhagic shock
I/R	� Ischemia/reperfusion
IAP	� Inhibitor of apoptosis protein
IAV	 �Influenza A virus
ICE	 �Interleukin-1β-converting enzyme
IFN	� Interferon
IL	� Interleukin
JNK	� C-Jun N-terminal kinase
LPS	 �Lipopolysaccharides
MEF	 �Mesenchymal embryonic fibroblasts
MLKL	� Mixed Lineage Kinase domain-Like
MST1	 �Mammalian Sterile Twenty-like kinase
NF-κB	 �Nuclear factor κB
NGF	 �Nerve growth factor
NLRP3	 �NOD-, LRR- and pyrin domain-containing pro-

tein 3
ON	 �Optic nerve
PEK	 �Primary enamel knot
RGCs	� Retinal ganglion cells
RIP1	� Receptor-interacting protein 1
RIPK3	� Receptor Interacting Serine/Threonine Kinase 3
STAT1	 �Signal Transducer and Activator of Transcrip-

tion 1

Abbreviations
AD	 �Alzheimer disease
ADHD	 �Attention deficit/hyperactivity disorder
Aip1	� Actin interacting protein 1
Apoe	 �Apolipoprotein E-deficient
APP	 �β-amyloid precursor protein
ARF	� Acute renal failure
ATN	� Acute tubular necrosis
Bcl-2	 �B-cell lymphoma 2
CAD	 �Caspase-activated DNase
CARD	 �Caspase-activation recruitment domain
Casp	� Caspase
CED	� Cell death protein
d.p.c.	 �Day post coitum
DED	 �Death effector domain
DISC	� Death-inducing signalling complex
DMD	 �Duchenne muscular dystrophy
DR	� Death receptor
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Abstract
Caspases are enzymes with protease activity. Despite being known for more than three decades, caspase investigation 
still yields surprising and fascinating information. Initially associated with cell death and inflammation, their functions 
have gradually been revealed to extend beyond, targeting pathways such as cell proliferation, migration, and differentia-
tion. These processes are also associated with disease mechanisms, positioning caspases as potential targets for numerous 
pathologies including inflammatory, neurological, metabolic, or oncological conditions. While in vitro studies play a cru-
cial role in elucidating molecular pathways, they lack the context of the body’s complexity. Therefore, laboratory animals 
are an indispensable part of successfully understanding and applying caspase networks. This paper aims to summarize and 
discuss recent knowledge, understanding, and challenges in caspase knock-out mice.
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WNV	 �West Nile virus
WT	 �Wild type
YAP	� Yes-associated protein
ZBP1	 �Z-DNA-binding protein 1

Introduction

Caspases, also known as cysteine-dependent aspartate-spe-
cific proteases (alternatively cysteine-aspartic proteases or 
cysteine aspartic acid proteases), are enzymes that utilize 
the sulfur atom in cysteine to catalyze cleavage reaction. 
Together with the serine protease granzyme B, caspases 
display specificity for Asp in the P1 position of the cas-
pase recognition motif when processing their substrates 
[1]. The caspase family is highly evolutionary conserved, 
underscoring its importance across various organisms [2]. 
Research on caspases began with the identification of pro-
tease activity that generates mature interleukin (IL)-1β 
from its precursor in extracts of human monocytes, where 
it plays a crucial role in regulating inflammatory responses 
[3]. Few years later, unusual cleavage at Asp-X bonds of 
the interleukin-1β-converting enzyme (ICE), also known 
as caspase-1, was identified [4] and specified in 1992 [5, 
6]. In 1993, the C. elegans Cell death protein-3 (CED-3) 
and mammalian ICE similarity was revealed and associ-
ated with programmed cell death - apoptosis. Along with 
caspase-1, caspase-2 was one of the first discovered mam-
malian homologues of CED-3 [7]. By 1998, crucial pro-
tein components that participate in apoptosis were defined 
in humans and laboratory mice [8, 9]. Further research 
brought discovery of members of caspase family in verte-
brates standing behind apoptosis or inflammation, function 
of which remains mostly unexplained, this applies for cas-
pase-15-18 [10, 11].

The presence of specific caspases varies among spe-
cies (Table 1). This variability is evident when comparing 
the mouse model to the humans. For instance, mouse cas-
pase-11 is considered an orthologue of human caspase-4 and 
caspase-5, sharing 68% and 47% of amino acid sequences, 

respectively [12]. Mice express full length of caspase-12 
[13], while primarily a truncated form is present in humans 
[14]. Conversely, mice lack caspase-5 [15] and -10 [16] 
compared to humans. Notably, despite these differences, the 
cascade of molecular caspase pathways is conserved across 
eukaryotes (Fig. 1).

Caspase research was developed with help of various 
laboratory techniques as summarised in Fig.  2. Different 
organisms (Table 1) were used to investigate caspases and 
their downstream pathways, particularly, biological activi-
ties, potential redundancies, interactions, or impact/s of their 
deficiency. The mouse is the most relevant in vivo model to 
search for potential applications in several caspase-related 
human diseases such as autoimmune, inflammatory, cancer, 
metabolic, and neurodegenerative pathologies [17].

Caspase structure and classification

Despite being known for dozens years, there is no clear 
order in caspase classification. Respectively, the recent clas-
sifications are rather artificial, and does not reflect all char-
acteristic of individual caspases. We can also speculate that 
each caspase has both broad (redundant) and specific (non-
redundant) functions. Therefore, any categorisation would 
inevitably be somewhat inaccurate. When evaluating lethal 
vs. non-lethal caspases (as shown in Fig. 3), caspase-2, -3, 
-6, -7, -8, -9, -10 are conventionally associated with apopto-
sis. Further, there is a group of inflammatory caspases with 
caspase-1, -4, -5, -11, -12. The mammalian caspases with 
unknown lethal function are caspase-14 [15, 18] and cas-
pase-16 [10].

Pro-apoptotic caspases were further subdivided based on 
their molecular structure and the relation to the apoptotic 
machinery. Caspases are mostly expressed as inactive mono-
mers consisting of a pro-domain (long or short), large, and 
small subunits. The long pro-domain is typical for initiator 
caspases. It may contain two death effector domains (DED), 
as seen in caspase-8 and -10. Alternatively, it can have a 
caspase-activation recruitment domain (CARD), found in 

Table 1  Comparison of caspases in different species with focus on classical caspase categorisation. In category „others“ the caspase either does 
not fit groups above or have not yet been specified. * differentiation of keratinocytes [259], **regulates non-canonical pathway of apoptosis [291], 
*** blocks CED-3 and apoptosis in germ cells [292], **** blocks CED-3 and apoptosis in somatic cells [292]

human mouse
M. musculus

zebrafish
D. rerio

fruitfly
D. melanogaster

worm
C. elegans

number of caspases 13 11 19 7 4
inflammatory caspases -1, -4, -5 -12 -1, -11, -12 -1, -19a, -19b, -23
initiator caspases -2, -8, -9, -10 -2, -8, -9 -2, -8a, -8b, -9, -10, -20, -22 Dredd, Dronc, Strica
executor caspases -3, -6, -7 -3, -6, -7 -3a, -3b, -6a, -6b, -6c,-7, -21 Drice, Dcp-1, Decay, Dam CED-3
others -14*, -16 -14*, − 16 -17 CSP-1**, 

CSP-2***, and 
CSP-3****

references [15] [15] [293] [294] [19]
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caspase-2 and -9. These domains promote dimerization, fol-
lowed by autoactivation in multiprotein complexes [19]. In 
contrast, executioner caspases lacking the long pro-domain 
require cleavage by initiator caspases to reach the activated 
state [20].

Regarding recent observations on caspase functions, 
some authors have proposed slight modification(s) to the 
original classification. In the new system, three caspases 
stand alone: caspase-2 as a caspase involved in cell cycle, 
caspase-14 as a caspase involved in cell differentiation, and 
caspase-12 as caspase with undefined functions [17].

The caspase family can also be subdivided according to 
amino acids making up the motif (P4, 3, 2, 1) upstream of 
the cleavage site P1 (Table 2) [21]. Several groups, using 
different methods, have demonstrated a problem of overlap-
ping substrate specificity among caspases [22]. In the cleav-
age motif, there are positions where variations are tolerated 

compared to positions with high selectivity (Table 2). It is 
important to note that some caspases can cleave certain sub-
strates better than others, sometimes unexpectly based on 
original analyses [23].

Caspase functions

Caspases have been first recognised as enzymes crucial for 
apoptotic cell death and inflammation. However, following 
studies pointed to their functions beyond lethal activities 
[15, 24–26]. These events include both “non-autonomous” 
and “autonomous” mechanisms. The former refers to mech-
anisms that mediate, for example, the compensatory pro-
liferation of cells adjacent to those undergoing apoptosis, 
while the latter refers to intrinsically mediated activities of 
caspases that do not result in cell death [27]. Particularly, 

Fig. 1  Conserved caspase signalling cascades in eukaryotic organisms. 
In C. elegans, the antagonist EGL-1 inhibits CED-9, leading to the 
release of CED-4 from the CED-9–CED-4 complex. This liberation 
promotes the activation of CED-3. In Drosophila, the inhibitors of 
apoptosis (IAPs) Reaper, Hid, and Grim facilitate the degradation of 
DIAP1, thereby freeing Drice and Dcp-1. This process also involves 
the interaction of Dronc with Ark and the formation of the apoptosome, 
which activates executioner caspases. The activation of the apopto-
some might be regulated by proteins such as Buffy. In mammals, Bcl-2 
and BH3-only proteins regulate BAX- and BAK-dependent release 

of cytochrome c from the mitochondria. Cytochrome-c then binds to 
APAF1 to form the apoptosome. In parallel, IAP antagonists, including 
DIABLO, HTRA2 and ARTS, translocate from the mitochondria and 
release caspases from their negative regulation by IAPs. Caspase-9 is 
subsequently liberated from XIAP and activated by the apoptosome, 
triggering executioner caspases-3 and − 7. Green: caspase-9 like, yel-
low: Apaf-1 like, blue: executor caspases, dark grey: Bcl-2 like, light 
grey: apoptotic inhibitors, pink: BH3-only like, purple: IAP binding. 
Figure based on Bell and Megeney [284], Fuchs and Steller [285]
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Fig. 2  Overview of caspase modulation, analysis, and functions. Down-
stream caspase pathways may be studied with the help of the caspase 
downregulation at several levels, including inhibition of caspase gene 
expression by siRNA and inhibition of caspase activity by inhibitors in 
vitro. Alternatively, recombinant caspases may be used for specifica-
tion of caspase functions. In vivo investigation relies on deficient mice 
with null or targeted caspase deletion. Analysis of caspases includes 
quantification of caspase expression by PCR-based techniques and 
activity assessment (e.g., western blot, bioluminescence, bioimag-

ing) applied in vitro and in vivo. Detection of caspases by specific 
antibodies in situ provides information about caspase importance in 
individual cell types. With the help of these approaches, caspases have 
been associated with multiple functions such as programmed apoptotic 
cell death [286], programmed non-apoptotic cell death [287], inflam-
mation and immune system [288], differentiation [16], proliferation 
[289], regulation of stem cells maintenance [43], non-apoptotic regula-
tion of malignancies [290], modification of ECM [181], migration [28]
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cytoskeleton, physiology of endoplasmic reticulum (ER) 
and Golgi apparatus, cell cycle, DNA synthesis and repair, 
etc. [34]. The cleavage hit mediated by caspases may result 
in both activation [35] or inactivation [36] of the substrates.

