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Abstract
Melanoma is one of the most prevalent skin cancers, with high metastatic rates and poor prognosis. Understanding its
molecular pathogenesis is crucial for improving its diagnosis and treatment. Integrated analysis of multi-omics data
from 207 treatment-naïve melanomas (primary-cutaneous-melanomas (CM, n= 28), primary-acral-melanomas (AM,
n= 81), primary-mucosal-melanomas (MM, n= 28), metastatic-melanomas (n= 27), and nevi (n= 43)) provides
insights into melanoma biology. Multivariate analysis reveals that PRKDC amplification is a prognostic molecule for
melanomas. Further proteogenomic analysis combined with functional experiments reveals that the cis-effect of
PRKDC amplification may lead to tumor proliferation through the activation of DNA repair and folate metabolism
pathways. Proteome-based stratification of primary melanomas defines three prognosis-related subtypes, namely, the
ECM subtype, angiogenesis subtype (with a high metastasis rate), and cell proliferation subtype, which provides an
essential framework for the utilization of specific targeted therapies for particular melanoma subtypes. The immune
classification identifies three immune subtypes. Further analysis combined with an independent anti-PD-1 treatment
cohort reveals that upregulation of the MAPK7-NFKB signaling pathway may facilitate T-cell recruitment and increase
the sensitivity of patients to immunotherapy. In contrast, PRKDC may reduce the sensitivity of melanoma patients to
immunotherapy by promoting DNA repair in melanoma cells. These results emphasize the clinical value of multi-omics
data and have the potential to improve the understanding of melanoma treatment.

Introduction
Melanoma is the most aggressive type of cancer and

exhibits robust treatment resistance. According to global
cancer statistics, the incidence of melanoma is 3/100,000.
More than 90 thousand new cases in the USA and more

than 30 thousand new cases in China are estimated each
year1–3. The incidence of melanoma has risen rapidly over
the past few decades. Although most melanoma patients
are cured surgically (> 90%) if diagnosed early, ~15% of
melanomas further metastasize, with a poor survival rate.
Therapeutic advances, including the use of mitogen-
activated protein kinase (MAPK) inhibitors and immu-
notherapy, are promising for improving the survival rate4,5.
Melanomas arise from pigment cells, namely, melano-

cytes, which are located in the basal layer of the epidermis.
Melanoma is commonly observed on the skin and can be
classified based on tumor location, nonhair-bearing skin
(palms of the hand, soles of the feet) (acral melanomas;
AMs) or nonextremities (cutaneous melanomas; CMs)6.
Epidemiological studies have shown that CMs mainly
occur in white populations with fair skin, whereas pig-
mented populations from Asia mainly develop AMs.
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Moreover, a significant proportion of AMs lack mutations
in BRAF, NRAS, or NF17; thus, AM patients could hardly
benefit from BRAF and MEK inhibitors. Therefore, there
is an urgent need to identify novel driving genomic var-
iants in AMs.
Mucosal melanoma (MM) accounts for 0.8%–3.7% of

melanomas in the Western population8 but accounts for
20%–30% of melanomas in the Chinese population. MM
is typically detected at a more advanced stage, which
poses treatment challenges compared to CMs9. Genomic
studies have indicated that MMs exhibit a markedly dif-
ferent genomic landscape than CMs10,11. Despite the
progress, this knowledge has not yet been translated into
efficacious systemic therapies. The drugs that have been
approved to treat advanced CMs work less well for most
patients with MMs. Novel targets and treatment strategies
for MM patients are clearly needed.
Previous genomic and transcriptomic studies have elu-

cidated the molecular landscape of melanomas7,12. For
instance, The Cancer Genome Atlas (TCGA) published a
melanoma study involving 331 melanoma patients,
describing the landscape of somatic alterations in CMs
and identifying multiple significant driver genes, including
BRAF, NRAS, TP53, NF1, and CDKN2A12. Subsequently,
Hayward et al. conducted a whole-genome analysis on 183
melanoma samples and revealed diverse mutational fea-
tures across melanoma subtypes7. Moreover, pathways
such as the DNA damage response and cell proliferation
pathways have been reported to be associated with the
genome instability of melanoma, and mutations, including
ATM and ATR, have been reported in some melano-
mas13,14. Despite progress, studies on such aspects have
focused on a single data platform, and the mechanism
underlying gene alterations that drive cancer phenotypes
in patients with melanomas remains unknown.
Melanomas are characterized by high immunogenicity,

and immune checkpoint blockade (ICB) has become the
first-line treatment for melanoma. However, owing to the
high genetic heterogeneity, the clinical efficacy of ICBs
differs among patients. To develop more effective thera-
pies, combinational strategies are being explored. For
instance, Sullivan et al. reported that combination clinical
trials of BRAF, MEK, and PD-1/PD-L1 antagonists sug-
gested an overlapping benefit between BRAF-targeted
approaches and immunotherapy15. However, a consider-
able number of patients are resistant to current combi-
nation treatments. Given the clinical momentum in
combining targeted therapy and immunotherapy, it is
important to identify novel druggable genomic alterations
and determine their impact on the tumor immune
microenvironment.
In this study, we conducted extensive genomic, tran-

scriptomic, proteomic, and phosphoproteomic char-
acterization of melanoma samples obtained from a large

Chinese cohort of 207 cases, including 137 primary-
melanoma cases (28 CM cases, 81 AM cases, 28 MM
cases), 27 metastatic-melanoma cases, and 43 nevus cases.
Multivariate analysis of age, sex, histological type, etc.,
proteogenomic and phosphoproteomic analysis, com-
bined with functional experiments utilizing both primary
tumor cells derived from patients and in vitro assays
revealed that PRKDC amplification not only led to
increased cognate protein expression, but also strongly
associated with the activation of one-carbon metabolism
and, in turn, might promote tumor cell proliferation and
impact prognosis. Proteome-based stratification of mela-
nomas results in three molecular subtypes, namely, S-I
(featuring ECM), S-II (featuring angiogenesis), and S-III
(featuring cell proliferation), which show a significant
correlation with the clinical outcome. Immune clustering
defined three immune clusters across the histological
subtypes. Moreover, further analysis combined with an
independent anti-PD-1 treatment cohort revealed that
activation of the MAPK7-NFKB signaling pathway may
facilitate T-cell recruitment to the tumor microenviron-
ment and enhance the sensitivity of patients to immu-
notherapy; on the other hand, PRKDC may reduce the
sensitivity of melanoma patients to immunotherapy by
increasing DNA damage and enhancing tumor cell pro-
liferation. Overall, our study provides insight into the
potential mechanistic significance of melanoma tumor-
igenesis and serves as a resource to help decipher biolo-
gical insight and address unmet clinical needs.

Results
Proteogenomic landscape of melanomas
To obtain a comprehensive molecular understanding of

melanoma, we assembled formalin-fixed paraffin-embed-
ded (FFPE) tissues derived from a cohort of 155 mela-
noma patients, with 137 primary melanomas (PMs) (CMs:
81 AMs; 28 CMs, 28 primary MMs), and 27 metastatic
melanomas. Nine of the 27 metastatic melanomas were
matched with their corresponding primary tumor sam-
ples. The tumor samples were evaluated by two skilled
pathologists to ensure that tumor cells accounted for
more than 80% of each tumor region (Materials and
methods). Additionally, we incorporated 43 nevus tissues
into our cohort as benign controls (Fig. 1a). The neo-
plastic cellularity (or tumor purity) ranged from 84% to
97% (median 93%) as judged by pathology review (Sup-
plementary Table S1). Neoplastic cellularity was evaluated
independently by whole-exome sequencing (WES) using
the ABSOLUTE algorithm16 (Materials and methods),
and ranged from 71% to 90% (median 84%) (Supple-
mentary Table S1). Clinical data, including sex, age at
diagnosis, tumor grade, tumor site, and survival, are
summarized in Supplementary Table S1 and Fig. 1b. WES
was performed for 188 samples (41 nevus samples, 124
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Fig. 1 (See legend on next page.)
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PM samples, and 23 metastatic melanoma samples).
Transcriptome analysis was performed for 114 samples
(nevus samples, n= 20; PM samples, n= 75; metastatic
melanoma samples, n= 19). Mass spectrometry (MS)-
based proteomic analysis was conducted for all 207 sam-
ples (nevus samples, n= 43; PM samples, n= 137; meta-
static melanoma samples). A phosphoproteomic analysis
was conducted for 139 samples (nevus samples, n= 20;
PM samples, n= 102; and metastatic melanoma samples,
n= 17) using the Fe-NTA phosphopeptide enrichment
strategy (Fig. 1c).
WES data helped achieve 110-fold mean target cover-

age, with 93.5% of the bases achieving at least 10-fold
coverage. The overall proportions of SNVs were similar to
those observed in the TCGA cohort7,12, with cytosine to
thymine (C > T) transition observed as the most fre-
quently occurring SNV (Fig. 1d). Comparative analysis
across studies based on mutational frequencies derived
from the TCGA cohort12, Australian cohort7, and six
other studies17–22 confirmed the diverse mutational fre-
quencies of hotspot genes among AMs, CMs, and MMs
(Fig. 1e). For example, the mutation frequency of BRAF is
more than 50% in CMs and less than 5% in MMs.
We identified four mutational signatures by “sigmi-

ner”23 in our melanoma patients, SBS30, SBS1, SBS18,
and SBS7a, associated with patients age at diagnosis, UV
damage, and DNA damage repair (Fig. 1f) (Materials and
methods). To relate the associations of the SBS with
clinical features, patients were dichotomized into SBS-
positive (SBS+) and SBS-negative (SBS–) groups based on
enrichment scores. Survival analysis revealed that only
SBS7a was associated with OS (log-rank test, p= 0.04)
(Fig. 1g). To confirm whether the same signatures and
prognostic associations of SBS7a are robust to the choice
of signature derivation tool, we further conducted a
mutational signature analysis using three additional
methods, “MutationalPatterns”24, “Maftools”25, and “Sig-
ProfilerExtractor”26. As a result, the mutational signatures

calculated by the three approaches remained similar to
the mutational signature characteristics calculated by
“sigminer”. Specifically, SBS30, SBS1, SBS18, and SBS7a
were also identified as the top 4 mutational signatures in
our melanoma cohort (Supplementary Fig. S1a). More-
over, the enrichment scores of SBS30, SBS1, SBS18, and
SBS7a in each sample, which were calculated by the four
tools, remained similar, with an average Spearman cor-
relation of r= 0.90 (p < 0.05) (Supplementary Fig. S1b).
Furthermore, all four approaches confirmed that

patients who harbored elevated SBS7a enrichment scores
had worse prognoses in the TCGA cohort (Fig. 1g and
Supplementary Fig. S1c). We further utilized data from
the TCGA cohort (n= 575) to validate the correlation
between SBS7a and patients’ clinical outcomes. We also
calculated the mutational signatures using the above four
approaches based on WES data from the TCGA cohort.
As a result, SBS7a was also the top mutational signature
in the TCGA cohort (Supplementary Fig. S1d). Moreover,
consistent with our findings, patients with higher SBS7a
enrichment scores also showed shorter OS (Supplemen-
tary Fig. S1e).
Additionally, we did not observe any difference among

the SBS7a enrichment scores of CMs, AMs, and MMs
(Supplementary Fig. S2a), implying that this mutation
signature is more universal than unique to a specific
histological subtype. Further analysis revealed that
patients in the SBS7a+ group had a greater mutational
frequency of NF1 and consequently lower protein
expression of NF1 (Wilcoxon test, p < 0.05) (Supplemen-
tary Fig. S2b, c). In concordant with our findings, previous
research conducted by Helena et al. reported that SBS7a is
related to NF1 mutations27. To explore the molecular
features of the SBS7a+ group, we conducted a compara-
tive analysis of pathway enrichment scores (GSVA scores
based on proteomic data) (Materials and methods) and
protein expression data between the SBS7a+ and SBS7a–