caspases were associated with proliferation [25], migra-
tion [28], differentiation of various cell types [29–32], or 
even inhibition of cell death [33]. Their substrates include 
proteins associated to various cellular functions not only 
the lethal ones but also substrates related to cell adhesion, 

Table 2  Caspase cleavage motives - based on human caspase research according to Talanian et al. [21]. Caspases exhibit selectivity for Asp (D) 
in the P1 position, toleration of wide range of amino acids in the P2, a preference for Glu (E) in P3, and a lack of tolerance for charged residues at 
P1′ (φ symbol stands for preferred Gly, Ala, Thr, Ser and Asn). Most significant differences in caspase specificities are at the P4 positions. ↓ stands 
for the cleavage site. * Caspase-6 was recently identified to recognise and prefer pentapeptide motif [295]. These groups of caspase roughly reflect 
groups of initiators, executors, and inflammatory caspases
caspase P5 P4 P3 P2 P1 ↓ P1´
-1, -4, -5, -14 W/Y E X D Φ
-8, -9, -10 I/L E X D Φ
-3, -7 D E X D Φ
-6 * V E X D Φ
-2 V/L D E X D Φ

Fig. 3  Classification of caspases. Blue/Grey: long pro-domain contain-
ing CARD/DED, pink: long domain L, green: short domain S. The 
asterisk is used to highlight human/mouse caspase orthologue cas-

pase-4, caspase-5/caspase-11. C12L and C12S stands for full-length 
and truncated versions, respectively
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caspase [47]. However, according to research on substrate 
specificity, caspase-2 rather fits with executor group [21, 
48, 49]. Due to the conflicting evidences of its activation 
(homodimerization, cleavage by other caspases, multipro-
tein complexes, etc.), function/s or signalling it is called an 
„orphan“ caspase [50–52]. Regarding apoptosis, caspase-2 
can be either pro-apoptotic or anti-apoptotic depending on 
the cell type, state of growth, and apoptotic stimuli [46, 52]. 
Interestingly, two splice-variants of caspase-2, pro-apop-
totic caspase-2 L, and anti-apoptotic caspase-2 S (included 
also in DNA repair) were identified to be generated from 
the same gene in response to pro-apoptotic stimuli [7, 53]. 
Caspase-2 was also suggested to induce lipoapoptosis, cell 
death triggered by excessive intracellular accumulation of 
long-chain fatty acids [54]. Caspase-2-deficient mice did 
not manifest a phenotype that would support a broad func-
tion for caspase-2 in apoptosis [46]. In contrast, this caspase 
exhibits numerous non-lethal functions, serving as a tumour 
suppressor [55]/ a cell cycle regulator [52], a regulator of 
genomic integrity [56, 57], and participating in various cel-
lular processes such as the differentiation [58] and protec-
tion of neurons [46], the differentiation of skeletal muscles 
[59, 60], and osteoblasts in vitro [61, 62]. It might also serve 
as a therapeutic target for neurological diseases [63], non-
alcoholic steatohepatitis [64], metabolic syndrome [54], 
tautopathies [65], cancer [66], and factor impacting aging 
[67]. Caspase-2-deficient mice are viable with no gross ana-
tomic abnormalities [46].

Apoptotic effect of caspase-2 deficiency

Caspase-2-deficient mice [46] do not suffer from severe 
developmental abnormalities, as documented in the case 
of other initiators [68, 69], implying its crucial function 
extends beyond apoptosis. Based on caspase-2-deficient 
mice, it is not clear whether caspase-2 is pro- or anti- 
apoptotic. Caspase-2 was proposed to stimulate apoptosis 
of primordial follicles [46]. The number of newly formed 
primordial follicles containing oocytes was significantly 
higher in caspase-2-deficient females when compared with 
wild type (WT) mice, suggesting that apoptotic elimination 
of foetal germ cell was attenuated in the absence of cas-
pase-2. Furthermore, the oocytes were found to be resistant 
to cell death induced by chemotherapeutic drugs. This phe-
nomenon, however, was strictly associated with oocytes. 
Other cell types, such as thymocytes and dorsal root gan-
glion (DRG) neurons, did not show alterations in apop-
totic cell death [70]. In contrast to this, caspase-2 protected 
motor neurons against naturally occurring cell death during 
embryonic development, since new-born mice with cas-
pase-2 deficiency had decreased number of motor neurons. 
The phenomenon might be explained by expression rate of 

Types and number of substrates is thought to be very dif-
ferent throughout caspase groups. Initiators are thought to 
cleave few substrates besides their own precursors and other 
caspases downstream, effectors have a broader spectrum of 
targets. Among executors, caspase-3 seems to be more pro-
miscuous compared to caspase-7 [37, 38]. The fundamental 
roles of caspases are summarised in Fig. 2.

Diverse roles of caspases are thought to be associated 
with various molecular pathways. The apoptotic signalling 
of caspases is directed by so called extrinsic and intrinsic 
pathway [39, 40]. The extrinsic pathway regulated by inter-
action of death receptor (DR) and death ligand results in 
formation of death-inducing signalling complex (DISC) that 
activates initiator caspase-8, -10. The intrinsic (mitochon-
drial) pathway is triggered by internal signals inducing the 
leakage of cytochrome-c out of mitochondria. Cytochrome-
c associates with Apaf-1 and pro-caspase-9, giving rise to 
a multiprotein complex known as apoptosome, where cas-
pase-9 is activated [41].

Apoptotic pathways are modulated by diverse inhibitory 
apoptosis proteins (IAPs) and members of the B-cell lym-
phoma 2 (Bcl-2) protein family, which is divided into three 
groups: anti-apoptotic proteins (Bcl-2, Bcl-xl, Bcl-w, Mcl-
1, Bfl-1/a1), pro-apoptotic BH3-only proteins (Bad, Bid, 
Bik, Bim, Bmf, Hrk, Noxa, Puma, etc.), and pro-apoptotic 
pore-formers (Bax, Bak, Bok) [42].

The extrinsic and intrinsic pathways are often intercon-
nected and finally aim to activate central caspase-3 or other 
executors. In the apoptotic machinery, the executors are not 
equivalent in their capacity [38]. In short, caspase-3 engage-
ment finally results in caspase-activated DNase (CAD) 
activation which causes degradation of nuclear DNA. Exec-
utors further play role in the cytoskeletal reorganization and 
formation of cytoplasmic blebs and apoptotic bodies.

In contrast, non-lethal functions of caspases remain 
mostly unknown, although they may involve processes such 
as the cleavage of non-caspase substrates by initiators, sig-
nalisation of executor pro-caspases, or proteolytic cleavage 
of transcription factors [30, 43, 44] as illustrated in Fig. 4.

Initiator caspases

The phenotypes of mice deficient for initiator caspases are 
listed in Table 3.

Caspase-2

Caspase-2 is thought to be the most evolutionary conserved 
caspase [45] with a broad expression (brain, heart, kid-
ney, lung and spleen) [46]. Based on the structural prop-
erties which include long pro-domain and dimerization 
during activation, caspase-2 is usually classified as initiator 
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diseases. Some age-related outcomes may result from sig-
nificantly increased oxidative damages and reduced activ-
ity of antioxidant enzymes in old caspase-2-deficient mice 
compared to WT animals. The underlying mechanism may 
include reduced expression of FoxO transcription factors 
and increased levels of p53 and p21 [16]. The oxidative 
stress was associated with lower bone mineral density in old 
(24–26 months) caspase-2-deficient mice compared to WT 
mice, potentially increasing osteoclast differentiation and 
reducing apoptosis, leading to enhanced bone resorption 
[71, 72]. Additionally, lower body fat content and impaired 
hair growth in caspase-2 deficient mice [67] may be related 
to oxidative damage.

In the context of neurodegenerative diseases associated 
with advanced age, mice deficient for caspase-2 showed 

caspase-2 L/caspase-2 S. The short isoform appears to be 
present in terminally differentiated tissues, such as brain, 
where it may play a role in survival. Alternatively, caspase-2 
loss might be compensated by other caspases up-regulating 
their expression [46].