groups. As a result, the DNA repair pathway was

(see figure on previous page)
Fig. 1 Multi-omics landscape of melanoma samples. a Summary of the data and metadata generated in this study. b The pie charts of key
demographic and histologic features of melanoma patient samples characterized in this study. c Schematic of multi-omics analysis of melanomas. A
total of 43 nevi, 28 cutaneous melanomas (CM), 81 acral melanomas (AM), 28 mucosal melanomas (MM) samples, and 27 metastatic cutaneous
melanomas (MCM) obtained from a cohort of 198 patients are analyzed. All samples are prepared as formalin-fixed paraffin-embedded (FFPE) tissue
slides. The white gaps in the schematic represent the missing data. Numbers on the right indicate the samples in each category. d Mutation
colormap of hot spot mutations of melanomas in our cohort. e Bar plots illustrated mutational frequencies for genes with significant differences
between the cohort investigated in our study and previously published melanoma studies. f The relative mutations mutation frequencies of 96 tri-
nucleotide mutation patterns are plotted with SBS30, SBS1, SBS18, and SBS7a mutation patterns in our cohort (n= 124) using tool “signer”.
g Kaplan–Meier curves for overall survival (OS) based on patients with (n= 59) and without (n= 33) SBS7a mutation signature (log-rank test) in our
cohort. h The volcano plot showed the elevated protein pathways in patients with SBS7a mutation signature. i The volcano plot showed the elevated
proteins in patients with SBS7a mutation signature. j The boxplot showed the comparison of the tumor mutation burden (TMB) between patients
with and without SBS7a mutation signature (Wilcoxon test) in our cohort (n= 124). k Venn diagram depicted the cascading effects of CNAs in
patients with and without SBS7a mutation signature.
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significantly enriched in the SBS7a+ group, and proteins
such as PRKDC, POLD4, POLK, and ATR were dom-
inantly overrepresented in the SBS7a+ group (Fig. 1h, i).
Consistently, the samples belonging to the SBS7a+ group
showed significantly higher TMB (Wilcoxon test,
p= 4.55e−02) (Fig. 1j). Intriguingly, correlation analysis
among copy number alterations (CNAs), transcriptome
and proteome data indicated that the samples belonging
to the SBS7a+ group presented more cis-effect events
(Spearman’s correlation, p < 0.05; Materials and methods)
than did the samples belonging to the SBS7a– group,
suggesting that CNAs more profoundly impacted their
cognate transcriptome and proteome in the SBS7a+ group
(Fig. 1k).
Whole-cell extracts of HEK293T cells were used as

quality control (QC) samples for MS. Analysis of this
extract revealed the robustness and consistency of the
mass spectrometer, which was evidenced by considering
a high Spearman’s correlation coefficient (0.88–0.92)
between the proteomes of the QC samples (Materials
and methods) (Supplementary Fig. S2d). For proteomic
analysis, 11,206 proteins were identified (1% false dis-
covery rate (FDR) at the peptide and protein levels), with
7000 proteins per sample on average (Supplementary
Fig. S2e). To analyze and compare the dynamic range of
the melanoma and nevus proteomes, we used the protein
abundance (Materials and methods). The melanoma and
nevus proteomes are highly dynamic, spanning more
than seven orders of magnitude (Supplementary Fig.
S2f). Correlation analysis of paired transcriptomic and
proteomic data revealed that 98.19% of the 4429 mRNA‒
protein pairs detected in all the samples were positively
correlated (Supplementary Fig. S2g) (Materials and
methods), and 1.81% were negatively correlated. The
median Spearman correlation coefficient between 4429
mRNA‒protein pairs was 0.4, which was similar to that
reported in other studies28,29 (Supplementary Table S1).
These strongly positively correlated mRNAs and pro-
teins were enriched in the DNA replication, ECM‒
receptor interaction, mismatch repair, and oxidative
phosphorylation pathways (Supplementary Fig. S2g). A
total of 25,318 phosphosites over 4922 phosphoproteins
were used for phosphoproteomic analysis. In con-
cordantly, 11,832 phosphosites were detected for each
sample. The phosphorylation of some well-known can-
cer driver genes, including RB1 at T373, CDK1 at T161,
and MCM at S27, has been identified exclusively in
tumors. We further verified the enrichment of these
proteins in melanoma tissues by immunohistochemistry
(IHC) with phosphorylation antibodies (Supplementary
Fig. S2h). In general, our study portrayed the systematic
molecular features of melanomas at the multi-omics
level (genomic, transcriptomic, proteomic, and phos-
phoproteomic levels).

Integrative proteogenomic analyses reveal functional
consequences of mutations and CNAs
Genes’ CNAs are strongly associated with clinical out-

comes30. To identify functionally important genes within
CNA regions in our melanoma cohort, we focused on 663
cancer-associated genes (CAGs) (Materials and methods).
A total of 163 significantly positive correlations were
observed for both RNA and proteins, with 18 CAGs,
including 13 kinases (PRKACB, TAOK3, PRKDC, etc.),
and 3 transcription factors (TFs) (PSIP1, TNFAIP3, and
FOXO3), showing a strong association with patient sur-
vival (Fig. 2a–c and Supplementary Table S2). Among
these 18 CAGs, MTSS1 and PRKDC were the top 2 genes
significantly associated with poor patient prognosis, and
PRKDC encodes the kinase DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), which was sig-
nificantly positively correlated with the expression of its
cognate RNA and protein but not with that of MTSS1 in
our cohort or TCGA cohort (Fig. 2d and Supplementary
Fig. S3a). Further survival analysis based on both our
cohort and the TCGA cohort31 indicated that patients
who harbored PRKDC amplification had a worse prog-
nosis (Fig. 2e). We also found that the amplification rates
of PRKDC were significantly higher in AMs and MMs
than in CMs (49% in AMs, 63% in MMs and 18% in CMs)
and were confirmed to be associated with patient clinical
outcomes in all three histological types of melanomas,
consistent with previous studies12,32,33 (Supplementary
Fig. S3b, c). We also evaluated the overlap between
SBS7a+ patients and PRKDC amplification patients.
Among 59 patients who harbored SBS7a+ mutational
signatures, 33 had PRKDC amplifications. By conducting a
prognostic evaluation, we found that patients who had
both SBS7a+ mutational signatures and PRKDC amplifi-
cation had a worse prognosis (Supplementary Fig. S3d).
This result indicated that PRKDC amplification combined
with SBS7a mutation signature might further enhance
tumor malignancy. We further conducted multivariate
Cox regression analysis of the baseline data of our cohort,
including age, sex, clinical variables such as histological
type, pathological subtype, tumor site, Clark level, ulcer,
and our prognostically relevant findings, including the
SBS7a+ mutational signature and PRKDC amplification
status. As a result, PRKDC amplification was the most
significant predictive factor for the prognosis of mela-
noma patients (Fig. 2f and Supplementary Table S2).
We then focused on the functional impact of the

amplification of PRKDC on both its cognate protein and
other proteins. Integrative analysis revealed that in addi-
tion to upregulating the expression of its cognate mRNA
and protein (Spearman’s r > 0.3, p < 0.05), the amplifica-
tion of PRKDC increased the expression of proteins
involved in DNA repair, DNA mismatch repair, and the
cellular response to DNA damage stimuli (Fig. 2g).
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Functionally, PRKDC is a core regulator of DNA double-
strand break repair34 and has been reported to be a pro-
mising drug target for breast cancer35 and

medulloblastoma36. Along with these studies, we found
that the protein expression of PRKDC was significantly
correlated with the GSVA score of the nonhomologous

Fig. 2 (See legend on next page.)
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joining DNA repair process (Spearman’s r= 0.63,
p < 0.0001), and the expression of proteins involved in
DNA damage repair, including ATM, ATR, CUL4B,
XRCC4, XRCC1, and XPA, was also highly correlated
with the protein expression of PRKDC (Spearman’s
r > 0.2, p < 0.05) (Fig. 2h, i). Survival analysis indicated that
12 DNA damage-related proteins, including 2 kinases
(ATM and ATR), were associated with poor survival
(hazard ratio > 1, p < 0.05) (Fig. 2i). Moreover, the mRNA
expression (from the TCGA cohort) and inferred kinase
activity (from our cohort) of ATM, ATR and PRKDC
(Materials and methods) were significantly upregulated in
patients harboring PRKDC amplification, suggesting that
PRKDC might collaborate with ATM and ATR to upre-
gulate DNA damage repair and drive poor prognosis
(Fig. 2j, k). Collectively, our data suggested that the
amplification of PRKDC was associated with the upregu-
lation of DNA damage repair and might further impact
patient prognosis through collaboration with ATM and
ATR. We also further illustrated the potential role of
MTSS1 in melanomas. We conducted correlation analysis
and found that the protein expression of MTSS1 was
positively correlated with the cortical actin cytoskeleton
organization pathway (Supplementary Fig. S3e). The
expression of proteins, including PARVA, ABL1, MINK1,
and HCLS1, was positively correlated with that of MTSS1
(Supplementary Fig. S3f). Previous research has indicated
that elevated actin cytoskeleton organization might lead
to tumor cell migration and tumor metastasis37. Thus, our
findings emphasized that MTSS1 might impact melanoma
prognosis by regulating the actin cytoskeleton organiza-
tion pathway.
Previous research has reported that PRKDC partici-

pated in nonhomologous end joining (NHEJ) of DNA
double-strand breaks (DSBs)38, and its abnormal

expression is associated with chemotherapy resis-
tance39,40. To illustrate whether the elevated PRKDC
protein expression impacts the response of melanomas to
chemotherapy, we surveyed the sensitivities of twelve
FDA-approved cancer drugs that functioned in blocking
DNA synthesis, including 5-FU, Temozolomide (TMZ),
Etoposide, Voxlaisib, cisplatin, Oxaliplatin, etc. using
published cell line perturbation data from GDSC (https://
www.cancerrxgene.org/). As a result, the sensitivity to
5-FU showed the most significant positive correlation
with the protein expression of PRKDC (5-FU: Spearman’s
r= 0.77, p= 0.026), suggesting that melanoma patients
who harbor PRKDC amplicons might be more sensitive to
5-FU treatment (Supplementary Fig. S3g). These results
indicated that enhanced PRKDC expression might inhibit
the efficacy of 5-FU treatment. To further investigate
whether 5-FU could more efficiently inhibit the pro-
liferation of tumor cells with elevated PRDKC expression,
we constructed a stable PRKDC-overexpressing HMCB
cell line (PRKDC-OE-HMCB) using the pCDH-PRKDC-
copGFP vector and knocked down PRKDC (PRKDC-KD-
HMCB) utilizing pLKO.1-CMV-shPRKDC-copGFP. RT‒
PCR analysis was utilized to verify the expression of
PRKDC in the PRKDC-OE-HMCB and PRKDC-KD-
HMCB strains. The results revealed significantly ele-
vated expression of PRKDC in the PRKDC-OE-HMCB
group and significantly decreased expression of PRKDC in
the PRKDC-KD-HMCB group (Supplementary Fig. S3h).
Furthermore, tumor cells (OE-Control-HMCB, PRKDC-
OE-HMCB, sh-Control-HMCB, and PRKDC-KD-HMCB)
were treated with 5-FU. As a result, compared to OE-
Control-HMCB, PRKDC-OE-HMCB was more sensitive
to 5-FU; in contrast, the sensitivity of PRKDC-KD-HMCB
to 5-FU was significantly lower than that of sh-Control-
HMCB (Supplementary Fig. S3i). These results confirmed

(see figure on previous page)
Fig. 2 Integrative omics analyses of melanoma samples. a Venn diagram depicted the cascading effects of CNAs of cancer-associated genes
(CAGs) in melanomas. The overlap between significant cis events across transcriptome and proteome are shown. b The volcano plot showed the
copy number alteration predictive of OS in melanomas. c The heatmap represented the 18 survival associated CAGs which show significant
correlation with copy numbers (CNs), mRNAs, or proteins. d The heatmap showed the correlation between CNs, mRNAs, and proteins of PRKDC.
Samples are ranked from lowest (left) to highest (right) copy number values of PRKDC. e Kaplan–Meier curves for OS based on patients’ CNV status
(log-rank test) in our cohort and TCGA cohort. f The forest plot showed the 95% CI of hazard ratio coefficients from Cox-regression for PRKDC
amplification, and other covariates based on our cohort. g GSEA plots for DNA mismatch repair related pathways in PRKDC amplification vs WT
comparisons. h Spearman-rank correlation of the PRKDC protein expression, and GSVA scores of DNA repair process. i The volcano plot showed the
expression of proteins correlated with PRKDC copy numbers and predictive of OS in melanomas. j The comparison of the mRNA expression of ATM,
and PRKDC between patients harboring PRKDC amplicons and WT samples in TCGA cohort (n= 267) (Wilcoxon rank test). k The comparison of the
kinase activity of ATM, and PRKDC between patients harboring PRKDC amplicons and WT samples in our cohort (n= 96) (Wilcoxon rank test).
l Dose–response curves of PRKDC inhibitor were determined on day 2 after inhibitors adding in PDCs from melanoma patients with or without SBS7a
mutation signature. The data represent the mean values ± SD (n= 3) (left). The volcano plot showing the half-maximal inhibitory concentration (IC50)
scores. The data represent the mean values ± SD (n= 3) (right). m Proliferation of the PDCs from melanoma patients with and without SBS7a
mutation signature based on the use of PRKDC inhibitor or control (two-way ANOVA followed by Tukey’s multiple comparison test). The data are
presented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. n Proliferation of the PDCs from melanoma patients with or without PRKDC
amplification based on the use of PRKDC inhibitor and 5-fluorouracil (5-FU) or control (two-way ANOVA followed by Tukey’s multiple comparison
test). The data are presented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001.
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our hypothesis that cells with elevated PRKDC expression
are more sensitive to 5-FU, as indicated by a lower IC50

(Supplementary Fig. S3i). Based on these findings, we
evaluated the proliferation rates of the OE-Control-
HMCB- and PRKDC-OE-HMCB-treated cells treated
with 5-FU or left untreated. The results revealed that in
the 5-FU-untreated group, compared to the OE-Control-
HMCB group, the PRKDC-OE-HMCB group exhibited
significantly elevated cell proliferation rates (Supplemen-
tary Fig. S3j). On the contrary, in the 5-FU-treated group,
compared to the OE-Control-HMCB group, the PRKDC-
OE-HMCB group showed no significant increase in pro-
liferation tendency (Supplementary Fig. S3k). Moreover,
compared with those in the 5-FU-untreated PRKDC-OE-
HMCB group, the proliferation rates in the PRKDC-OE-
HMCB group treated with 5-FU were significantly lower
(Supplementary Fig. S3j, k).
Notably, since PRKDC was also one of the most dom-

inantly expressed proteins in the SBS7a+ group, we eval-
uated the clinical relevance of targeting PRKDC in SBS7a+

patients. Therefore, we collected primary tumor cell cul-
tures (PDCs) from SBS7a+ and SBS7a– patients (Mela-
noma #8, Melanoma #14: SBS7a+ patients; Melanoma #9,
Melanoma #19: SBS7a– patients) (Materials and methods)
and evaluated the response of PDCs to PRKDC inhibitor
(NU7441). As a result, PRKDC inhibitor significantly
decreased the proliferation of PDCs collected from SBS7a+

patients but had no significant impact on the growth of
PDCs collected from SBS7a– patients (Fig. 2l).
Consistent with this finding, we observed that PDCs from

SBS7a+ patients were also more sensitive to PRKDC inhi-
bitor, with significantly lower IC50 values (median IC50:
6.287 μM in SBS7a+ vs 42.02 μM in SBS7a–) (Fig. 2m).
Currently, although chemotherapy drugs including
5-fluorouracil (5-FU), its efficiency alone is poor, and it is
accompanied by side effects. We then investigated whether
PRKDC inhibitor could be served as a complement to 5-FU
for the treatment of SBS7a+ patients. We compared the cell
proliferation rates among PDCs collected from SBS7a+ and
SBS7a+ patients treated with 5-FU alone or treated with both
5-FU and PRKDC inhibitor. As a result, the proliferation
rates of PDCs from SBS7a+ patients were significantly lower
after combination treatment with the PRKDC inhibitor and
5-FU than after treatment with 5-FU alone. However, for
PDCs from SBS7a– patients, the combination treatment
strategy did not improve cell growth inhibition efficiency
compared with 5-FU treatment alone (Fig. 2n). These results
suggested that SBS7a+ patients might benefit from combi-
nation treatment with PRKDC inhibitor and 5-FU.

Aberrant folate metabolism balance contributes to tumor
development in primary melanomas
PRKDC is an important DNA-PKs38. To identify

prognosis-related substrates of PRKDC, we conducted

survival analysis on the phospho-substrates that were
positively correlated with the expression of PRKDC. As a
result, the S57 phosphorylation site of MXD3 was sub-
sequently screened out because it was the top-ranked
phospho-substrate of PRKDC associated with OS
(Fig. 3a). As a member of the MXD family, the TF MXD3
plays a key role in cell cycle progression and cell pro-
liferation41. We then inferred the MXD3 TF activity based
on the mRNA expression of its target genes (TGs) using
GSVA algorithm (Materials and methods). As expected,
the inferred TF activity of MXD3 was strongly correlated
with the abundance of MXD3/S57 (Fig. 3b). To gain
insight into the mechanism of how MXD3’s TF activity
led to poor prognosis, we performed correlation analysis
and observed that TYMS and MTHFD2 were the top two
TGs of MXD3 whose mRNA expression was strongly
associated with the MXD3’s TF activity and their cognate
proteins’ expression (Fig. 3c). Consistently, the protein
expression of MTHFD2 and TYMS showed elevated
expression in samples that harbored PRKDC amplification
(Fig. 3d).
We conducted a series of functional experiments to

further investigate the associations among PRKDC
amplification, folate metabolism, and patient prognosis.
We first constructed a stable PRKDC-overexpressing
HMCB cell line (PRKDC-OE-HMCB) using the pCDH-
PRKDC-copGFP vector and knocked down PRKDC
(PRKDC-KD-HMCB) utilizing pLKO.1-CMV-shPRKDC-
copGFP (Supplementary Fig. S4a). The results confirmed
the significantly elevated expression of PRKDC in the
PRKDC-OE-HMCB group and the significantly decreased
expression of PRKDC in the PRKDC-KD-HMCB group
(Supplementary Fig. S4b). We then evaluated the phos-
phorylation of MXD3 in PRKDC-overexpressing and KD
HMCB cell lines by phosphoproteomic analysis. The
results confirmed that overexpression of PRKDC sig-
nificantly increased the phosphorylation of MXD3 and
that PRKDC knockdown decreased the phosphorylation
of MXD3 (Supplementary Fig. S4c). These findings con-
firmed the regulatory effect of PRKDC on the phosphor-
ylation of MXD3. To verify the role of MXD3 in
regulating the downstream expression of TYMS and
MTHFD2, we constructed a stable MXD3-overexpressing
HMCB cell line and performed ChIP‒qPCR. As a result,
the overexpression of MXD3 significantly elevated the
transcription of its target genes TYMS and MTHFD2
(Supplementary Fig. S4d). These results confirmed the
regulatory role of MXD3 in regulating the expression of
TYMS and MTHFD2.
Functionally, both TYMS and MTHFD2 participate in

the folate cycle, which is an important branch of folate
metabolism that can provide one-carbon units for purine
and thymidine synthesis42,43. To further illustrate the
impact of the folate cycle on tumor development, we
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screened the expression of enzymes involved in folate
metabolism. In addition to MTHFD2, TYMS, SHMT2, a
key mitochondrial enzyme involved in serine catabolism
that converts serine to glycine and a one-carbon unit44,
exhibited significantly increased expression in patients
with PRKDC amplification (Fig. 3d). The expression of
MTR, which functions as a unique metabolic linker of the
folate and methionine cycles in folate metabolism45, was
significantly decreased in patients with PRKDC amplifi-
cation (Wilcoxon test, p < 0.0001). These findings were
further confirmed by western blotting assay (Supple-
mentary Fig. S4e). We then profiled the proteomes of
four types of melanoma cells with different PRKDC
expression patterns, namely, Vector-OE-high (OE-Con-
trol-HMCB), PRKDC-OE-HMCB, Scramble-shRNA-
HMCB (sh-Control-HMCB), and PRKDC-KD-HMCB.
Comparative analyses were also conducted. Proteins
enriched in the folate metabolism pathway, including key
enzymes such as SHMT2, MTHFD2, and GART, were
significantly elevated in the PRKDC-OE-HMCB group
compared to the OE-Control-HMCB group, whereas
these proteins were significantly downregulated in the
PRKDC-KD-HMCB group compared to the sh-Control-
HMCB group (Supplementary Fig. S4f). In contrast, the
protein MTR, which functions as a unique metabolic
linker of the folate and methionine cycles in folate
metabolism45, showed decreased expression in the
PRKDC-OE-HMCB group compared to the OE-Control-
HMCB group, while it showed increased expression in
the PRKDC-KD-HMCB group compared to the sh-
Control-HMCB group (Supplementary Fig. S4g). In
summary, these results confirmed that alterations in
PRKDC expression impacted the expression of key
enzymes involved in folate metabolism.
Since we found that PRKDC copy number alterations

were associated with poor patient prognosis and

confirmed that PRKDC expression alterations could
impact the expression of proteins involved in folate
metabolism, we next wanted to determine whether
alterations in the expression of proteins involved in folate
metabolism are responsible for the poor prognosis
resulting from PRKDC copy number alterations. Con-
sistent with our hypothesis, survival analysis indicated
that MTHFD2 and TYMS were associated with poor
prognosis (Fig. 3e). Although MTR did not exhibit a
strong correlation with survival, it exerted a strong
synergistic effect in combination with MTHFD2 and
TYMS. MTHFD2/TYMS expression was associated with
worse survival in the MTR low-expression group than in
the MTR high-expression group (Fig. 3f).
To further illustrate how the elevated expression of

MTHFD2 and TYMS and the downregulation of MTR are
associated with patients’ unfavorable clinical outcomes, we
constructed an MTHFD2-overexpressing plasmid, a
TYMS-overexpressing plasmid, and an MTR overexpressed
plasmid utilizing a pCDH-copGFP vector (pCDH-
MTHFD2-copGFP, pCDH-TYMS-copGFP, pCDH-MTR-
copGFP). Moreover, shRNAs for MTHFD2, TYMS, and
MTR were also constructed using the pLKO.1-CMV-
copGFP vector (pLKO.1-CMV-shMTHFD2-copGFP,
pLKO.1-CMV-shTYMS-copGFP and pLKO.1-CMV-
shMTR-copGFP). Then, the vectors were transfected into
the HMCB and A375 cell lines. We utilized the CCK-8
assay to investigate how alterations in MTHFD2, TYMS,
and MTR affect tumor cell growth. As a result, the over-
expression of MTHFD2 or TYMS significantly enhanced
the tumor cell proliferation rate (Fig. 3g and Supplementary
Fig. S5a), whereas the tumor cell growth promoted by
MTHFD2 or TYMS overexpression was decreased by the
overexpression of MTR (Fig. 3g and Supplementary
Fig. S5a). We further evaluated the impacts of MTHFD2,
TYMS, and MTR on tumor cell proliferation under PRKDC

(see figure on previous page)
Fig. 3 Aberrant folate metabolism balance contributes to the tumor development in melanomas. a The volcano plot showed the abundance
of phosphorylation substrate of PRKDC predictive of OS in melanomas. b Spearman-rank correlation of the MXD3’s TF activity, and MXD3/S57’s
abundance in melanomas. c Spearman-rank correlation of the MXD3’s TF activity, and MXD3’s TGs protein expression (x-axis); Spearman-rank
correlation of the mRNA expression, and protein expression of MXD3’s TGs (y-axis). d The boxplot showed the expression of MTHFD2, TYMS, SHMT2,
and MTR in patients harboring PRKDC amplicons and WT samples in our cohort (n= 124) (Wilcoxon rank test). e Kaplan–Meier curves of OS in relation
to MTHFD2 and TYMS expression levels in PMs. f Kaplan–Meier curves of TYMS and MTHFD2 based on the MTR low expression. The log-rank test is
performed for survival analysis. g Proliferation of the indicated HMCB cells when MTHFD2/TYMS or an empty vector was overexpressed based on the
use of MTR knockdown or control (two-way ANOVA followed by Tukey’s multiple comparison test). The data are presented as mean ± SEM, *p < 0.05;
**p < 0.01; ***p < 0.001. h Proliferation of HMCB cells after MTR overexpression based on MTHFD2/TYMS overexpression (two-way ANOVA followed
by Tukey’s multiple comparisons test). The data are presented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. i Metabolism of indicated HMCB cells
after MTR KO based on MTHFD2 or TYMS overexpression (t-test). Data are represented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. j Metabolism
of in melanoma tissues from patients harboring PRKDC amplicons and WT samples in our cohort (two-way ANOVA followed by Tukey’s multiple
comparisons test). Data are represented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. k DNA synthesis of indicated HMCB cells after MTR KO on
MTHFD2 or TYMS overexpression (t-test) (left). Amount of G1 phage of indicated HMCB cells after MTR KO on MTHFD2 or TYMS overexpression (t-test)
(right). Data are represented as mean ± SEM, *p < 0.05; **p < 0.01; ***p < 0.001. l Xenograft tumor images indicated that A375 cells were
subcutaneously injected into nude mice based on MTR loss and MTHFD2 overexpression. m Xenograft tumor images indicated that A375 cells were
subcutaneously injected into nude mice based on MTR overexpression and MTHFD2 overexpression. n Illustration of the activation of PRKDC–MXD3
signaling pathway combined with one-carbon unit enrichment led to tumor growth in melanomas.
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overexpression conditions. For this purpose, we transfected
the MTHFD2, TYMS, and MTR overexpression or
knockdown vectors into the PRKDC-overexpressing
HMCB cell line (PRKDC-OE-HMCB), respectively, and
exanimated the tumor cell proliferation rates. The results
revealed that compared to HMCB with MTHFD2-OE or
TYMS-OE, PRKDC-OE cells that overexpressed with
MTHFD2 or TYMS showed significantly elevated tumor
cell proliferation (Fig. 3h and Supplementary Fig. S5b).
These results indicated the controversial functions of MTR
with both MTHFD2-OE and TYMS-OE in promoting
tumor cell proliferation and emphasized that the impact of
TYMS and MTHFD2 on enhancing tumor cell proliferation
could be further improved in PRKDC-OE-HMCB.
The methionine cycle, which utilizes one-carbon units