Non-apoptotic effect of caspase-2 deficiency

The signs of caspase-2-deficient mice, apart from cell death, 
indicate a broad functional complexity of this enzyme. 
While caspase-2-deficient mice had almost the same median 
lifespan as WT mice, they statistically lived shorter lives 
[67]. Interestingly, caspase-2 deficiency promoted a number 
of traits commonly seen in aging animals [15, 67], mak-
ing these mice potentially interesting models for age-related 

Fig. 4  Apoptotic and non-apoptotic caspase signalisation. The extrin-
sic pathway is regulated by death receptors, leading to the activation of 
caspase-8 and -10. The intrinsic pathway is usually initiated in a cell-
autonomous manner, resulting in expression of BH3-only proteins that 
inhibit anti-apoptotic proteins such as Bcl-2, permeabilization of the 
mitochondrial outer membrane, formation of apoptosome, and activa-

tion of caspase-9. Both pathways aim to activate caspase-3 (or other 
executors: caspase-6, -7). The extrinsic and intrinsic pathways are 
often interconnected (e.g. caspase − 8 (and also − 2) cleaves Bid into 
tBid, which impacts mitochondria). Caspase-12 contributes to Ca2+-
dependent apoptosis. Caspase-2 activation occurs in response of both 
intrinsic and extrinsic stimuli
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mouse strain development/
phenotype

apoptotic/ non-apoptotic/unspecified effect refer-
ence

Casp-2−/− C57BL/6J normal development decreased number of oocytes,
increased number of motoneurons

[46]

Casp-2−/− 129/sv×C57BL/6 normal development normal apoptosis of thymocytes induced by various 
stimuli, normal apoptosis of neurons in absence of 
NGF

[70]

Casp-2−/− C57BL/6J reduced sensitivity to 
heat-shock

reduced cell death [296]

Casp-2−/− C57Bl/6 premature ageing compromised ability to clear oxidatively damaged 
cells

[67]

Casp-2−/−/MMTV 129/B6 increased tumor 
acquisition

cell cycle defects, genomic instability [75]

Casp-2−/− C57BL/6J premature ageing increased oxidative stress [15]
Casp-2−/− C57BL/6J age-related bone loss increased number of osteoclasts due to reduced apop-

tosis and increased differentiation
[71, 
72]

Casp-2−/− C57BL/6J reduced white adipose 
mass, smaller white 
adipocytes etc.

altered balance in fuel choice towards 
increased carbohydrate utilisation due to mild 
energy stress

[76]

Casp-8−/− C57BL/6 abnormalities of heart 
etc.-prenatally lethal

abnormal receptor-dependent pathway of apoptosis [68]

Casp-8−/−

(conditional 
T-cells-specific)

C57BL/6 inability of immune 
response to viral infection

resistance of T-cells to death mediated by anti-CD95 
antibody

[90]

Casp-8−/−(conditional-
several types)

MF-1 lethal/ non-lethal 
phenotypes

apoptotic/non-apoptotic engagement in depen-
dence of the targeted cells

[97]

Casp-8−/−

(conditional B 
cells-specific)

- altered responses of B 
cells to different stimuli

B cells: abrogation of Fas-mediated apoptosis,
failure of induced proliferation, altered ab 
production

[91]

Casp-8−/−

(conditional B 
cells-specific)

129/J × C57BL/6 normal cell subpopula-
tions in bone marrow

resistance to DR mediated apoptosis, defective B cells 
expansion response to TLR4 stimulation, attenuated 
antibody production upon viral infection

[105]

Casp-8−/−

(conditional 
keratinocytes-specific)

C57BL/6 inflammatory diseases of 
the skin-lethal by postna-
tal day 7

constitutive phosphorylation of
interferon regulatory factor (irf) 3  and 
tank-binding

[94]

Casp-8−/−

(conditional 
epidermis-specific)

- epidermal hyperplasia increased stem cell proliferation and cutaneous 
inflammation regulated by il-1α

[102]

Casp-8−/−

(conditional 
hepatocytes-specific)

- abnormal hepatocyte 
reaction to damage

apoptotic and non-apoptotic mechanisms of 
response to different stimuli

[106, 
107]

Casp-8−/−

(conditional 
macrophage-specific)

C57BL/6 mild systemic inflamma-
tory disease

unchecked ripk3 activity [101]

Casp-8-/-
(conditional endothelium 
-specific)

- reduced retina 
angiogenesis

reduced endothelial proliferation, sprouting, 
and migration, destabilization cadherin

[32]

Casp-8−/−D387A* C57BL/6 normal development reduced Fas-induced apoptosis of T cells, preserva-
tion of fas-mediated non-apoptotic signalling

[97]

Casp-9−/− 129/C57BL/6
129/CD1

severe brain defect-pre-
natally lethal

resistance of different cells to apoptotic stimuli [124]

Casp-9−/− C57BL/6 severe brain 
malformation-
prenatally lethal

reduced apoptosis and activation of caspase-3 in brain, 
resistance of T cells to different apoptotic stimuli

[69]

Casp-9−/− C57BL/6 defects and size reduction 
of the inner ear

decrease of Apaf-1 dependent apoptosis [116]

Casp-9−/− C57BL/6 misrouted axons abnormal cleavage of sema7a [122]
Casp-9−/− C57BL/6 increased number of 

oocytes
decreased apoptotic elimination of oocytes during a 
narrow window between 18.5 and 21.5 d.p.c.

[125]

Table 3  Phenotypes of mice lacking initiator caspases. *Mutation in self processing site, d.p.c. day post coitum, HFSC hair follicle stem, NGF 
nerve growth factor
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resulting from gross abnormalities of vasculature and yolk 
sac [68].

Apoptotic effect of caspase-8 deficiency

The role of caspase-8 in apoptosis was identified in mesen-
chymal embryonic fibroblasts (MEF) derived from caspase-
8-deficient mice that developed a resistance to extrinsic 
pathway of programmed cell death [68]. Apoptotic role of 
this caspase has been further demonstrated in vivo, when 
caspase-8 specific deletion in hepatocytes using Cre/loxP 
system protected these cells from Fas-mediated cytotoxic-
ity [97].

Non-apoptotic effect of caspase-8 deficiency

Despite being classified as an apoptotic activator, caspase-8 
is vitally important for its anti-lethal effect as a regulator of 
necroptosis. Interestingly, caspase-8 also appears to regu-
late inflammatory processes, likely stemming from complex 
molecular pathways that are not yet fully understood. Dele-
tion of caspase-8 in mice revealed the huge impact of this 
molecule/protease on the murine embryonic development. 
The deficiency resulted in degeneration of yolk sac and its 
vasculature leading to hyperaemia of some blood vessels and 
organs, congested accumulation of erythrocytes, impaired 
heart muscle development and neural tube defects [68, 97, 
98]. Due to early lethality of caspase-8-deficient mice, fol-
lowing studies focused on targeted deletion of caspase-8 
in specific cell populations. Later research explained that 
lethality of caspase-8-deficient embryos was consequence of 
an abnormal activity of RIPK3 which is the key component 
of the necrosome [99]. Caspase-8 inhibits RIPK3 and thus 
prevents engagement of the final effector MLKL triggering 
necroptosis [80]. Deletion of RIPK3 or MLKL rescued the 
embryonic lethality of caspase-8-deficient mice [80, 82]. 
MLKL deficiency rescued the cardiovascular phenotype but 
unexpectedly caused perinatal lethality in mice with catalyt-
ically inactive caspase-8 (Casp8C362S/C362S,) indicating 
that CASP8 (C362S) causes necroptosis-independent death 
at later stages of embryonic development [33].

Despite mice lacking both caspase-8 and RIPK3 not 
showing any histological abnormalities in utero, embry-
onic upregulation of the inflammatory genes was detected 
in several tissues. Interestingly, when focused on the liver, 
the expression of inflammatory genes starts preferentially 

rescued behavioural and cognitive features of Huntington’s 
disease (HD) in the YAC128 model. However, they did not 
exhibit protection from anatomical abnormalities associ-
ated with HD, such as specific striatal volume loss [73]. 
This suggests that different pathways may be involved in 
the behavioural changes observed in HD. Inhibition of cas-
pase-2 activity could potentially be associated with symp-
tomatic improvement in HD.

Disruption of p53 regulated pathway found in caspase-
2-deficient mice may be also related to higher tumour inci-
dence at a sooner age as was seen in caspase-2−/−/MMTV 
model. Mechanism of caspase-2 action might reside in 
regulation of cell cycle progression and genomic stability 
[45, 55, 74, 75]. However, the overall tumour incidence was 
not observed in caspase-2 deficient mice [67]. Therefore, 
caspase-2 may be specifically involved in the process of 
carcinogenesis.

Besides age-related abnormalities, caspase-2 deficiency 
also altered basal energy metabolism by shifting the balance 
in fuel choice from fatty acid to carbohydrate usage. Four 
weeks old caspase-2-deficient mice had increased carbohy-
drate utilisation and by 17 weeks showed a reduced white 
adipose mass, smaller white adipocytes, decreased fast-
ing blood glucose and plasma triglycerides but maintained 
normal insulin levels. In addition, caspase-2-deficient mice 
placed on a high-fat diet resisted the development of obesity, 
fatty liver, hyperinsulinemia, and insulin resistance [76].

Caspase-8

Caspase-8 was described as the major initiator of the extrin-
sic apoptotic pathway [8, 9, 77]. Caspase-8 was identified in 
cytoplasm as an inactive dimer activated by self-processing 
[78], which is induced via interaction of the DRs with their 
ligands. Apart from the apoptosis, caspase-8 is essential 
for inhibition of necroptosis mediated by Receptor Inter-
acting Serine/Threonine Kinase (RIPK3) and Mixed Lin-
eage Kinase domain-Like (MLKL) [79–82]. Further, it is 
involved in pyroptosis [83], inflammation [84–86], migra-
tion [87, 88], cellular proliferation [89–92], differentiation 
of osteoblasts [61, 62], myoblasts [29], autophagy [93], 
and overall cell homeostasis [94]. Caspase-8 is thought to 
be potential target for treatment of oncologic [95], inflam-
matory or immune pathologies [96]. Caspase-8-deficient 
mice performed prenatal lethality around the stage E12.5 

mouse strain development/
phenotype

apoptotic/ non-apoptotic/unspecified effect refer-
ence

Casp-9−/−

(conditional 
HFSC-specific)

- accelerated wound repair induction of apoptotic-engaged state, serving as mito-
genic signalling centres by releasing wnt3

[129]

Table 3  (continued) 
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length caspase-9 [113]. Developmental importance of cas-
pase-9 is supported by its early activation in mouse embryo 
and early lethality resulting from severe developmental 
defects [114–116]. Caspase-9 also contributes to necropto-
sis [117]. Further, caspase-9 was associated with non-lethal 
functions [118] such as myocyte differentiation and prolif-
eration [119], hematopoietic development [120], immune 
response to viral infection [121], axon guidance [122] 
or axon-selective degeneration [44] etc. In a therapeutic 
invention, caspase-9 may play a central role in pathogen-
esis of stroke, neurodegenerative diseases, or brain injury 
caused by hypoxia [123]. Caspase-9 deletion is embryoni-
cally or perinatally lethal due to aberrant brain develop-
ment [69, 124].

Apoptotic effect of caspase-9 deficiency

The most apparent abnormalities of caspase-9 deficiency 
resided in large brain protrusions and other defects mostly 
localised in the cortex and forebrain [124]. These altera-
tions were associated with decreased rate of apoptosis 
and excessive number of neurons. Caspase-9 deficiency 
further resulted in dramatic decrease in apoptosis in the 
inner ear epithelium, severe morphogenetic defects, and 
a significant size reduction of the membranous labyrinth 
[116].

Furthermore, several cell types performed an abnormal 
apoptosis when challenged by different apoptotic stimuli. 
This was, however, not seen in TNF-α induced apoptosis in 
MEF of caspase-9-deficient mice [124].