for methylation, competes with the folate cycle, which
utilizes one-carbon units derived from serine for DNA
synthesis. Therefore, we hypothesized that the loss of
MTR might uncouple the link between the folate cycle
and the methionine cycle and lead to one-carbon unit
enrichment in the DNA synthesis pool. Consistent with
this hypothesis, we found that knockdown of MTR in cells
resulted in increased production of folate cycle metabo-
lites such as serine, glycine, and dTMP and increased
dTMP-to-dUMP ratios (Fig. 3i and Supplementary Fig.
S5c). In contrast, the methionine cycle in MTR knock-
down cells was impaired, and the production of methio-
nine and SAM and the SAM/SAH ratio decreased (Fig. 3i
and Supplementary Fig. S5c). This hypothesis was also
verified by the increased serine, glycine, dTMP, and
dTMP/dUMP ratios and decreased methionine and SAM
levels and SAM/SAH ratios in the melanoma tissues
(Fig. 3j). A subsequent stable isotope labeling approach
further confirmed that knockdown of MTR enhanced the
one-carbon unit flux of the folate cycle and inhibited the
one-carbon unit flux of DNA methylation in the
methionine cycle (Supplementary Fig. S5d). Moreover, in
line with our assumption that the loss of MTR could lead
to the enrichment of one-carbon units in DNA synthesis,
we found that by knocking down MTR, the DNA synth-
esis rate was significantly increased, and the number of
G1-phase cells was particularly significantly decreased in
MTHFD2- or TYMS-overexpressing cells (Fig. 3k and
Supplementary Fig. S5f). Since the metabolite serine is the
one-carbon resource for the folate cycle42,43, we further
hypothesized that blockade of serine metabolism may
diminish the oncogenic effects of folate cycle metabolism.
In line with this assumption, by using a xenograft tumor
model, we found that the xenograft tumor growth
induced by MTR loss and MTHFD2 overexpression could
be abrogated by administering the serine metabolism
inhibitor NCT503 (which targets the key serine metabo-
lism enzyme PHGDH46) (Fig. 3l, m). Taken together, our
data indicated that MTR loss combined with MTHFD2

upregulation led to one-carbon unit enrichment and
contributed to PRKDC-MXD3/S57-induced melanoma
tumor growth (Fig. 3n).

Proteomic subtypes of melanomas
Given the intertumoral heterogeneity, it is important to

perform molecular subtyping. Since the proteomic data
directly reflect cell functions, we performed consensus
clustering47 based on protein expression ranks in the 137
melanomas; subsequently, we identified three subgroups
(S-I, S-II, and S-III) (Fig. 4a and Supplementary Fig. S6a, b
and Table S3) (Materials and methods). Remarkably,
survival analysis revealed that proteomic subgroups sig-
nificantly differed in terms of OS (log-rank test,
p= 0.0081) (Fig. 4b). The evaluation of the clinical fea-
tures of the proteomic subtypes revealed that S-I patients
had a significantly longer OS, and the S-II subgroup
exhibited a greater probability of metastasis than did
subgroups S-I and S-III (27% in S-I, 66% in S-II, and 38%
in S-III) (Supplementary Fig. S6c).
Subgroup-specific pathway enrichment analysis

revealed different features among the three proteomic
subgroups. Among the three subgroups, S-I was char-
acterized by the regulation of ECM‒receptor interactions
and focal adhesion (referred to as the ECM subtype)
(Fisher’s exact test, p < 0.05). Proteins such as LAMA3,
LAMB3, and COL3A1 were dominantly expressed in the
S-I subtype. Moreover, S-II was featured with VEGF sig-
naling pathway, epithelial cell signaling pathway and
Hippo signaling pathway (referred to as the angiogenesis
subtype). Consistently, proteins, including PAK1, RAC1,
and PLCG1, were overrepresented in this subtype.
Moreover, S-III was enriched in nucleotide excision repair
and carbon metabolism (referred to as the cell prolifera-
tion subtype). The expression of key regulators of cell
proliferation, such as CDK4, were increased in this sub-
type (Fig. 4a and Supplementary Table S3).
To evaluate the robustness of our proteomic subtyping,

we further utilized the proteomic signatures of our pro-
teomic subtyping and performed consensus clustering for
the tumor samples from Kabbarah et al.’s cohort48 and the
TCGA melanoma cohort12. The investigation resulted in
the stratification of three subgroups in each validation
cohort. Using subgroup-specific pathway enrichment
analysis, we observed similarities in the molecular char-
acteristics of subgroups (S-I: ECM; S-II: angiogenesis; and
S-III: cell proliferation) between the validation cohort and
our cohort (Supplementary Fig. S6d, e). Survival analysis
based on the TCGA cohort also indicated that patients in
the SII and SIII subgroups had worse prognoses than
patients in the SI subgroup, which was consistent with our
findings (Supplementary Fig. S6f).
Notably, since we observed that both the S-II and S-III

subgroups were associated with poor prognosis, we

Xiang et al. Cell Discovery           (2024) 10:78 Page 11 of 35



Fig. 4 (See legend on next page.)

Xiang et al. Cell Discovery           (2024) 10:78 Page 12 of 35



evaluated the expression of PRKDC (an independent
prognostic molecule of melanoma (Fig. 2e)) among the
three proteomic subtypes. Both S-II and S-III showed
increased expression of PRKDC compared to the S-I
subtype (Wilcoxon test) (Fig. 4c). We then performed
comparative analysis to illustrate the potential mechanism
associated with the diverse molecular features of S-II and
S-III. In addition to having elevated frequencies of
PRKDC amplification, S-III also had increased frequencies
of CDK4 amplification (18% in S-I, 12% in S-II, and 37% in
S-III) (Fig. 4d, e). Moreover, S-II had higher frequencies of
ROCK2 amplification (14% in S-I, 59% in S-II, and 31% in
S-III), and CDK4 amplification and ROCK2 amplification
were mutually exclusive (Fig. 4d, e). S-III also presented
significantly higher multigene proliferation scores
(MGPSs)49, indicating enhanced enrichment of cell pro-
liferation at the proteomic level (Fig. 4f). Combined with
proteomic data, we observed a cis effect of CDK4 ampli-
fication on the upregulation of cognate protein expression
(Fig. 4g). In addition, the kinase activity of CDK4 was also
significantly greater in the S-III subtype and was positively
correlated with the MGPS, suggesting that CDK4 might
promote tumor cell proliferation in the S-II subtype
through phosphorylation (Fig. 4g, h). To test the clinical
relevance of targeting CDK4 for treating melanoma, we
collected PDCs from patients who belong to S-II and S-III
and treated them with a CDK4 inhibitor. The effects of
the CDK4 inhibitor on cell viability were measured. PDCs
from patients with S-III disease were more sensitive to the
CDK4 inhibitor (Palbociclib) with significantly lower IC50

values (median IC50: 7.88 μM in PDC_S-II vs 57.07 μM in
PDC_S-III) (Fig. 4i).

Intriguingly, compared to patients with only CDK4
amplification, patients with both CDK4 and PRKDC
amplification had significantly greater CDK4 kinase
activity and MGPS (Fig. 4j). Along with this finding, the
MGPS was dominantly elevated in patients harboring
both CDK4 and PRKDC amplifications (Fig. 4k). We then
hypothesized that PRKDC could phosphorylate CDK4
and enhance its kinase activity. Therefore, we surveyed
the phospho-substrates of PRKDC and observed that the
phosphorylation of CDK4 at T172 was positively corre-
lated with PRKDC kinase activity, CDK4 kinase activity
and MGPS (Fig. 4l). The elevated phosphorylation of
CDK4/T172 in S-III was further confirmed by IHC
staining (Fig. 4m).
To confirm the PRKDC-CDK4 cascade in promoting

tumor cell proliferation, we collected PDCs from patients
for further analysis (PDC_PRKDCAmp&CDK4Amp: patients
belonging to S-III and harboring both PRKDC amplifi-
cation and CDK4 amplification; PDC_WT: patients
without PRKDC amplification and CDK4 amplification).
We performed comparative analysis between the pro-
teomes of PDC_PRKDCAmp&CDK4Amp and PRDC_WT.
As a result, the levels of proteins enriched in cell pro-
liferation pathways, such as CDK4, CDK6 and MCM6,
were significantly higher in PDC_PRKDCAmp&CDK4Amp

(Fig. 4n, o). We also evaluated cell proliferation
rates under different treatment conditions
(PDC_PRKDCAmp&CDK4Amp treated with both PRKDC
inhibitor (Nedisertib) and CDK4 inhibitor (Palbociclib),
with single CDK4 inhibitor, with single PRKDC inhibitor,
or without inhibitor; PDC_WT treated with both PRKDC
and CDK4 inhibitors, with single CDK4 inhibitor, with

(see figure on previous page)
Fig. 4 Proteomic subtypes of primary melanomas. a Heatmap illustrated clinical information, and frequency of PRKDC amplicons in 137
melanoma patients. The remaining section illustrates global proteomic features upregulated in the three proteomic subtypes. The pathways enriched
by proteins elevated in corresponding subgroups are labeled on the right. b The association of three proteomic subtypes with clinical outcomes in
melanoma patients (SI: n= 41; SII: n= 17; SIII: n= 40) (p value based on the log-rank test). c The boxplot showed the protein expression of PRKDC in
the three proteomic subtypes (n= 137) (Wilcoxon rank test, ****p < 0.0001). d Heatmap illustrated the amplification frequency of PRKDC, CDK4, ROCK2
in the three proteomic subtypes (Fisher’s exact test). e Sankey plot showed the amplification frequency of PRKDC, CDK4, and ROCK2 in the three
pathological subtypes and three proteomic subtypes of melanomas. f The boxplot showed the MGPS score in the three proteomic subtypes
(n= 137) (Wilcoxon rank test). g The boxplot showed the protein expression and kinase activity of CDK4 in the three proteomic subtypes (n= 137)
(Wilcoxon rank test). h Spearman-rank correlation of the CDK4’s kinase activity and MGPS score in melanomas (n= 96). i Dose–response curves of
CDK4 inhibitor were determined on day 2 after inhibitors adding in PDCs from melanoma patients of SII and SIII proteomic subtypes. The data
represent the mean values ± SD (n= 3) (left); IC50 values of CDK4 inhibitor were determined on day 2 after inhibitors adding. The data represent the
mean values ± SD (n= 3) (right). j The boxplot showed the PTM score of CDK4 in patients harboring CDK4 amplicons & PRKDC amplicons, or only
PRKDC amplicons, or only CDK4 amplicons and WT samples in our cohort (n= 96) (Wilcoxon rank test). k The boxplot showed the MGPS score in
patients harboring CDK4 amplicons & PRKDC amplicons, or only PRKDC amplicons, or only CDK4 amplicons and WT samples in our cohort (n= 124)
(Wilcoxon rank test). l Spearman-rank correlation of the PRKDC’s kinase activity and CDK4/T172’s abundance in melanomas (left); Spearman-rank
correlation of the CDK4/T172’s abundance and CDK4’s kinase activity in melanomas (middle); Spearman-rank correlation of the CDK4/T172’s
abundance and MGPS score in melanomas (right). m Immunohistochemistry of CDK4/T172 in SII and SIII proteomic subtype samples, scale
bar= 100 μm. n The workflow showed the sample collection for mass spectrum analysis. o Heatmap illustrated the protein expression of CDK4,
CDK6, et al. participating in cell cycle were upregulated in the PDCs from melanoma patients harboring CDK4 amplicons & PRKDC amplicons.
p Proliferation of the PDCs from melanoma patients with or without PRKDC amplification and CDK4 amplification based on the use of PRKDC
inhibitor and CDK4 inhibitor, or only CDK4 inhibitor, or only PRKDC inhibitor, or control (two-way ANOVA followed by Tukey’s multiple comparison
test). The data are presented as mean ± SEM. q Illustration of the activation of PRKDC–CDK4 signaling pathway combined with cell proliferation led to
poor prognosis in melanomas.
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single PRKDC inhibitor, or without inhibitor). The com-
bined use of PRKDC and CDK4 inhibitors most sig-
nificantly decreased the proliferation of
PDC_PRKDCAmp&CDK4Amp cells, demonstrating that
PRKDC could enhance the ability of CDK4 to promote
tumor cell proliferation in the S-III subtype (Fig. 4p).
Together, our data revealed that the cell proliferation
feature of S-III was driven by CDK4 amplification and
could be further enhanced by PRKDC inhibitor. The
combined use of both CDK4 and PRKDC inhibitors could
clinically benefit patients in S-III (Fig. 4q).