Caspase-9 was shown to play a role in oocyte elimi-
nation during development. In caspase-9-deficient mice, 
later phase of oocyte loss was prevented and the total 
number of oocytes became significantly greater in cas-
pase-9-deficient ovaries at E19.5 when compared to nor-
mal mice [125].

In the prenatal formation of tooth, caspase-9-deficient 
mice displayed inhibition of apoptotic cell death in the 
primary enamel knot (PEK) [126], the signalling centre 
of the first molar [127]. Despite PEK regulates the bud-
cap transition [128], no impact of the decreased apoptosis 
was observed during advanced tooth development, indi-
cating that the apoptotic cell death mediated by caspase-9 
has been compensated by other molecular mechanisms 
[126].

Caspase-9 deletion in hair follicle stem cells attenu-
ated the apoptotic process, which surprisingly resulted in 
increased levels of cleaved caspase-3. These cells were 
retained in an apoptotic-engaged state, serving as mitogenic 
signalling centres by releasing Wnt3. Notably, these mice 
displayed accelerated wound repair and de novo hair follicle 
regeneration [129].

in endothelial cells, which were also primarily impacted 
in caspase-8-deficient mice with fatal consequences [100]. 
In contrast to increased inflammatory expression in mice 
lacking both caspase-8 and RIPK3, the loss of caspase-8 in 
macrophages promotes the onset of a mild systemic inflam-
matory disease, which could be prevented by the deletion of 
RIPK3 [101]. Therefore, cell-specific mechanisms probably 
exist. Regarding the inflammatory processes, mice produc-
ing enzymatically inactive caspase-8 developed an inflam-
matory disease of skin associated with a hyperproliferative 
state [94], resulting from abnormal signalling regulated 
by IL1α, which activates both stem cell proliferation and 
inflammation [102]. Inflammation was also detected in the 
intestines of mice with conditional deletion of caspase-8 
[32].

Caspase-8 deletion further resulted in cellular/humoral 
alterations of the immune system. Mice with targeted dele-
tion of caspase-8 had significant decrease in the number of 
peripheral T-cells that were unable to mediate an immune 
response to viral infection [90]. Notably, in the same mice 
but older, B and T cell compartments were expanded in the 
absence of any infection, which resulted in lymphoprolif-
eration and a lethal T cell infiltrating disorder [103]. The 
impaired function of T-cells was associated with modula-
tion of nuclear factor κB (NF-κB), a key transcription factor 
for activation of T-cells [104]. NF-κB was also linked with 
decreased production of antibodies and impaired survival 
following stimulation of the Toll-like receptors of B-cells 
in mice with B-cell-specific inactivation of caspase-8 [105].

Generation of mice lacking caspase-8 in hepatocytes 
(caspase-8Δhepa) demonstrated the role of caspase-8 in liver 
regeneration after partial hepatectomy. The loss of caspase-8 
prevented proteolytic cleavage of the receptor-interacting 
protein 1 (RIP1) in hepatocytes and subsequently triggered 
premature activation of NF-κB and c-Jun N-terminal kinase 
(JNK) related signals which leads to improved liver regen-
eration [106, 107].

Caspase-9

Caspase-9 is an initiator of the intrinsic apoptotic pathway 
that becomes activated in apoptosome. Alternatively, acti-
vation of caspase-9 without Apaf-1 was induced is some 
cells by insulin deprivation [108] or caspase-9 can be even 
cleaved by caspase-3 [109]. In contrast to other caspases, 
pro-caspase-9 manifests a basal activity that increases with 
activation level [110]. During apoptosis, caspase-9 cleaves 
effector caspases [111] or non-caspase substrates (such as 
vimentin) [111] to dismantle intermediate filaments and 
amplify the cell death signal [112]. Notably, caspase-9 
may also negatively regulate apoptosis with alternatively-
spliced truncated caspase-9b form competing with full 
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Apoptotic effect of caspase-3 deficiency

Caspase-3 mediated apoptosis was found to be indispensable 
for normal development of central nervous system [142] in 
caspase-3-deficient 129 × 1/SvJ mice. Compensatory acti-
vation of other caspase effectors in the caspase-3-deficient 
C57BL/6J, but not 129 × 1/SvJ, could be explanation for the 
strain-dependent phenotypes. And indeed, increased activa-
tion of caspase-7 was detected in C57BL/6J caspase-3-de-
ficient mice [143]. Alternatively, strain-specific endogenous 
inhibitors of apoptosis may underlie the variable caspase-
3-deficient phenotype [141].

In contrast to the increased mass of neural tissue, cas-
pase-3-deficient eyes were smaller than their WT coun-
terparts. Additionally, caspase-3-deficient mice displayed 
peripapillary retinal dysplasia, delayed regression of vitreal 
vasculature, and retarded apoptotic kinetics of the inner 
nuclear layer. It was assumed that this phenotype is a result 
of delayed apoptosis in the developing eye [132]. Therefore, 
in this case, caspase-3-related apoptosis may be more likely 
to be of regulatory importance (e.g. regulation of number 
of specific molecular signals-emitting cells) than basically 
elimination of unwanted cells. Abnormal organ “sculptur-
ing” in caspase-3 deficiency was also case of the inner ear. 
Caspase-3 knockout mice developed hypomorphism of the 
vestibular organs resulting in abnormal locomotion and 
circling behaviour of mice [133]. Other study also pointed 
to hyperplasia of supporting cells and degeneration of sen-
sory cells resulting in the hearing loss in caspase-3-de-
ficient mice [144]. The role in “sculpting process” would 
be expected also for apoptosis of developing molar PEK, 
where caspase-3 was identified. Surprisingly, the absence of 
caspase-3 on the B57BL/6 background only led to disorga-
nized epithelium of the developing tooth germ [145].

Despite almost normal life span of caspase-3-deficient 
mice with B57BL/6 background, they also suffered from 
some defects associated with abnormal apoptosis. These 
knock-out mice had kidney proliferative glomerular lesions 
characterized by increased cells and expression of inflam-
mation-associated genes, but renal dysfunction was not 
observed. Furthermore, these mice had mild splenomegaly 
compared with WT mice [146].

Mice deficient in caspase-3 performed reduced chemi-
cally induced skin carcinogenesis. Thus, caspase-3 seems to 
facilitate, rather than suppresses, chemical-induced genetic 
instability and carcinogenesis. This contrasts with typically 
considered anti-oncogenic role of caspase activation, which 
ensures the elimination of genetically unstable or damaged 
cells [147].

Non-apoptotic effect of caspase-9 deficiency

Caspase-9 was identified as being important for non-apop-
totic aspect(s) of neural development, such as axon-selec-
tive degeneration. Interestingly, Apaf-1 was not essential for 
the process, suggesting either Apaf-1 independent caspase-9 
activation [44] or dependence of the phenomenon on pro-
caspase form.

Staying with neural system, caspase-9-deficient mice 
exhibited misrouted axons, impaired synaptic formation, 
and defects in the maturation of olfactory sensory neurons 
without affecting the number of these cells. Caspase-9 was 
shown to be engaged in regulation of active Sema7A levels, 
which affects axonal path finding, synapse formation and 
maturation status in the olfactory bulb [122].

Executor caspases

The phenotypes of mice deficient for executor caspases are 
listed in Table 4.

Caspase-3

Caspase-3 is widely expressed central executor caspase [1, 
37]. In vitro investigation of caspase substrates highlighted 
caspase-3 as promiscuous enzyme with large spectrum of 
substrates [23]. Due to its central role, variable levels of 
caspase-3 are ubiquitously expressed in normal tissues 
[27]. Caspase-3 activation is mediated by both receptor 
and mitochondrial apoptotic signalling pathways. Addition-
ally, a shorter isoform, caspase-3s, generated by alterna-
tive splicing, negatively regulates apoptosis [130]. Beyond 
crucial function of caspase-3 in apoptotic cell death during 
development [131–133], caspase-3 was associated with 
many non-apoptotic events such as regulation of cell cycle 
[134], cell differentiation [29, 30, 61, 135], stem cell physi-
ology [43], tissue regeneration, and immunomodulation 
[136, 137]. Caspase-3 is considered as potential target for 
immunotherapy in distinct tumours [138], neurodegenera-
tive disorders [139], or heart failure [140]. The phenotype of 
caspase-3-deficient mice was strain-specific. Caspase-3-de-
ficient 129 × 1/SvJ mice died during the perinatal period and 
exhibited decreased programmed cell death in brain regions 
resulting in significant neural precursor cell expansion and 
exencephaly, ectopic, and duplicated neuronal structures. In 
contrast, caspase-3-deficient C57BL/6J mice reached adult-
hood, were fertile, and exhibited minimal brain pathology 
[141].
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Table 4  Phenotypes of mice lacking execution caspase
mouse strain development/

phenotype
apoptotic/ non-apoptotic/unspecified effect refer-

ence
Casp-3−/− 129 × 1/SvJ severe brain defects-perinatally 

lethal
decreased apoptosis of neural precursors [131]

Casp-3−/− C57BL/6J decreased body size, ectopic 
masses in head

reduced apoptosis in diverse settings [148]

Casp-3−/− C57BL/6 progressing deafness degeneration of spiral ganglion neurons and a 
loss of inner and outer hair cells

[153]

Casp-3−/− C57BL/6 abnormal development of inner ear putative defective apoptosis [144]
Casp-3−/− C57BL/6J minimal brain defect slight resistance to induced cell death [141]
Casp-3−/− B6.129S1 reduction of skeletal muscle mass defective myoblast differentiation, reduced 

activation of mst1
[29]

Casp-3−/− C57BL/6J increased number of B cells increased proliferation of b cells (increased 
cdk activity and cyclin abundance)

[134]

Casp-3−/− B6.129S1 delayed ossification, decreased 
bone mineral density

over activation of tgf-b/smad2 pathway, upregu-
lation of p53 and p21, downregulation of cdk2 
and cdc2

[30]

Casp-3−/− C57BL/6J
129 × 1/SvJ

slight alterations of molar 
development

absence of apoptotic bodies in molar tooth germ at 
E15

[145]

Casp-3−/− C57Bl/6 increased immature hematopoietic 
cells

impact on hematopoietic stem cell homeostasis [149]

Casp-3−/− C57Bl/6 decreased skin wound healing and 
liver regeneration

abnormal pge2 production [189]

Casp-3−/− C57BL/6J small body size at birth,
inner ear abnormalities

putative apoptotic mechanisms [133]

Casp-3−/− C57Bl/6 decreased incidence of induced 
skin cancer

attenuation of endog [147]

Casp-3−/− B6.129S1 reduced sebaceous glands downregulation of yap and genes of 
proliferation

[150]

Casp-3−/− C57Bl/6 proliferative glomerular lesions, 
splenomegaly

expression of inflammation-associated genes [146]

Casp-3−/− C57BL/6 ADHD, signs of autism in males putative disruption of homeostatic synaptic 
plasticity

[154, 
155]

Casp-3−/−7−/− C57BL/6 perinatal lethality exencephaly in 10% of embryos, heart 
abnormalities

[186]

Casp-3−/−7−/−

(conditional 
myocardium-specific)

C57BL/6J hypoplastic heart at birth, myocyte 
hypertrophy

reduction of myocyte proliferation, increase 
of glycolytic enzymes

[297]

Casp-6−/− C57BL/6J increased susceptibility to influenza 
infection

altered cell death, zbp1-mediated inflammasome 
activation, and host defense

[298]

Casp-6−/− C57BL/6 abnormal development of B cells no difference of apoptosis
b cells activation and differentiation of plasma 
cells

[167]

Casp-6−/− C57BL/6 protection of neurons against 
stroke

reduced loss of processes and soma of neurons [168]

Casp-6−/− FVB/NJ neuroanatomical and behavioural 
alterations

protection from excitotoxicity, ngf deprivation 
and myelin-induced axonal degeneration

[163]

Casp-6−/− C57BL/6J alterations in B cells subsets alteration of il-7 mediated signalling [172]
Casp-6−/− C57 attenuated liver damage in 

response to I/R
altered regulation of nr4a1/sox9 interaction [169]

Casp-7−/− C57BL/6 normal development slight survival advantage of MEF after cell death 
induction

[186]

Casp-7−/− C57BL/6 protection from LPS-induced 
lethality

resistance to LPS-induced lymphocyte apoptosis [177]

Casp-7−/− C57BL/6 abnormal development of hard 
tissues

alteration of gene expression associated with 
formation of hard tissues

[31, 
179]

Casp-7−/− C57BL/6 protection against ON injury-
induced RGC loss

increased density of RGCs, reduced thinning of 
retina resulting from reduced cell death

[187]

Casp-7−/− C57BL/6 increased population of mast cells putative abnormalities of non-apoptotic 
signalling

[299]
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caspase-3-deficient mice was associated with behavioural 
changes similar to symptoms of attention deficit/hyperac-
tivity disorder (ADHD) or autism-like social interactions 
[154]. The mechanism of such caspase engagement is 
poorly understood, however, in vitro results suggest a role 
of caspase-3 in expression of AMPA receptors mediating 
synaptic transition [155].

Caspase-6

Caspase-6 structure is similar to other executor caspases 
[156]. However, its contribution to apoptotic machinery is 
probably limited or peculiar [157, 158]. Furthermore, the 
substrate specificity of caspase-6 more closely resembles 
that of the initiator caspases, caspase-8 and caspase-9 rather 
than the two executioners, caspase-3 and caspase-7 [156]. 
In addition to activation by initiators, caspase-6 may be 
activated by caspase-3 [38]. Additionally, caspase-6 can 
act downstream of caspase-1 [159]. Caspase-6 participates 
in inflammasome activation and host defence mechanisms 
[160, 161]. Recently, it has also been linked with PANopto-
sis, a process that involves pyroptosis, apoptosis, and necro-
sis in the context of cancer pathologies [162]. Caspase-6 is 
extensively expressed in the brain and is associated to neu-
rological disorders such as Alzheimer disease (AD) and HD, 
where it also seems to have therapeutic potential [163–165]. 
Gross developmental defects have not been identified in 
caspase-6-deficient mice [166–168].

Apoptotic effect of caspase-6 deficiency

Only a few apoptotic functions were described in cas-
pase-6-deficient mice. Caspase-6 was associated with par-
ticipation in ischemia/reperfusion (I/R) injury [169]. The 
engagement of caspase-6 in programmed cell death was also 
observed in caspase-6-deficient macrophages infected with 
influenza A virus (IAV). Impact of caspase-6 deficiency on 
apoptosis was manifested by attenuated cleavage of initiator 
caspase-8 and executioner caspase-3 and -7 [160].

Non-apoptotic effect of caspase-6 deficiency

Caspase-6 seems to play a significant role in neurode-
generation and the modulation of immune response. Cas-
pase-6-deficient mice have shown protection from axonal 
degeneration, leading to improved in functional outcomes 
during ischemia [168]. However, the impact of caspase-6 
on the neural system extends further, as evidenced by age-
dependent behavioural changes and region-specific neuro-
anatomical alterations. These include increases in cortical 
and striatal volume accompanied by hypoactive phenotype 
and learning deficits observed in caspase-6-deficient mice 

Non-apoptotic effect of caspase-3 deficiency

Several studies have described a smaller body size in cas-
pase-3-deficient mice compared to WT mice of the same 
age [30, 131, 148, 149]. One explanation for this phenome-
non could be decreased cell proliferation. Indeed, decreased 
proliferation potential was identified in bone marrow stro-
mal stem cells [30]. Deletion of caspase-3 further resulted 
in reduced cell proliferation, decreased cell number, and 
reduced sebaceous gland size. The underlying mechanism 
involved caspase-3-mediated cleavage of α-catenin, which 
facilitated the activation and nuclear translocation of yes-
associated protein (YAP). YAP promotes the transcription 
of genes associated with cell proliferation [150]. Prolifera-
tion defects were also identified in hematopoietic cells, as 
caspase-3 alters signal transduction by limiting activation 
of the Ras-Raf-MEK-ERK [149], among others, thereby 
impacting proliferation.

Caspase-3 deletion resulted also in abnormal cell dif-
ferentiation as was proved in different cell types. Impaired 
osteoblastic and osteoclastic differentiation was detected in 
caspase-3-deficient mice. Regarding the molecular signals, 
over-activated TGF-β/Smad2 pathway, which may lead to 
the compromised Runx2/Cbfa1 expression, was detected 
in preosteoblasts. Furthermore, the upregulated expression 
of p53 and p21, along with downregulated expressions of 
Cdk2 and Cdc2, and ultimately increased replicative senes-
cence, were identified in caspase-3-deficient mice. These 
alterations ultimately resulted in delayed ossification and 
decreased bone mineral density in caspase-3-deficient 
mice compared to WT mice [30]. The role of caspase-3 in 
osteoclast differentiation was later confirmed, with primary 
osteoclasts unable to differentiate in response to RANKL in 
the absence of pro-caspase-3 [151]. Furthermore, caspase-3 
deficiency impacted the differentiation of myoblasts, lead-
ing to a total reduction in skeletal muscle mass. This effect 
was associated with proteolytic function of caspase-3 that 
activates pro-myogenic Mammalian Sterile Twenty-like 
kinase (MST1) [29].

Since the process of regeneration includes both prolif-
eration and differentiation, making it unsurprising that mice 
lacking caspase-3 exhibited deficiencies in skin wound 
healing and in liver regeneration [152]. Furthermore, the 
complexity of caspase-3 functions extends to its impact on 
hematopoietic stem cells homeostasis detected in caspase-
3-deficient mice [149].

Caspase-3 seems to be important for cell survival gan-
glion cells and hair cells. Caspase-3 knockout mice devel-
oped deafness with accompanying degeneration of spiral 
ganglion neurons and hair cells in the inner ear. The gan-
glion neurons in caspase-3 exhibit morphological features 
characteristic for necrosis [153]. Neural development of 
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are compensated by other enzymes. In accordance with this, 
caspase-7-deficient MEFs only exhibited a slight survival 
advantage as compared with normal MEFs when treated 
with inducers of apoptosis. The authors of the study specu-
late about compensation by caspase-3 [186].

In contrast, caspase-7-deficient mice were protected 
against lipopolysaccharides (LPS)-induced mortality and 
LPS-induced lymphocyte apoptosis, independently of the 
excessive production of serum cytokines, showing that cas-
pase-7 is not required for the secretion of pro-inflammatory 
cytokines and chemokines in this process [177]. Further 
studies on optic nerve (ON) injury indicated a significant 
apoptotic role of caspase-7 in the process. Optic nerve crush 
caused a progressive loss of retinal ganglion cells (RGCs), 
which was reduced in caspase-7-deficient mice. ON-induced 
thinning of ganglion cell complex was significantly amelio-
rated in caspase-7-deficient mice after injury as well [187].

Non-apoptotic effect of caspase-7 deficiency

Caspase-7 deficiency coincided with an altered expression 
of osteogenic markers, proposing a role of caspase-7 in dif-
ferentiation of bone cells. Diverse effects were detected in 
intramembranous vs. endochondral bones. Intramembra-
nous caspase-7-deficient bone showed a statistically sig-
nificant decrease in volume while mineral density was not 
altered. Conversely, endochondral bone showed constant 
volume but a significant decrease in mineral density in the 
mutant mice [179]. This might point to multiple downstream 
functions of caspase-7, which are selectively applied in the 
two models of ossification.

Caspase-7 deficiency further resulted in delayed miner-
alization and/or hypomineralization of incisor enamel [31]. 
Notably, caspase-7 has a different localisation in the epithe-
lial cells on the lingual side of rodent incisor where enamel 
is not secreted (caspase-7 negative) and the labial side of 
continuously renewing ameloblasts (caspase-7 positive). It 
is possible that caspase-7 is involved in the modulation of 
ameloblast functional differentiation by cleaving its direct 
target Oct4 [188], which was located in the cervical loop, 
a stem cells niche where progenitors of future ameloblasts 
reside [189].

Caspase-7 was speculated to regulate the number of mast 
cells localised in the dermis [180]. Notably, cleaved cas-
pase-7 was observed in mast cells and its deficiency in adult 
skin resulted in an increased mast cell number.

Inflammatory caspases

The phenotypes of mice deficient for inflammatory caspases 
are listed in Table 5.

[163]. Some of these abnormalities bear resemblance to the 
morphological or behavioural pathologies of AD and HD, 
which result from axonal degeneration [163]. The mecha-
nism might be mediated by cleavage of β-amyloid precursor 
protein (APP) by beta-secretase during trophic factor depri-
vation. APP binds to DR6 leading to degeneration of axons 
by caspase-6 [170].