ROCK2 amplification promotes the metastasis of primary
melanomas
Notably, although both the S-II subgroup and the S-III

subgroup were associated with poor prognosis, the S-II
subgroup contained higher proportion of metastatic
patients (Fig. 5a). To further illustrate the possible cellular
processes associated with the metastatic features of the
S-II subgroup, we first compared the genomic alterations
among the three proteomic subgroups and identified
ROCK2 as the only CAG that showed a significantly
greater amplification frequency, mRNA expression and
protein expression in the S-II subgroup (Spearman’s r
(CNV vs RNA) > 0.3, p < 0.05; Spearman’s r (CNV vs
protein) > 0.3, p < 0.05; Wilcoxon rank test (RNA/protein:
S-I vs. S-II/S-I vs. S-III), p < 0.05) (Fig. 5b). Functionally,
ROCK2 is a kinase participating in angiogenesis50 and the
epithelial cell signaling pathway51 and is associated with
tumor cell metastasis52. In concordant with our findings,
the mRNA expression of ROCK2 and the GSVA score
were increased in primary melanomas with metastasis in
TCGA cohort53 (Fig. 5c). The elevated expression of
ROCK2 in primary melanomas with metastasis was fur-
ther confirmed by IHC staining, using anti-ROCK2 anti-
body (Materials and methods) (Fig. 5d). In line with these
studies, we found pathways, such as regulation of cytos-
keleton, epithelial cell signaling pathway, and adherens
junction, were significantly elevated in patients harboring
ROCK2 amplicon (Wilcoxon test, p < 0.05) (Fig. 5e).
Moreover, combined with the phosphoproteomic data, we
observed that the phosphosites BAD/S118, RIPK2/S531,
EPHA2/S897, HMGB1/S100, PRKAB1/S10, etc., enriched
in tumor angiogenesis were significantly positively asso-
ciated with ROCK2 (Spearman’s r > 0.2, p < 0.05), con-
firming the regulatory role of ROCK2 in angiogenesis
(Supplementary Fig. S7a). We then performed survival
analysis and found that the phosphorylation of HMGB1 at
S118 was among the top-ranked ROCK2-correlated
phosphosites negatively associated with patient prognosis
(hazard ratio > 1, p < 0.05) (Fig. 5f). HMGB1 as a TF, has
been reported to promote angiogenesis, and VEGF sig-
naling pathway54,55. To illustrate the downstream pro-
cesses driven by HMGB1, we surveyed the expression of

HMGB1’s TGs at both the mRNA and protein levels56

and found that TGs that were significantly linked to the
abundance of HMGB1/S118 were enriched in angiogen-
esis (Supplementary Fig. S7b). Importantly, PDGFRA,
known as the core regulator of angiogenesis, was the only
TG that showed a negative correlation with OS at both
the mRNA and protein levels, suggesting that HMGB1
might drive patients’ poor prognosis by promoting tumor
angiogenesis (Fig. 5g).
To validate the cascade from ROCK2 to HMGB1, we

constructed a stable ROCK2-overexpressing A375 cell
line (ROCK2-OE-A375) using the pCDH-ROCK2-
copGFP vector and knocked down ROCK2 (ROCK2-
KD-A375) utilizing pLKO.1-CMV-shROCK2-copGFP.
RT‒PCR analysis was utilized to verify the expression of
ROCK2 in ROCK2-OE-A375 and ROCK2-KD-A375 cells.
The results confirmed the significantly elevated expres-
sion of ROCK2 in ROCK2-OE-A375 cells and the sig-
nificantly decreased expression of ROCK2 in ROCK2-KD-
A375 cells (Supplementary Fig. S7c). We then evaluated
the cell migration ability using the Transwell assay.
Compared with control cells, the ROCK2-OE-A375 cell
line exhibited increased cell migration, whereas the
ROCK2-KD-A375 cell line exhibited decreased cell
migration (Fig. 5h, i). Based on our integrative analysis, we
hypothesized that the kinase ROCK2 might increase cell
migration by phosphorylating the TF HMGB1, which
could then activate angiogenesis through transcriptional
regulation. We then evaluated the phosphorylation of
HMGB1 at Ser100 in A375 cell lines with different
ROCK2 expression patterns (OE-Control-A375, OE-
ROCK2-A375, KD-Control-A375, and ROCK2-KD-
A375). The phosphorylation of HMGB1 was significantly
elevated in OE-ROCK2-A375 cells than in OE-Control-
A375 cells and significantly decreased in ROCK2-KD-
A375 cells than in sh-Control-A375 cells (Supplementary
Fig. S7d).
Based on these findings, we investigated the impact of

HMGB1 on the downstream angiogenesis process. We
constructed a stable HMGB1-overexpressing A375 cell
line (HMGB1-OE-A375) using the pCDH-HMGB1-
copGFP vector and knocked down HMGB1 (HMGB1-
KD-A375) utilizing pLKO.1-CMV-HMGB1-copGFP. We
then conducted RT‒PCR to evaluate the expression of
angiogenesis-related proteins across cells (HMGB1-OE-
A375, HMGB1-KD-A375, OE-Control-A375, and KD-
Control-A375). The results revealed that the expression of
genes involved in angiogenesis was greater in HMGB1-
OE-A375 than in OE-Control-A375. However, compared
to those in KD-Control-A375 cells, the expression of
angiogenesis process-related genes decreased in HMGB1-
KD-A375 cells (Fig. 5j). These results confirmed the
regulatory role of HMGB1 in promoting angiogenesis. To
further validate the role of HMGB1, especially
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phosphorylated HMGB1, in promoting tumor cell
migration, we constructed an HMGB1-OE vector and an
HMGB1-S100-mutation-OE vector and transfected them
into the HMGB1-KD-A375 stable cell line. We then
evaluated the cell migration ability by Transwell assays.
Compared to KD-Control-A375, HMGB1-KD-A375 sig-
nificantly decreased tumor cell migration. The decrease in
cell migration was only reversed by transfection with the
HMGB1-OE vector, while it remained unchanged by
transfection with the HMGB1-S100-mutation-OE vector
(Fig. 5k, l). These results demonstrated that the phos-
phorylation of HMGB1 at S100 plays a crucial role in
promoting tumor cell migration.
To further confirm that the ROCK2 (kinase)-HMGB1

TF-PDGFRA TG cascade promotes tumor metastasis, we
constructed an independent validation cohort including
20 melanoma patients and collected matched primary and
metastatic melanoma tumor samples for proteomic and
phosphoproteomic analysis (Fig. 5m). We compared the
expression of ROCK2 and the phosphorylation of
HMGB1 between matched primary and metastatic mela-
noma tumor samples. As a result, the protein expression
of ROCK2 and the phosphorylation of HMGB1 were
elevated in metastatic samples (Fig. 5n).
Moreover, to validate the potential causal link of

ROCK2 in promoting tumor metastasis through the
phosphorylation of HMGB1, we also collected PDCs from
patients (PDC_ROCK2Amp: patients harboring ROCK2
amplification, PDC_WT: patients without ROCK2
amplification) and further conducted proteomic and
phosphoproteomic analysis (Fig. 5o). As a result, the
comparative analysis between PDC_ROCK2Amp and
PDC_WT revealed that the levels of proteins involved in
angiogenesis, including ROCK2, PDGFRA, VEGFA, and
HMGB1, were significantly higher in PDC_ROCK2Amp.
Additionally, at the phosphoproteome level, the

phosphorylation of HMGB1 at S100 was the most sig-
nificantly elevated phospho-substrate of ROCK2 (Fig.
5p, q). Collectively, our data illustrated that the elevated
amplification of ROCK2 in the S-II subgroup could be
responsible for the elevated angiogenesis and might serve
as a possible predictive marker for melanoma metastasis
(Fig. 5r). In general, proteomic-centered multi-omics
analysis helped to elucidate the distinctive molecular
mechanism that led to poor prognosis in S-II and S-III
patients. Specifically, PRKDC amplification coupled with
CDK4 amplification increased cell proliferation in S-II,
whereas ROCK2 amplification elevated the increased
angiogenesis and promoted melanoma metastasis in S-III.

Immune subgroups with distinct biological and clinical
features
Although immunotherapy has been used in the field of

melanoma treatment, its efficacy varies among patients. To
better understand the features of immune infiltration in
melanomas, we performed xCell analysis based on RNA-seq
data to infer the relative abundance of different cell types in
the tumor microenvironment. Consensus clustering based
on inferred cell proportions helped identify the three sets of
tumors with distinct immune signatures (S1‒S3) (Fig. 6a
and Supplementary Fig. S8a, b and Table S4) (Materials and
methods). Survival analysis indicated that the immune
subgroups significantly differed in terms of OS (log-rank
test, p= 0.0029), suggesting that different types of immune
cell infiltration can lead to diverse prognostic outcomes
(Fig. 6b). In addition, we observed that ~50% of AM was
distributed in S1 subtype, while the majority of MM was
distributed in S3 subtype, and the proportion of female
patients in S3 subtype was significantly higher than the
other two subtypes (Fig. 6c). We also looked over the fre-
quency of PRKDC amplification and the expression of
PRKDC across immune subtypes. As a result, we found that

(see figure on previous page)
Fig. 5 ROCK2 amplification promoting the metastasis in melanomas. a The histogram showed the frequency of metastasis (n= 79) and ROCK2
amplification (n= 124). b Spearman-rank correlation of the ROCK2’s copy number and ROCK2’s mRNA expression in melanomas (n= 73) (left);
Spearman-rank correlation of the ROCK2’s copy number and ROCK2’s protein expression in melanomas (n= 124) (right). c The boxplot showed the
mRNA expression of ROCK2 and the GSVA score of VEGF signaling pathway in primary melanomas with or without metastasis in TCGA cohort
(n= 267). d Immunohistochemistry of ROCK2 in primary melanomas with or without metastasis, scale bar= 100 μm. e The heatmap depicted the
pathways significantly elevated in samples harboring ROCK2 amplificon (*p < 0.05, **p < 0.01, ***p < 0.001, Wilcoxon rank test). f The volcano plot
showed the abundance of the phosphosites predictive of OS in melanomas. g The volcano plot showed the expression of HMGB1’s TGs predictive of
OS in melanomas. h The effects of ROCK2 on the migration of A375 cells were confirmed by transwell. i The violin plots (right panel) indicated counts
of migrated A375 cells under different treatments. j The boxplot indicated the expression level angiogenesis-related genes across OE-Control-A375,
OE-HMGB1-A375, KD-Control-A375, and HMGB1-KD-A375. k The effects of HMGB1 on the migration of A375 cells were confirmed by transwell. l The
violin plots (right panel) indicated counts of migrated A375 cells under different treatments. m The table showed the baseline characteristics of
patients in the validation cohort1. n The boxplot showed the protein expression of ROCK2 and the phosphorylate (n= 20) ion abundance of HMGB1
in paired primary melanomas and paired metastasis melanomas in validation corhot1 (*p < 0.05, ****p < 0.0001, Wilcoxon rank test). o The workflow
showed the sample collection for mass spectrum analysis. p Heatmap illustrated the protein expression of ROCK2, VEGFRA, HMGB1, et al. participating
in angiogenesis were upregulated in the PDCs from melanoma patients harboring ROCK2 amplicons. q The volcano plot showed the significantly
upregulated phosphorylation in the melanoma patients harboring ROCK2 amplicons. r The systematic diagram summarized cascading regulatory role
of ROCK2 on angiogenesis, and promoting melanoma metastasis through HMGB1.
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the frequency of PRKDC amplification was significantly
higher in S2 and S3 than S1 (S1: 56%, S2: 88%, S3: 74%), as
well as the protein expression of PRKDC (Supplementary
Fig. S8c).
Among the three subgroups, S1 was characterized by