Caspase-6 was revealed in host defence against IAV infec-
tion and loss of caspase-6 impaired viral clearance. Reduced 
Z-DNA-binding protein 1 (ZBP1)-mediated NOD-, LRR- 
and pyrin domain-containing protein 3 (NLRP3) inflamma-
some activation was observed in caspase-6-deficient bone 
marrow-derived macrophages [160]. NLRP3 is known as an 
intracellular sensor that detects a broad range of microbial 
motifs and mediates formation of NLRP3 inflammasome 
leading to activation of caspase-1 and release of cytokines 
[171].

Caspase-6 was further observed to control the balance 
between cell proliferation and differentiation by cleaving 
substrates involved in maintaining B cell quiescence [167]. 
Increased number of G1 cells in caspase-6-deficient mice 
did not translate into dysregulation of overall B cell num-
bers in adult mice, but rather into an elevation of serum 
immunoglobulin levels [172].

Caspase 7

Caspase-7 was described as an executor of apoptosis [143, 
173, 174], functionally distinct from caspase-3 [173], with 
a recently discovered non-canonical function as death 
facilitator [175]. Moreover, it was observed to participate 
in inflammation [176, 177]. Caspase-7 activation during 
apoptosis is mediated via initiator caspases. Under inflam-
matory conditions, caspase-7 activation requires caspase-1 
inflammasomes [176, 178]. Additionally, various non-lethal 
functions were further associated with caspase-7, such as 
bone formation [179], mineralisation of incisor enamel [31], 
regulation of mast cell population in dermis [180], or modu-
lation of extracellular matrix in vessels [181]. Caspase-7 
inhibition has potential application in neurodegenerative 
disorders such as AD and HD [182] and prevention of lym-
phocyte cell death in sepsis [183]. Caspase-7 gene has been 
linked with rheumatoid arthritis [184], and insulin-depen-
dent diabetes mellitus [185]. Caspase-7-deficient mice are 
born with normal appearance, organ morphology, and lym-
phoid development [186].

Apoptotic effect of caspase-7 deficiency

Since the caspase-7-deficient mice are mostly normal, it is 
not easy to judge whether its role in distinct organ systems is 
very specific, involves fine tuning, or if caspase-7 functions 
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mouse 
strain

development/
phenotype

apoptotic/ non-apoptotic/unspecified effect reference

Casp-1−/− C57BL/6J normal development thymocytes resistant to FasL apoptosis, abnormal il-1 
distribution

[201]

Casp-1−/− 129/Sv normal development no alterations in apoptosis, defect in il-1 production [202]
Casp-1−/− C57BL/6J decreased brain damage reduced edema and lesions caused by ischemic injury [217]
Casp-1−/− C57BL/6J protection against ARF various effects [198, 

214]
Casp-1−/− C57BL/6J prolonged response of lungs to 

LPS
altered regulation of apoptosis, absent il-1β production 
in neutrophils treated by lps

[205]

Casp-1−/− C57BL/6J abnormal reactions to bacterial 
infection

diverse effects [210, 
211]

Casp-1−/− C57BL/6J protection against cisplatin-
induced ATN

protection from apoptosis [216]

Casp-1−/− C57BL/6J thicker retina after light exposure 
and I/R injury

apoptosis of retinal neurons after excessive light exposure 
and I/R injury

[206]

Casp-1−/− - improved myocardial infarction reduced apoptosis associated with decreased activation of 
caspase-3

[204]

Casp-1−/− C57BL/6J increased susceptibility to IAV decreased cytokine production [209]
Casp-1−/− C57BL/6J increased susceptibility to 

induced tumorigenesis
reduced apoptosis,
increased proliferation

[207]

Casp1−/−Casp11Tg* C57BL/6 altered response to bacterial 
infection

failure in secretion of il-1b and il-18 in response to 
various stimuli, lethal response to lps stimulation

[218]

Casp-1−/− C57BL/6J liver damage in HS model altered regulation of cell death [203]
Casp-1−/− C57BL/6J altered metabolism protection form non-alcoholic steatohepatitis, atherosclero-

sis, obesity (age and sex-dependent manner)
[198, 
219, 220]

Casp-1−/− C57BL/6J abnormal reaction to IAV induction of more severe pneumonia by iav, increased 
replication rate

[208]

Casp-1−/−11−/−12−/− C57BL/6 no overt abnormalities no abnormalities in apoptosis, no abnormalities in septic 
shock (compared to Casp-1−/−11−/−)

[236]

Casp-11−/− C57BL/6J normal development fibroblast resistance to apoptosis, resistance to lethal 
dose of lps

[221]

Casp-11−/− C57BL/6J reduced apoptosis in stroke model defect in caspase-3 activation [223]
Casp-11−/− C57BL/6J resistance to allergic lung 

inflammation
decreased levels of leukocytes in bronchoalveolar 
lavage fluid, fewer infiltrating alveolar eosinophils

[229]

Casp-11−/− C57BL/6J increased susceptibility to colitis impaired il-18 production, epithelial barrier, and 
proliferation

[232]

Casp-11−/− C57BL/6 altered response to bacterial 
infection

decreased macrophage cell death, protection from lethal 
dose of lps

[218]

Casp-11−/− C57BL/6 abnormal host-defence response decreased cell migration mediated by actin 
depolymerization

[234]

Casp-11−/− C57BL/6 sensitivity to colitis-associated 
carcinogenesis

decreased stat1 activity [233]

Casp-12−/− 129 X 
C57BL/6J

normal development resistance to ER stress-induced apoptosis, defective apopto-
sis of cortical neurons induced by amyloid-beta protein

[239]

Casp-12−/− C57BL/6J resistance to peritonitis and septic 
shock

dampened production of ifnγ [243]

Casp-12−/− C57BL/6J less severe colonic inflammation enhanced production of antimicrobial peptides [254]
Casp-12−/− C57BL/6J greater mortality in MNV higher viral burden and defective type i ifn response [255]
Casp-12−/− C57BL/6J enhanced malaria clearance at 

blood-stage
enhanced nf-κb activation (via pathway nemo-iκb 
kinase complex - nf-κb)

[256]

Casp-12−/− C57BL/6J severe liver pathology during 
malaria infection

enhanced pro-inflammatory response (not sufficient 
to overcome infection)

[257]

Casp-12−/− C57BL/6J reduced CCl4-induced hepatic 
apoptosis

attenuation of activation of caspase-9 and -3 [251]

Mdx-Casp-12−/− C57BL/6J preserved
muscle function in mdx model

recovery of specific force generation and resistance to 
muscle fibre degeneration

[250]

Table 5  Phenotypes of mice lacking inflammatory caspases. *Mutant mice contain transgenic caspase-11, since caspase-1 and -11 are too close 
in the genome to be segregated by recombination. Consequently, caspase 1–/– mice lack both caspase-11 and caspase-1. HS haemorrhagic shock
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was suspected to cleave caspase-9 and -3, but not caspase-8, 
indicating activation of the intrinsic apoptotic pathway 
[204]. This correlates with study where caspase-1-deficient 
neutrophils were susceptible to Fas-mediated apoptosis. 
Further, delayed LPS-mediated apoptosis was observed in 
WT neutrophils but not in those deficient in caspase-1 [205]. 
A pro-apoptotic effect was observed in studies involving 
retinal neurons injured by excessive light exposure and I/R, 
where reduced apoptosis was observed [206], as well as in a 
model of colitis-associated colorectal cancer [207].

Non-apoptotic effect of caspase-1 deficiency

Given the major role assigned to inflammation, caspase-
1-deficient mice display distinct reactions when exposed 
to viral and bacterial stimuli in comparison with WT mice. 
For instance, upon challenge with IAV, caspase-1-deficient 
mice exhibited a 40% mortality rate, contrasting with the 
10% observed in WT mice, leading to severe diffuse alveo-
lar damage in the lungs of caspase-1-deficient mice [208]. 
This increased susceptibility to IAV infection was associ-
ated with decreased cytokine production [209]. Similarly, 
the absence of caspase-1 led to increased susceptibility 
to Salmonella typhimurium infection [210]. Conversely, 
treatment of caspase-1-deficient mice with LPS injec-
tion resulted in survival advantage compared to WT mice 
[202], and an improved clinical status was was observed 
in caspase-1-deficient mice with Pneumococcal meningitis 
and Pseudomonas aeruginosa corneal infection [211, 212]. 
These findings suggest that caspase-1 operates specifically 
in response to various stimuli and individual cell character-
istics should also be taken into account.

Mice deficient for caspase-1 were defective in the secre-
tion of IL-1β, IL-18, or pro-IL1α [201, 202]. Due to the 
inability to process pro-IL-18, caspase-1-deficient mice 
injected with LPS exhibit defective interferon (IFNγ) pro-
duction. Since IFNγ is an important regulator of cell prolif-
eration, caspase-1-deficient mice show a higher proliferation 
rate in splenocytes after LPS stimulation [213]. Altered 
levels of pro-inflammatory cytokines were also observed 
in other organs and tissues affected by various insults. For 
instance, in acute renal failure (ARF)/acute tubular necrosis 
(ATN), caspase-1-deficient mice display an improved phe-
notype compared to WT mice [214–216]. These mice do 
not show the increase in IL-18 observed in WT mice during 

Caspase-1

Caspase-1 is the best characterized caspase playing an 
essential role in inflammation [190]. Caspase-1 activation 
takes place in assembly of multi-protein complex called 
inflammasome, which is stimulated by several small mol-
ecules derived from infection, tissue damage, or metabolic 
dysfunctions. There are many types of inflammasomes, 
where NLR families are the most common responsible for 
host immune responses against infection, trauma or tissue 
necrosis [191].

Caspase-1 acts on the cleavage of downstream sub-
strates, including the maturation of the inflammatory cyto-
kines, IL-1β and IL-18, which are among its most important 
functions [192]. In addition, caspase-1 activation occurs in 
pyroptosis, a rapid caspase-1-dependent form of cell death 
frequently induced by infected macrophages. During this 
process, cleavage of gasdermin D occurs, serving as a pore-
forming protein in the formation of channels for secretion 
of IL-1β and IL-18 [192, 193]. Some authors also suggest a 
role for caspase-1 in apoptosis [192]. Further, caspase-1 is 
present in a variety of cell types and is involved in numer-
ous cellular processes such as myoblast differentiation and 
fusion to multinucleated myotubes [194], neural cell dif-
ferentiation, or chondrogenesis [195, 196]. Caspase-1 was 
also associated with the regulation of glucose and lipid 
metabolism [197], making it a potential target molecule in 
the treatment of metabolism-related disorders, such as obe-
sity [198], diabetes or osteoarthritis [199], cancer, and non-
alcoholic fatty liver disease [200]. Caspase-1-deficient mice 
are born live with no apparent spontaneous developmental 
defects [201].

Apoptotic effect of caspase-1 deficiency

Caspase-1-deficient mice did not show major defects in 
apoptosis [201, 202] but manifested higher levels of liver 
damage, cell death, and neutrophil influx in haemorrhagic 
shock. This phenotype indicated hepatoprotective role of 
caspase-1, due to its ability to regulate cell death pathways 
by binding anti-apoptotic proteins Bcl-2 and Bcl-xL [203].

In contrast, caspase-1-deficient mice displayed a sig-
nificant reduction in mortality after myocardial infarction 
suggesting a pro-apoptotic role of caspase-1 in the heart. 
When considering the underlying mechanism, caspase-1 

mouse 
strain

development/
phenotype

apoptotic/ non-apoptotic/unspecified effect reference

T17M/Casp-12−/− C57BL/6J preserved vision in retinal 
pathogenesis

postponed photoreceptor cell death and preservation of 
retinal structural integrity

[249]

Casp-12−/− BL6 obesity and insulin resistance abnormal nlrp3 inflammasome pathway [258]

Table 5  (continued) 

1 3

953



Apoptosis (2024) 29:938–966

assigned to decreased activation of caspase-3. Caspase-11 
further contributed to macrophage death during Salmonella 
typhimurium infection [231]. Importantly, the process was 
not dependent on IL-1β/IL-18 maturation and caspase-11 
was shown activated in non-canonical inflammasome dur-
ing this process.

Non-apoptotic effect of caspase-11 deficiency

Caspase-11-deficient mice were found to be protected 
from sepsis induced by LPS, and they manifested defective 
secretion of interleukins [221]. Based on this observation, 
caspase-11 was indicated to interact with caspase-1 and pro-
mote its activation [221]. Since caspase-1 and caspase-11 
are located close to each other on the chromosome, caspase-
1-deficient mice also lacked caspase-11, making it difficult 
to separate their functions. Further studies using genetically 
targeted mice provided insight into the specific roles of cas-
pase-11. Thus caspase-11, rather than caspase-1, may be 
the critical effector of deleterious inflammatory responses 
[218].

Caspase-11-deficient mice manifested increased sus-
ceptibility to inflammatory disease such as colitis due to 
impaired IL-18 production, resulting in reduced intestinal 
epithelial barrier integrity and decreased cell proliferation 
[232]. Additionally, they were more sensitive to colitis-
associated carcinogenesis, showing increased expression 
of proteins associated with early-stage of angiogenesis. The 
heightened susceptibility of caspase-11-deficient mice was 
associated with decreased Signal Transducer and Activa-
tor of Transcription 1 (STAT1) activity [233]. On the other 
hand, caspase-11-deficiency conferred protection from 
allergic lung inflammation. These mice showed decreased 
levels of leukocyte numbers in bronchoalveolar lavage fluid 
and had fewer infiltrating alveolar eosinophils [229].

Caspase-11 was suggested to play role in regulation of 
lymphocyte migration during inflammation. Caspase-11 
interacts with actin interacting protein 1 (Aip1), an activator 
of cofilin-mediated actin depolymerisation [234].

Caspase-12

Despite being initially classified as an inflammatory caspase, 
caspase-12 function has not yet been sufficiently explained 
[235, 236]. Caspase-12 differs from inflammatory cas-
pase-1 and -11 in several aspects. It does not participate in 
the maturation of IL-1β and is not present in macrophages, 
which are typical models of inflammatory cells [237]. Some 
authors speculate about its function in cell death induced by 
ER stress, which frequently occurs due to the accumulation 
of misfolded proteins and changes in calcium homeostasis 
[238, 239]. Activation of caspase-12 was detected in some 

ARF; instead, they exhibit decreased neutrophil infiltration 
[214]. Furthermore, lower brain IL-1β levels protect cas-
pase-1-deficient mice from ischemia [217, 218].

Besides changing of inflammatory status, caspase-1 defi-
ciency also resulted in increased proliferation of colonic 
epithelial cells in a model of colitis-associated colorectal 
cancer [207].

Another category of caspase-regulated processes is 
the metabolism. Caspase-1-deficient mice develop obe-
sity depending on age and sex when kept on high-fat diet. 
This phenotype was attributed to lower levels of IL-18, as 
IL-18-deficient mice show a similar tendency [198]. The 
absence of caspase-1 further decreased the harmful effect 
of high fat diet on the liver [219]. Moreover, caspase-1 defi-
ciency improved the phenotype in atherosclerosis-prone 
apolipoprotein E-deficient (Apoe−/−) mice displaying poor 
lipoprotein clearance, resulting in atherosclerotic plaques. 
In this case, caspase-1 promoted atherosclerosis by enhanc-
ing the inflammatory status of the lesion [220].

Caspase-11

The functions of caspase-11 remain unclear. While its 
expression in healthy mice was low, it is highly inducible 
upon different stimuli [12], including injection of LPS [221]. 
Unlike other caspases, caspase-11 requires a transcription-
dependent signal to up-regulate its cellular expression prior 
to its activation [12]. In contrast to caspase-1, caspase-11 
activation does not require an upstream sensory complex 
and can be directly activated by LPS [222]. Despite being 
classified as an inflammatory caspase, it also shares some 
characteristic with initiator group [223]. The main function 
of caspase-11 is the induction of non-canonical pathway 
of pyroptosis [224]. Once this process is activated, cas-
pase-11 cleaves the major substrate protein gasdermin D 
[225]. Unlike caspase-1, caspase-11 cleaves gasdermin D 
independently of inflammasome mediators [12, 223]. Cas-
pase-11 also participates in apoptosis [226] where it cleaves 
caspase-3 [223]. Additionally, it regulates autophagy in 
response to bacterial insults [227] and modulates intracel-
lular trafficking by influencing of actin polymerization and 
cell migration [228]. Furthermore, caspase-11 was revealed 
to play a role in the pathophysiology of asthma and allergy 
[229]. It also can be involved in brain injury-induced neu-
ronal pyroptosis [230]. Caspase-11-deficient mice are born 
live without significant developmental defects [221].

Apoptotic effect of caspase-11 deficiency

Caspase-11 exhibited reduced population of apoptotic cells 
after being subjected to middle cerebral artery occlusion, a 
mouse model of stroke [223]. The decreased apoptosis was 
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pathways contribute to retinal pathogenesis in T17M mice 
through activation of caspase-12 [249].

In carbon tetrachloride-induced hepatocytes, reduced 
apoptosis was observed in caspase-12-deficient mice com-
pared to WTs, resulting in decreased liver damage. This 
phenotype was accompanied by attenuated activation of 
caspase-9 and -3, supporting caspase-12 action on caspase-3 
directly and/or indirectly via caspase-9 activation [251].

Non-apoptotic effect of caspase-12 deficiency

Similar to its apoptotic functions, the non-apoptotic roles 
of caspase-12 were dependent on specific cell types and 
stimuli. Caspase-12-deficient mice have been observed to 
have increased resistance to polymicrobial sepsis and peri-
tonitis [243], as well as to some bacterial infections [254], 
when compared to WT mice. The survival advantage of 
the caspase-12-deficient mice resulted from more efficient 
clearance of bacterial infection than in WT littermates. This 
was accompanied by increased levels of pro-inflammatory 
cytokines, including IFNγ, which was critical for the pro-
cess [243]. Consistently, improved pathogen clearance was 
associated to NF-κB activation [254].

In contrast to bacterial infection, caspase-12-deficient 
mice exhibit greater mortality during West Nile virus (WNV) 
infection compared to WT mice. This was accompanied by 
exacerbated neurological symptoms, higher viral burden 
and defective IFNβ response [255]. Despite increased level 
of pro-inflammatory cytokines [256], caspase-12-deficient 
mice were not universally protected from malaria infection 
[257].

Higher level of obesity was observed on a high-fat diet 
in caspase-12-deficient mice compared to their WT counter-
parts. They increased liver weight, serum cholesterol, liver 
triglycerides and elevated liver damage. They also devel-
oped glucose intolerance and insulin resistance. This phe-
notype might be dependent on the NLRP3 inflammasome, 
since Casp12−/−Nlrp3−/− mice did not develop obesity and 
were similar with WT mice [258].

Deletion of caspase-12 improved phenotype of mdx 
mice, model for DMD. ER stress is heightened in dystro-
phic muscles and contributes to the pathology of DMD. 
Mdx−/−Casp-12−/− mice had a 75% recovery of both specific 
force generation and resistance to eccentric contractions. 
The compensatory hypertrophy normally found in Mdx−/− 
muscles was normalized when caspase-12 was deleted. The 
mechanism by which caspase-12 deletion preserves Mdx−/− 
muscle function is not known. Possible mechanisms may 
include an improvement in regeneration, protection of con-
tractile proteins from degradation but also apoptotic aspect 
cannot be excluded [250].

models of apoptotic induction [240, 241], while in others, 
it was not [239, 242]. Some studies documented a suppres-
sive effect of caspase-12 on caspase-1, which would then 
enhance vulnerability to sepsis [243]. However, this func-
tion of caspase-12 has also been questioned [244]. These 
contradictory scientific outcomes make caspase-12 difficult 
to classify and characterize its physiological function. Fur-
thermore, the activation of caspase-12 is not fully under-
stood. In some circumstances, it has been observed to be 
activated by calpain, TRAF2, and caspase-7 [245–247].

Caspase-12 was detected in various tissues during devel-
opment, but its constitutive expression was associated with 
only some cell types, such as epithelia or primary fibroblasts 
[180, 240, 245]. Interestingly, caspase-12 was found in 
developing bone and may regulate the expression of osteo-
genic markers such as Alpl, Bglap, and Phex [248]. Mice, 
unlike humans, express full length caspase-12 which can 
undergo proteolytic cleavage [240]. Multiple roles of cas-
pase-12 thus were hypothesized in mice. In humans, most 
people express truncated form of caspase-12 lacking cata-
lytic domain and only about 20% African descent people 
express full length protease which is a risk factor for devel-
oping sepsis [14]. From the clinical aspect, caspase-12 has 
shown potential in the treatment of inherited retinopathy 
[249] and Duchenne muscular dystrophy (DMD) [250]. 
Additionally, it is speculated to play a role in neurological 
diseases due to its putative engagement as ER stress sensor 
[239]. Remarkably, caspase-12-deficient mice are born live 
without significant developmental defects [239].