CD4+ T cells and CD8+ T cells (referred to as the T-cell
subtype) (Fisher’s exact test, p < 0.05), and the mRNAs of
CD8A, PDCD1, CD247, CD274, and CD3D were dom-
inantly expressed in the S1 subtype. Pathways such as the
ECM−receptor interaction and MAPK signaling pathways
were dominantly expressed in the S1 subtype (Fig. 6a, d).
Correlation analysis showed the PRKDC expression was
not only negatively correlated with MAPK7 expression but
also negatively correlated with the xCell score of CD8+

T cells and the CD274 expression (Supplementary Fig.
S8d). Meanwhile, S2 was featured with macrophage sig-
natures (referred to as the TAM subtype), and mRNAs
including CD68, CD163 and CD63 were overrepresented
in this subtype. Proteins participating in VEGF signaling
pathway, ErbB signaling pathway, and lysosome were
overrepresented in this subtype (Fig. 6a, d). Meanwhile, the
polarization score of macrophages suggested that more
M1 macrophages polarized toward M2 macrophages in
S2 subtype (ANOVA test, p < 1.0e−04) (Supplementary
Fig. S8e). Moreover, S3 was enriched with γδ T cell and
NKT cell signatures and the mRNA expression of IL-17
were increased in this subtype (referred to as the IL-17
secretion subtype). Pathways such as cell cycle, pyrimidine
metabolism and one carbon pool by folate were dom-
inantly expressed in S3 subtype (Fig. 6a, d). Meanwhile, the
cytokines/chemokines such as CCL2, CCL14, CCL15 and
CCL22, that associated with γδ T cell recruitment were
elevated in S3 subgroup (Supplementary Fig. S8f). IHC
staining using CD8, CD163 and IL17 further confirmed
enrichment of CD8 in the S1 subtype, macrophage in
S2 subtype and γδ T cells in S3 subtype, respectively
(Fig. 6h and Supplementary Fig. S8g, h).
Importantly, compared to S2 and S3, the S1 subtype

included more AM patients (AMs in S1:22, AMs in S2:6,

and AMs in S3:8), implying that a considerable number of
AM patients might exhibit elevated immune cell infiltra-
tion (Fig. 6e). Additionally, since we observed elevated PD-
L1 expression and high enrichment of CD8+ T cells in the
S1 subtype (Wilcoxon test, p < 0.05) (Fig. 6f, g), we hypo-
thesized that patients in the S1 subtype might have higher
sensitivity to immunotherapy than patients in the other
subtypes. To elucidate the possible mechanism underlying
this phenomenon, we compared the molecular features of
the three immune subtypes and found that the MAPK
signaling pathway and NFκB signaling pathway were
positively correlated with the CD8+ T cell signature score.
Along with this observation, by comparing the kinase
activity among the three immune subgroups, we found that
the kinase activity of MAPK7 (ERK5) was the top ranked
kinase associated with the CD8+ T cell signature score
(Spearman’s r > 0.2, p < 0.05) (Fig. 6i). Previous studies by
us and other groups have indicated that MAPK7 can
activate NFκB1/2 via phosphorylation. Since NFκB1/2 are
TFs, they can further increase the expression of their TGs,
such as PD-L1, and other cytokines/chemokines, such as
CXCL4, CXCL5, and CXCL957. We then evaluated the TF
activity of NFκB2 and found that the TF activity of NFκB1/
2 was also significantly positively correlated with the
enrichment scores of CD8+ T cells (Fig. 6j). Along with this
finding, cytokines/chemokines that participate in T-cell
recruitment, such as CXCL4 and CXCL9, were elevated in
the S1 subgroup (Fig. 6k). In summary, these results sug-
gested that the elevated kinase activity of MAPK7 might
enhance the TF activity of NFκB2 and in turn increase
cytokine expression and recruitment of CD8+ T cells.
Thus, patients in S1 might benefit from immunotherapy.

The refined subtype including the information of both the
immune and proteomic subtype and correlated with OS
In the previous analysis, we found there seemed to be a

strong correlation between immune subtype and protein
subtype (Fig. 6c), and both of them had a strong asso-
ciation with OS (Figs. 4b and 6b). We further employed

(see figure on previous page)
Fig. 6 Immune landscape in melanomas. a Heatmap illustrated cell type compositions and activities of selected individual mRNAs/proteins and
pathways across three immune clusters in 75 melanoma patients. The heatmap in the first section illustrated the immune signatures based on
analysis using xCell. The heatmap in the second section illustrated the RNA and protein abundance of key immune-related markers. The remaining
section indicated the expression patterns of proteins which showed significantly upregulated in the three immune subgroups, respectively. b The
association of three immune groups with clinical outcomes in melanoma patients (S1: n= 22; S2: n= 8; S3: n= 21) (p value based on the log-rank
test). c Heatmap showed the comparison between immune clusters (columns) with sex, age, proteomic subtypes, and different histological types.
d Contour plot of two-dimensional density based on macrophage (y-axis) and immune scores (x-axis) for different immune groups. For each immune
group, key upregulated pathways and molecules were reported based on RNA-seq (R), global proteomics (P), and phosphoproteomics data (Ph) in
the annotation boxes. e Sankey plot showed the comparison between immune clusters (columns) with different histological types. f The boxplot
showed the xCell score of CD8+ T cells in the three immune clusters (n= 75) (Wilcoxon rank test). g The boxplot showed the mRNA expression of
CD274 in the three immune clusters (n= 75) (Wilcoxon rank test). h IHC of CD8 in the three immune clusters, scale bar= 100 μm. i The volcano plot
showed the kinases whose kinase activity was significantly correlated with the xCell score of CD8+ T cells. j The heatmap showed the TF activity of
NFκB family were positively correlated with the xCell score of CD8+ T cells. k The boxplot showed the protein expression of CXCL4 and CXCL9 in the
three immune clusters (n= 75).
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hierarchical clustering based on proteomic and immune
subtyping signatures among 3 histological subtypes of
melanomas to integrate the proteomic and immune sub-
types into a refined subtype. R (version 4.2.0) and the R
package “factoextra” (version 1.0.7) were utilized for data
process. As a result, we identified five subgroups (HC1,
HC2, HC3, HC4, and HC5). Remarkably, survival analysis
revealed that hierarchical clusters significantly differed in
terms of OS (log-rank test, p= 0.01) (Supplementary Fig.
S9a). The evaluation of the clinical features of proteomic
subtypes revealed that HC1 and HC4 patients had a sig-
nificantly longer OS, and the HC3 subgroup exhibited a
higher probability of mucosal melanoma than did the
other subgroups (0% in HC1, 40% in HC2, 75% in HC3,
31% in HC4, and 40% in HC5) (Supplementary Fig. S9a,
b). We further compared the frequencies of PRKDC
amplification, CDK4 amplification, ROCK2 amplification,
protein expression, and xCell immune signatures among
the five subtypes. HC1 was characterized by lower fre-
quencies of PRKDC amplification, CDK4 amplification,
and ROCK2 amplification; lower protein expression of
PRKDC, CDK4, and ROCK2; and higher CD8+ T-cell
signature than the other subtypes, similar to the features
of the SI proteomic subtype (ECM subtype) and S1
immune subtype (T-cell subtype) in our previous analysis
(Supplementary Fig. S9b–d). HC2 patients with high fre-
quencies of PRKDC amplification, CDK4 amplification,
and ROCK2 amplification; high protein expression of
PRKDC, CDK4, and ROCK2; and high macrophage sig-
natures had a worse prognosis, similar to patients with the
characteristics of the SII proteomic subtype (angiogenesis
subtype) and S2 immune subtype (TAM subtype) (Sup-
plementary Fig. S9b–d). HC3 patients also exhibited high
frequencies of PRKDC amplification and ROCK2 ampli-
fication, high protein expression of PRKDC and ROCK2,
and a poor prognosis; moreover, the Tgd cell signature
was enriched in HC3 patients and concordant with the
signatures of the SII proteomic subtype (angiogenesis
subtype) and S3 immune subtype (Tgd cell subtype)
(Supplementary Fig. S9b–d). We observed that both HC4
and HC5 had high frequencies of PRKDC amplification,
CDK4 amplification, and high protein expression of
PRKDC and CDK4, similar to the SIII proteomic subtype
(cell proliferation subtype) (Supplementary Fig. S9b–d),
while the prognosis and immune features of HC4 and
HC5 were quite different. HC4 was enriched with the
CD8+ T-cell signature and had a better OS, similar to the
S1 immune subtype (T-cell subtype). Moreover, HC5 was
enriched in the Tgd cell signature and had a worse OS,
similar to the S3 immune subtype (Tgd cell subtype).
Interestingly, these refined subtypes implied that the same
proteomic subtypes in our study possessed different
immune groups (HC1: SI-S1; HC2: SII-S2; HC3: SII-S3;
HC4: SIII-S1; HC5: SIII-S3).

We further explored the mechanism associated with dif-
ferences in immune features between HC4 and HC5
patients. By comparing the immune features between the two
subgroups, we found that the xCell score of CD8+ T cells
and the expression of the immune checkpoint molecule
CD274 in HC4 patients were obviously greater than those in
HC5 patients (Supplementary Fig. S9e). It has been reported
that the expression of CD274, commonly referred to as PD-
L1, is significantly correlated with the infiltration of CD8+

T cells and could help predict survival and therapeutic
responses58. Moreover, the xCell score of Tgd cells and the
expression of the key molecule IL17D in HC5 cells were
obviously greater than those in HC4 cells (Supplementary
Fig. S9e). A protumor role for IL-17-producing Tgd cells was
reported in human cancer, and the extent of IL-17-producing
Tgd cell infiltration positively correlated with the clinical
stage of the disease59. We then conducted comparative
analysis and Gene Ontology (GO) enrichment analysis
between HC4 and HC5 and found that the biological features
of HC4 were related to antigen processing and presentation,
cell adhesion molecules, and the T-cell receptor signaling
pathway (Supplementary Fig. S9f). Proteins participating in
metabolic pathways, the mTOR signaling pathway, and
pyrimidine metabolism were enriched in HC5 (Supplemen-
tary Fig. S9f). This result showed that although HC4 (SIII-S1)
and HC5 (SIII-S3) exhibited genomic and proteomic simi-
larities, the differences between immune features might
contribute to differences in clinical outcomes.
Comparative analysis of the phosphoproteome between

HC4 and HC5 revealed that kinases, such as MAPK7,
MAP2K2, and MAP3K1, which are enriched in the MAPK
signaling pathway, were elevated in HC4; kinases, such as
AKT3, PIK3C2A, and PRKDC, which are involved in the
cell cycle, were elevated in HC5 (Supplementary Fig. S9g).
Intriguingly, there were no differences in the frequency of
PRKDC amplification or the protein expression of PRKDC
between HC4 and HC5, while the kinase activity of
PRKDC was elevated in HC5. Furthermore, survival
analysis revealed that increased kinase activity of AKT3
was associated with poor OS (Supplementary Fig. S9h).
We investigated the relationship between MAPK7 and
CD8+ T cells in our previous manuscript; therefore, we
further explored the role of AKT3 in the immune
microenvironment in the revision. Correlation analysis
revealed that the kinase activity of AKT3 was positively
correlated with the xCell score of Tgd cells and the
ssGSEA score of the cell cycle (Supplementary Fig. S9i).
AKT contributes not only to the regulation of Tgd cell
development but also to the functional regulation of these
cells60. Donghai et al.’s study indicated that proteins
participating in the cell cycle, such as CDC5A, CDCA8,
TK1, and TYMS, which were elevated in HC5 (Supple-
mentary Fig. S9j), could be correlated with the contribu-
tion of Tgd cells to immune checkpoint resistance61.
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To summarize, we performed clustering analysis of the
proteome and immune microenvironment. Proteomic
clustering revealed key kinases and biological pathways
involved in distinguishing patients with melanoma.
Through immune clustering, we revealed that the het-
erogeneity of the TME in patients with melanoma and
immune features were correlated with clinical outcomes.
Integration of proteomic and immune subtypes could
provide refined melanoma subgroups and reveal their
specific characteristics.