Apoptotic effect of caspase-12 deficiency

Engagement of caspase-12 in apoptosis was dependent 
on different stimuli [239]. The reduction of apoptosis as 
observed in different disease model in caspase-12-deficient 
mice could be either beneficial or harmful for treatment 
of pathologies [239, 249, 251]. Caspase-12-deficient cor-
tical neurons were defective in ER apoptosis induced by 
amyloid-β protein and thus caspase-12 may contribute to 
amyloid-β neurotoxicity [239]. Mechanism of ER induced 
apoptotic pathway was not understood. One of the hypoth-
eses speculates that an imbalance in Ca2+ homeostasis can 
cause calpain translocation to the ER leading to activation 
of caspase-12 [252]. Caspase-12 then induces the caspase-
3-dependent apoptotic pathway through the activation of 
caspase-9 [253].

Caspase-12 ablation in T17M retinas (model of retinal 
pathology) resulted in postponed photoreceptor cell death 
and preservation of retinal structural integrity with the sce-
narios where ER stress-IRE1-TRAF2-Csp12-Csp3/7 and 
the calcium-induced active calpain-caspase-12-Csp-3/7 
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Non-apoptotic effect of caspase-14 deficiency

Caspase-14 deficiency particularly impacted skin cornifica-
tion [263]. The skin of new-born caspase-14-deficient mice 
was shinier and more lichenified than in WT mice [266]. 
Furthermore, caspase-14-deficient mice have decreased 
epidermal hydration, higher transepidermal water loss, and 
three times lower levels of natural moisturizing factors [260, 
266]. This is because, in caspase-14-deficient mice, process-
ing of profilaggrin, the only known substrate of caspase-14, 
into fillagrin was initiated but not completed, resulting in 
the accumulation of filaggrin fragments, which leads to var-
ious aberrant phenotypes [260].

The skin of caspase-14-deficient mice was also more sen-
sitive to different stimuli compared to WT mice. Following 
repetitive treatment by acetone, a higher incidence of large 
parakeratotic plaques was observed in caspase-14-deficient 
mice compared to WTs [268]. Additionally, the skin of cas-
pase-14-deficient mice exhibited heightened sensitivity to 
the formation of cyclobutene pyrimidine dimers after UVB 
irradiation, resulting in increased levels of UVB-induced 
apoptosis [266]. Furthermore, caspase-14 ablation resulted 
in an increase in bacterial richness and diversity dur-
ing steady-state conditions and caspase-14-deficient mice 
showed enhanced antibacterial response compared to WT 
mice when challenged with bacteria [269].

Comparison of knockout animals

Mice deficient in caspases displayed some interesting pheno-
type similarities. The most apparent resemblance was seen 
in decreased elimination of neurons, resulting in excessive 
neural tissue incompatible with life in caspase-3 or -9-defi-
cient mice [69, 131, 270]. A similar observation was made in 
Apaf-1 deficient mice [271], highlighting the crucial role of 
the intrinsic apoptotic pathway for neural development and 
viability. Caspase-8-deficient mice also exhibited abnor-
malities of neural system; however, the lethality observed 
in caspase-8 null mice resulted from uncontrolled necrop-
tosis [101]. Therefore, the extrinsic pathway likely plays 
a minor or specific role in this process. Mice lacking the 
caspase-3 or -9 (or also Apaf-1) suffered from anatomic and 

Caspase with differentiation function

The phenotypes of mice deficient for caspase-14 are listed 
in Table 6.

Caspase-14

Caspase-14 stands out as a unique member of the caspase 
family, distinct from both apoptotic and inflammatory 
groups of caspases. Activation of caspase-14 primar-
ily occurs in epithelial cells of the skin and hair follicles 
undergoing a special type of cell death called cornification 
[259]. Its crucial role lies in the processing of profilaggrin 
to filaggrin and later into hygroscopic amino acids, which 
act as one of the elements of natural moisturizing fac-
tors, thereby contributing to the maintenance of the skin 
barrier against water loss [260]. The clinical relevance of 
caspase-14 is particularly evident during the terminal dif-
ferentiation of skin keratinocytes and the maintenance of 
normal stratum corneum [261]. In contrast to other cas-
pases expressed ubiquitously in various cells, caspase-14 
was located specifically in cornifying epithelia and hair 
follicles, Hassall’s bodies of the thymus gland, and in the 
forestomach of rodents [259, 262]. Although the regulation 
of the caspase-14 gene has not been fully elucidated, it is 
speculated to be tightly connected with processes of epider-
mal differentiation [263].

Furthermore, caspase-14 expression has been described 
in various types of cancer and diabetic retinopathy [263] 
In the context of the skin diseases, increased expression 
of caspase-14 has been found in cancerous lesions, while 
decreased expression was associated with psoriasis or 
atopic dermatitis [264, 265]. Notably, caspase-14-deficient 
mice born live, are fertile, and live as long as WT mice [260, 
266].

Apoptotic effect of caspase-14 deficiency

Caspase-14 was not associated with activation in response 
to apoptotic stimuli [267].

Table 6  Phenotypes of mice lacking caspase-14
mouse strain development/

phenotype
apoptotic/ non-apoptotic/unspecified effect refer-

ence
Casp-14−/− Swiss Webster X 129 shinier and more lichenified skin abnormal cleavage of profilaggrin [266]
Casp-14−/− Swiss Webster X 129 reduced epidermal barrier defect in the terminal filaggrin degradation [260]
Casp-14−/− Swiss Webster X 129 predisposed parakeratosis abnormal differentiation and the maintenance of 

stratum corneum
[268]

Casp-14−/− Swiss Webster X 129 enhanced antibacterial response imbalance of the skin-resident bacterial 
communities

[269]
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Future perspective of caspase research

Caspases have been recognized as great promising targets 
for treating various human diseases [273–275]. However, 
the efficacy, specificity, and side effects of pharmacologi-
cal caspase inhibitors, the primary tools in clinical studies 
and future applications, remain significant challenges [275]. 
Despite recent advancement such as nanoparticle delivery 
systems and CRISPR/Cas9 gene editing showing promising 
potential in caspase treatment [276, 277], many questions 
about caspases themselves remain unanswered. The main 
challenge lies in describing and understanding the multiple 
and sometimes contradictory functions of caspases. This is 
closely related to further identification of their substrates 
and downstream pathways, including caspase regulators. 
Notably, the switch between lethal and non-lethal functions 
is considered a fundamental question, with several mecha-
nisms proposed to regulate the process, such as subcellular 
localisation [278], availability of specific substrates [279], 
compensation by anti-apoptotic proteins [280, 281], vari-
ous levels of activation [282], the biological status of cells 
(cell type, state of growth/differentiation), cellular context 
(environment), caspase activation vs. non-activated state, 
and mechanisms of activation. Many of these aspects may 
be further explored using mouse models, with temporal 
(Tamoxifen-inducible gene deletion) and/or spatial regula-
tion (Cre/loxP recombination system) of caspase deficiency 
helping to specify caspase engagement in the development 
of different organs. However, it is important to note that 
while mouse models are valuable, there are limitations to 
directly extrapolating their findings to human research. For 
instance, caspase-8 deficiency is incompatible with life in 
mice but only results in immunological disorders in human 
[283]. Finally, the focus of the field should be on transla-
tional work and complementing mechanistic models drawn 
from experimentation in mice.

Conclusion

Mouse caspase models has greatly contributed to the prog-
ress in explaining the traditional but also emerging roles of 
these cysteine-aspartate proteases in the last decades. We 
hope that this comprehensive overview of available mouse 
models will not only acknowledge their hitherto utility but 
also emphasize their importance in enhancement of the 
development within this research field associated with basic 
as well as applied research.
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thors contributed to the article and approved the submitted version.

functional abnormalities of the inner ear, which was again 
attributed to the decreased levels of the intrinsic pathway of 
apoptosis [116, 133, 144].

Insufficient apoptosis further impacted caspase-2 or 
-9-deficient ovaries [46, 125], albeit with different timing. 
Conversely, deficiency of the anti-apoptotic Bcl-2 resulted 
in decreased oocyte population [272], further supporting 
the importance of mitochondria in this process. Surpris-
ingly, all caspase-deficient mice, except caspase-14, showed 
some alterations in apoptosis depending on the stimuli or 
cell types (see Tables 3, 4 and 5). This suggests existence 
of various pathways that may be employed in specific cells 
and situations.

Deficiency of inflammatory caspases resulted in altered 
response to various types of infection, with either beneficial 
or deteriorative effects for the mutant mice (see Table 5). 
As observed in caspase-1 or -11-deficient mice, the pheno-
type may result from impaired cytokine production [202, 
232]. On the contrary, caspase-12-deficient mice showed 
an increased pro-inflammatory response [257], highlighting 
the specific character of caspase-12.

In terms of non-lethal functions, caspase-3 or -7 defi-
ciency has been linked to abnormalities in differentiation 
and the formation of hard tissues [30, 31, 179]. Although 
both deficient models have shown alterations in osteogenic 
gene expression [30, 179], the function of these caspases 
may also involve the degradation of stem-cell-specific 
factors [43, 188]. Caspase-3 or -12 deficiency have been 
implicated in skeletal muscle function [29, 250], but 
unrelated mechanisms were suggested to be involved. 
Caspase-1, -3 or  -8 have been observed to regulate the 
proliferation [102, 134, 150, 207] of various cell types, 
making it difficult to determine a general mechanism for 
this process. Additionally, caspase-1, -2 or caspase-12 
deficient mice have shown alterations in metabolism and 
the development of obesity, with specificities for each 
caspase [76, 198, 258]. Impaired synaptic formation and 
plasticity have been observed in caspase-9-deficient [122] 
or caspase-3-deficient mice [154, 155]. Furthermore, 
behavioural alterations have been detected in caspase-3 
or caspase-6-deficient mice [154, 155, 163]. While cas-
pase-1 or -2-deficiency has been associated with increased 
susceptibility to tumor induction [75, 207], deficiency of 
caspase-3 has been linked inversely to a decreased inci-
dence of cancer [147]. These data highlight the diverse 
roles of caspases, not only as tumour inhibitors but also 
as tumour inducers, across various pathways. In general, 
the apoptotic pathway seems to be more conserved com-
pared to non-apoptotic mechanisms, and disruption of the 
apoptotic function of caspases results in more devastating 
effect compared to abnormalities resulting from their non-
apoptotic roles.
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