Identification of protein markers related to the response to
immunotherapy in the melanomas
Based on the findings above, to further illustrate the

potential association between MAPK7 and efficiency of
immunotherapy in melanomas, we constructed an inde-
pendent validation cohort, containing 27 stage IV melanoma
patients with anti-PD1 treatment (18 AMs, 6 CMs, 2 MMs).
Patients were grouped based on their response to the
treatment, with 15 responders (including partial and com-
plete response; n= 15) and 12 non-responders (including
stable disease and progressive disease; n= 12) (Fig. 7a).
Tumor samples before treatment were collected, and we
performed both proteomic and phosphoproteomic analysis.
We first applied cell deconvolute analysis and compared

immune cell enrichment between responders and non-
responders. As a result, CD4+ T-cells and CD8+ T-cells
signatures were enriched in responders (Fig. 7b). IHC
staining utilizing anti-CD8 antibody also confirmed the
enrichment of CD8 in responders (Fig. 7c). In concordant
with our finding, the enrichment of CD8+ T-cells in
responders were also validated in two previous studies by
Harel62 and Beck63 (Fig. 7d). Furthermore, we performed
comparative proteomic analysis between responders and
non-responders, as a result, in concordant with the
molecular features of immune subgroup of S1, the path-
ways that enriched by the proteins that elevated in
responders were mainly MAPK signaling pathway and
immune related pathway, whereas non-responders were
dominated by metabolic proteins (Fig. 7e). We also
compared the kinase activity between responders and
non-responders. As a result, MAP kinases, MAPK7
(ERK5), MAPK15 (ERK7), MAPK11, and MAP3K14, were
highly expressed in responders, whereas DNA repair-
related kinases, PRKDC (DNAPK), CSNK1A1 (CK1A),
CSNK2A2 (CK2A2), and DYRK1A were highly expressed
in non-responders (Fig. 7f).
Importantly, to verify whether activation of MAPK7-

NFκB2 cascading contributed to the increased expression
of cytokines that participating in recruiting T cells, we
performed correlation analysis, and observed cytokines/
chemokines such as CCL5, CXCL4 and CCL4 were
positively correlated with the kinase activity of MAPK7
and protein expression of NFκB2 (Fig. 7g, h). In

concordantly, we constructed MAPK7-overexpressing,
MAPK7 knock-down A375 cells, treated A375 cells with
MAPK7 inhibitor (XMD8-92) and utilized wild type A375
cells as control. We co-cultivated those cells with CD8
T cells and collected supernatant for proteomic analysis
(Fig. 7i). As a result, cytokines participating in recruiting
T cells, such as CCL4, CCL8, and CXCL4, were sig-
nificantly upregulated in cultivate supernatant of MAPK7-
overexpressing A375 cells (Fig. 7j). On the contrary, the
cytokines/chemokines that participated in recruiting IL-
17 T cells including CCL2/6/7/13/14 etc. were sig-
nificantly upregulated in cultivate supernatant of MAPK7
knock-down A375 cells (Fig. 7j). Meanwhile, the IFNγ
ELISA assay showed that the CD8+ T cells co-cultivated
with MAPK7-overexpressing A375 cells were activated
most significantly (Fig. 7k, l). These results demonstrated
the impact of MAPK7 in recruiting and activating CD8+

T cells and facilitated the immunotherapy.
To identify potential druggable targets that could pro-

mote the efficacy of anti-PD-1 immunotherapy, we
focused on kinases whose expression was elevated in the
non-responder group. PRKDC was the most significantly
elevated kinase in the non-responders. This phenomenon
was further confirmed in Michal Harel’s cohort62

(Fig. 7m). Accordingly, the protein expression of PRKDC
was negatively correlated with the protein expression of
MAPK7 (Fig. 7n). To evaluate the potential of targeting
PRKDC to enhance the efficacy of immunotherapy, we
cocultivated T cells with A375 cells under various treat-
ment conditions (MAPK7-knockdown A375 cells, A375
cells treated with a PRKDC inhibitor, MAPK7-knockdown
A375 cells treated with a PRKDC inhibitor and MAPK7-
overexpressing A375 cells treated with a PRKDC inhi-
bitor). We then performed an IFNγ ELISA and found that
MAPK7-overexpressing A375 cells and the PRKDC inhi-
bitor most significantly activated CD8+ T cells (Fig. 7o).
These results emphasized that decreased expression of
PRKDC could significantly activate CD8+ T cells.
Based on these findings, we further constructed a

xenograft melanoma mouse model using the MAPK7-
KD-A375 stable cell line and used the KD-Control-A375
cell line as a control. The xenograft tumors were con-
tinuously measured for three weeks and then treated with
a PD-1 inhibitor or a combination of PRKDC (NU7441)
and a PD-1 inhibitor or left untreated. During the three
weeks of treatment, the tumor sizes were continuously
measured. Compared to mice transplanted with KD-
Control-A375 cells, mice transplanted with MAPK7-KD-
A375 cells were not sensitive to PD-1 treatment (Fig. 7p),
indicating that decreased MAPK7 expression significantly
reduced patients’ response to PD-1 treatment. Consistent
with this finding, we observed that compared to those in
mice transplanted with KD-Control-A375 cells, the
expression of proteins associated with T-cell recruitment,
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such as CCL5 and CCL3, was significantly lower in mice
transplanted with MAPK7-KD-A375 cells (Fig. 7q).
Moreover, for mice transplanted with MAPK7-KD-A375
cells, compared to PD-1 treatment alone, the combination
of PRKDC and a PD-1 inhibitor significantly reduced
tumor growth (Fig. 7r), confirming the potential of using a
PRKDC inhibitor combined with an anti-PD-1 antibody
for melanoma treatment in the future.
In summary, our study revealed the proteogenomic

landscape of melanoma. We identified SBS7a as the
major mutational signature of melanomas associated with
elevated DNA damage repair. Further analysis revealed that
amplification of the DNA damage repair-related kinase
PRKDC was a potential prognostic molecule for melanoma.
Integrative analysis combined with functional experiments
illustrated that PRKDC amplification might lead to tumor
proliferation by activating the DNA repair process and
folate metabolism pathway. Proteome-based stratification of
PMs (CMs, AMs, and MMs) revealed three prognosis-
related subtypes, which could complement histological
subtypes and provide an essential framework for the utili-
zation of specific targeted therapies for particular melanoma
subtypes. Immune clustering identified three immune
subtypes with distinctive immune cell types. Further ana-
lysis revealed that increased MAPK7-NFκB signaling
accounts for the increase in T-cell infiltration in patients
with melanoma. Additionally, using an independent anti-
PD-1 treatment cohort, we confirmed the importance of the
MAPK7-NFκB signaling pathway in determining the effi-
cacy of immunotherapy and suggested that the combination
of anti-PD-1 and PRKDC inhibitors might improve patient
outcomes (Supplementary Fig. S10a).

Discussion
Epidemiological studies have shown that CMs mainly

occur in white populations with fair skin (> 95%), whereas

pigmented populations from Asia mainly develop AMs
(~50%) and MMs (20%–30%)6,8. Therefore, our cohort was
composed of 28 CMs (20.4%), 81 AMs (59.2%), and 28
MMs (20.4%), while most previous studies focused on
cutaneous melanomas, and a few studies reported small-
scale cohorts of patients with acral melanomas or mucosal
melanomas. The similarity of genomic alterations in our
cohort and Western melanoma cohorts indicated that the
difference between the Chinese melanoma cohort and
Western melanoma cohort was the incidence of different
histological types rather than the difference in molecular
expression in one histological type between different
populations. In our study, the integration of multi-omics
and clinical information on melanomas could be beneficial
for understanding how genetic variation affects molecules
and identifying the potential underlying mechanism
involved. Moreover, our proteogenomic study included
three main pathological melanoma types (AMs, MMs, and
CMs), and a considerable number of AMs might be con-
ducive to enhance the awareness of melanomas.
Recent genome sequencing studies have revealed land-

scapes of somatic mutations in various normal tissues,
enhancing our knowledge of mutagenesis in somatic
cells64–66. Our study showed that BRAF mutations can
occur widely in comparatively benign tissues67, empha-
sizing the complexity of melanoma tumorigenesis and
malignant melanoma. Moreover, our analyses identified
novel genomic variations that augmented our under-
standing of melanoma risk and provided new insights into
melanoma etiology. Although UV damage is known to be
a risk factor for melanoma68,69, the impact of UV damage
on prognosis and downstream biological pathways has not
yet been elucidated. In our research, we found that the
mutational signature SBS7a (UV damage related) was
significantly associated with patients’ clinical outcomes.
Further integrative analysis revealed that patients

(see figure on previous page)
Fig. 7 Identification of protein markers of response to immunotherapy in the melanomas. a The heatmap showed clinical information of the
anti-PD-1 cohort (n= 27). b The heatmap illustrated the immune signatures based on analysis using xCell. c Immunohistochemistry of CD8 in the
responders and non-responders, scale bar= 100 μm. d The boxplot showed the xCell score of CD8+ T-cells in the responders and non-responders in
Harel et al.’ cohort62 (n= 116) and Beck et al.’ cohort63 (n= 185) (Wilcoxon rank test). e The histogram showed the biological pathways upregulated
in responders and non-responders. f The heatmap showed the kinases whose kinase activity upregulated in responders and non-responders (n= 16).
g The volcano plot showed the chemokines whose protein expression was significantly correlated with the kinase activity of MAPK7. h The volcano
plot showed the chemokines whose protein expression was significantly correlated with the protein expression of NFKB2. i The workflow showed the
sample collection for MS analysis. j Heatmap illustrated the protein expression of chemokines in the A375 cells under different treatment conditions.
k The workflow showed the sample collection for enzyme-linked immunospot (ELISPOT) assay. l The histogram showed the concentration of IFN in
the supernatant of A375 cells cultures with T cells under different treatment conditions, including MAPK7-overexpression, WT, MAPK7-siRNA, and
MAPK7-inhibitor. The data represent the mean values ± SD (n= 3). m The boxplot showed the protein expression of PRKDC in the responders and
non-responders in our cohort (n= 27) and Harel et al.’ cohort62 (n= 116) (Wilcoxon rank test). n Spearman-rank correlation of the MAPK7’s protein
expression and PRKDC’s protein expression in melanomas. o The histogram showed the concentration of IFN in the supernatant of A375 cells
cultures with T cells under different treatment conditions (KD-Ctrl-A375 cells, MAPK7-KD-A375 cells, KD-Ctrl-A375 cells treated with PRKDC inhibitor,
MAPK7-KD-A375 cells treated with PRKDC inhibitor (NU7441)). The data represented the mean values ± SD (n= 3). p Tumor growth curves (n= 3
replicates per group) (mean ± SEM). q Boxplots indicated the protein expression of CCL5, CCL4, and CXCL4 between KD-MAPK7-A375 tumors and
KD-Ctrl-A375 tumors. r Tumor growth curves (n= 3 replicates per group) (mean ± SEM).
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harboring SBS7a had significantly elevated expression of
DNA damage repair-related proteins, such as PRKDC,
ATR, and POLD4, suggesting that elevated DNA damage
repair contributes to poor prognosis in patients with
melanoma.
The PRKDC gene encodes DNA-dependent protein

kinase (DNA-PK), which plays a pivotal role in DNA
double-strand break repair38. Previous studies have
reported mutational alterations and abnormal expression
of PRKDC in various cancer types70–72, including gliomas,
colorectal carcinoma (RCC), and nasopharyngeal carci-
noma. Specifically, McKean-Cowdin et al.72 proposed that
mutations in DDR genes were associated with an
increased risk of glioblastoma multiforme (GBM), and a
variant of PRKDC increased the risk of glioma by 44%. In
addition, Zheng et al.73 reported that in RCC, the over-
expression of DNA-PKcs was significantly associated with
enhanced tumor cell proliferation. In our study, we found
that PRKDC amplification was a prognostic marker for
melanoma. Taking advantage of our multi-omics studies,
we further elucidated the mechanism by which PRKDC
might promote tumor cell proliferation through its cis-
effect and collaborate with ATM and ATR.
Moreover, in recent years, the therapeutic role of

PRKDC has been reported. Sun et al.40 reported a sig-
nificant correlation between PRKDC expression and the
response to chemotherapy in patients with breast cancer.
In our research, we investigated possible therapeutic
strategies for patients harboring PRKDC amplifications
and confirmed that enhanced PRKDC expression might
inhibit the efficacy of 5-FU treatment. Since the current
treatment with chemotherapy has been shown to have a
very minor effect on melanoma, our results suggest a
potential option to enhance the therapeutic efficacy for
treating melanoma in the future.
The folate cycle74 within folate metabolism promotes

cell growth and proliferation. In this case, one-carbon
units were used for purine and thymidine synthesis43. In
contrast, the methionine cycle within folate metabolism
plays a role in inhibiting cancer cell growth and pro-
liferation because one-carbon units are used for DNA or
protein methylation, which leads to gene expression
silencing and chromosome condensation. The MTR is the
unique linker of the two coupled cycles75. The one-carbon
unit flux determines the balance between the promotion
or inhibition of growth. This study is the first to
demonstrate the benefits of uncoupling the folate cycle
and the methionine cycle on cancer cell growth and
proliferation. Uncoupling these two cycles enhanced the
oncogenic effects of one-carbon metabolism because
most methyl units derived from serine were used in
purine and pyrimidine synthesis. Additionally, MTR
deficiency results in the blockade of the synthesis of
methionine from the remethylation of homocysteine,

thereby leading to decreased cellular methionine and
SAM concentrations76. In certain patients who presented
with a loss of MTR, BHMT expression increased to
compensate for MTR loss. BHMT catalyzes the reme-
thylation of homocysteine and results in the generation of
methionine using betaine as a methyl donor77. In our
previous study, we also observed decreased MTR activity
induced by genetic variants that contributed to the
development of prostate cancer and congenital heart
disease, which are common diseases related to the dys-
regulation of folate metabolism43. These phenomena
indicate that uncoupling the folate and methionine cycles
in one-carbon metabolism contributes to the develop-
ment of a wide array of folate metabolism dysfunction-
related diseases.
Although histological diagnosis remains the corner-

stone of the classification of tumors into therapeutic
categories, it is now well recognized that molecular sub-
groups within histologically similar tumors can be iden-
tified based on transcriptomics and genomics78,79. Using
proteomic data, we clustered the PM into three sub-
groups, which exhibited remarkable diversity in molecular
signatures and patient survival. Although the amplifica-
tion frequency and protein expression of PRKDC did not
differ between subgroup II and subgroup III, as char-
acterized by diverse proteomic features across the three
proteomic subgroups, we further indicated that the ele-
vated frequency of ROCK2 amplification contributed to
the dominant angiogenesis feature of subgroup II, which
might partly explain the greater proportion of metastatic
patients in subgroup II. In subgroup III, CDK4 amplifi-
cation and PRKDC amplification jointly promoted
increased CDK4 protein expression and kinase activity in
melanoma patients, accelerating the proliferation rate of
melanoma and leading to poor prognosis.
Melanoma is among the most sensitive malignancies to

immune modulation. Although multiple trials conducted
over decades with vaccines, cytokines and cell therapies
have demonstrated meaningful responses in a small sub-
set of patients with melanomas, approximately half of all
melanoma patients treated with immune checkpoint
inhibitors (ICIs) exhibit resistance or recurrence80. Cur-
rently, no highly accurate predictive biomarkers exist, and
there are limitations. According to our data, by con-
ducting immune-based subtyping of CM, AM, and MM
samples via deconvolution of cell composition, we iden-
tified three immune subtypes: the T-cell infiltration type,
TAM infiltration type, and IL-17 secretion type. Com-
bined with the results of proteomic and phosphopro-
teomic data analysis of the anti-PD-1 treatment cohort,
we found that the upregulation of MAPK7 (ERK5) kinase
activity and NFκB transcription activity may lead to more
T cells being recruited into the tumor microenvironment,
thereby increasing the sensitivity of patients to
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immunotherapy. Previous studies by us and others have
proven the relationship between the MAPK7-NFκB sig-
naling pathway and PD-L1 expression57,81. Here, we
observed that the activated kinase activity of MAPK7
might lead to the recruitment of CD8+ T cells to the
tumor microenvironment and might contribute to favor-
able outcomes in patients receiving anti-PD-1 therapy.
We then constructed an independent anti-PD-1 valida-
tion cohort and evaluated correlations among MAPK7,
elevated CD8+ T-cell recruitment and favorable clinical
outcomes for patients receiving anti-PD-1 therapy.
Moreover, we found that PRKDC might reduce the sen-
sitivity of melanoma patients to immunotherapy by pro-
moting DNA repair and cell proliferation. In clinical
cohorts of patients with NSCLC and melanoma, Tan et al.
reported that for patients treated with ICIs, those with
PRKDC mutations were confirmed to have a better
prognosis38,82. We evaluated the potential therapeutic
potential of targeting PRKDC to enhance the efficacy of
immunotherapy and confirmed the potential therapeutic
options involving the use of PRKDC inhibitors combined
with anti-PD-1 therapy for melanoma treatment in the
future. These insights might help extend new treatments
that could be effective for one type of tumor and for
histologically disparate tumors that share the same
immunological features.
In summary, our study presented a comprehensive

proteomic landscape of melanomas, including acral,
cutaneous, and mucosal types. Our data provide a
resource to illustrate the functional mechanism of driver
genomic alterations that impact survival, treatment and
other clinical factors affecting patient outcome and
quality of life.

Materials and methods
Clinical sample collection
Archival FFPE tissues obtained from 197 participants

without prior treatment were selected for the conduction
of the present study, including primary CMs (n= 28),
primary AM (n= 81), primary MM (n= 28), metastatic
melanomas (n= 27), and nevi (n= 43). Nevi samples were
obtained from 43 patients who underwent dermal nevus
surgery in 2019. All patients were diagnosed with mela-
nomas from 2006 to 2018 at Zhongshan Hospital and
received no prior anticancer treatments regardless of
histologic grade or surgical stage. Melanomas were graded
and staged using the 8th edition of the American Joint
Committee on Cancer (AJCC)83. Each tissue specimen
endured cold ischemia for average 30 min or less prior to
being paraffin-embedded with 3.7% neutral buffered for-
maldehyde solution fixation for 6–48 h. Many pre-
analytical variables have been evaluated and no detri-
mental effect was found so far on protein abundance and
quality due to storage times of FFPE specimens for ten or

more years84,85. Selection of FFPE block from each patient
was predicated on the ability to obtain sufficient and high-
quality proteins, nucleic acids, and mRNAs for analysis.
One exact FFPE block from each patient was chosen for
detection of multi-mics data. Each case was reviewed by
two board-certified pathologists to confirm the assigned
pathology. The present study was conducted in com-
pliance with the ethical standards of the Helsinki
Declaration II and was approved by the Institution Review
Board of Fudan University Zhongshan Hospital (B2019-
200R). Written informed consent was obtained from each
patient before the performance of any study-specific
investigation.

Clinical data annotation
Clinical data, including sex, age, tumor grade, Breslow

depth, Clark level, ulcer, tumor location, and OS time,
were obtained from Zhongshan Hospital and have been
summarized in Supplementary Table S1. The character-
istics of our melanoma cohort reflect the general inci-
dence of melanomas, including patient age distribution
(20–97 years, with a median of 61).

Sample preparation
FFPE specimens were prepared and provided by

Zhongshan hospital. One 4 μM thick slide from each
FFPE block was sectioned for hematoxylin and eosin
(H&E) staining. For proteogenomic sample preparation,
10 μM thick slides were sectioned, deparaffinized with
xylene, and washed with gradient ethanol. Specimens
were selected according to H&E staining and scraped. All
materials were aliquoted and stored at −80 °C until fur-
ther processing. Each sample was assigned a new research
ID and the patient’s name or medical record number used
during hospitalization was de-identified.
For the WES analysis, a total quantity of 0.6 µg genomic

DNA per sample was used as the input material for DNA
preparation, and final products were quantified using an
Agilent high sensitivity DNA assay (Agilent) on an Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA,
USA). For library preparation of RNA sequencing, a total
amount of 500 ng RNA per sample was used as the input
material for the RNA sample preparations. Sequencing
libraries were generated using Ribo-off® rRNA Depletion
Kit (H/M/R) (Vazyme #N406) and VAHTS® Universal
V6 RNA-seq Library Prep Kit for Illumina (#N401-
NR604). A total quantity of 1 µg peptides per sample was
used as the input material for LC-MS/MS analysis, and
LC-MS/MS were performed on Easy-nLC liquid chro-
matography system (Thermo Scientific) coupled to an
Orbitrap Fusion Lumos Tribrid platform with FAIMS
(Thermo Fisher Scientific). For the phosphoproteome
analysis, a total of 500 µg peptides were then enriched
with High-Select™ Fe-NTA Phosphopeptide Enrichment
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Kit (Thermo Scientific cat. A32992), following the man-
ufacturer’s recommendations, and LC-MS/MS were per-
formed on Easy-nLC liquid chromatography system
(Thermo Scientific) coupled to an Orbitrap Fusion Lumos
Tribrid platform with FAIMS (Thermo Fisher Scientific).

Tumor cellularity and immune cell infiltration
The histology of the melanoma tumor tissues was

examined using H&E-stained slides by two expert
pathologists blinded to the proteomic subtypes. The
tumor cases were graded using the AJCC staging system
and staged using guidelines prescribed by the 8th edition.
Information regarding tumor histological subtype, grade,
and tumor purity was provided. Acceptable melanoma
tumor tissue segments were determined by pathologists
based on the percentage of viable tumor nuclei (> 80%)
and necrosis (< 20%). Tumor purity was further inde-
pendently evaluated in SCNA data on the 164 cancers
(samples for WES analysis), using the ABSOLUTE algo-
rithm86. Accordingly, the tumor purity validated by
ABSOLUTE ranged from 80% to 90% (median 85%),
which are in concordat with histologic assessed tumor
purity.

DNA extraction and quantification
For the WES analysis, DNA from 188 melanoma tissues

were extracted according to the manufacturer’s instruc-
tions (QIAamp DNA Mini Kit; QIAGEN, Hilden, Ger-
many). The isolated DNA quality and contamination were
verified using the following methods: (1) DNA degrada-
tion and contamination were monitored on 1% agarose
gels and (2) DNA concentration was measured via Qubit®

DNA Assay Kit in Qubit® 2.0 Fluorometer (Invitrogen,
CA, USA).

Library preparation
A total quantity of 0.6 µg genomic DNA per sample was

used as the input material for DNA preparation.
Sequencing libraries were generated using Agilent Sur-
eSelect Human All Exon Kit (Agilent Technologies, CA,
USA) following the manufacturer’s recommendations;
further, index codes were added to each sample. Briefly,
fragmentation was carried out by a hydrodynamic shear-
ing system (Covaris, Massachusetts, USA) to generate
180–280 bp-fragments. Remaining overhangs were con-
verted into blunt ends via exonuclease/polymerase activ-
ity. Adapter oligonucleotides were ligated after
adenylation of the 3′-ends of the DNA fragments. DNA
fragments with ligated adapter molecules on both ends
were selectively enriched via a polymerase chain reaction
(PCR). Thereafter, libraries were hybridized with the
liquid phase of biotin-labeled probes, and magnetic beads
with streptomycin were used to capture the exons of
genes. Captured libraries were enriched in another PCR

reaction to add index tags to prepare them for sequencing.
Finally, the products were purified using AMPure XP
system (Beckman Coulter, Beverly, USA) and quantified
using an Agilent high sensitivity DNA assay (Agilent) on
an Agilent Bioanalyzer 2100 system (Agilent Technolo-
gies, CA, USA).

Clustering and sequencing
Clustering of the index-coded samples was performed

on a cBot Cluster Generation System using a HiSeq PE
Cluster Kit (Illumina) according to the manufacturer’s
instructions. After cluster generation, the DNA libraries
were sequenced on an Illumina NovaSeq platform and
150 bp paired-end reads were generated.

WES quality control
The original fluorescence image files obtained from

Novaseq platform are transformed to short reads (Raw
data) by base calling and these short reads are recorded in
FASTQ format, which contains sequence information and
corresponding sequencing quality information. Sequence
artifacts, including reads containing adapter contamina-
tion, low-quality nucleotides and unrecognizable nucleo-
tide87, undoubtedly set the barrier for the subsequent
reliable bioinformatics analysis. Hence quality control is
an essential step and applied to guarantee the meaningful
downstream analysis.
The steps of data processing were as follows:
(1) Discard the paired reads if either one read contains

adapter contamination (> 10 nucleotides aligned to
the adapter, allowing ≤ 10% minimal matches).

(2) Discard the paired reads if more than 10% of bases
are uncertain in either one read.

(3) Discard the paired reads if the proportion of low
quality (Phred quality < 5) bases is over 50% in
either one read.

All the downstream bioinformatics analyses were based
on the high-quality clean data, which were retained after
these steps. At the same time, QC statistics including total
reads number, raw data, raw depth, sequencing error rate,
percentage of reads with Q30 (the percent of bases with
phred-scaled quality scores greater than 30) and GC
content distribution were calculated and summarized.
WES was conducted with mean coverage depths of 108×
for tumor samples and 118× for adjacent non-tumor brain
samples, which is consistent with the recommendations
for WES88.

Reads mapping and genomic variant calling
Valid sequencing data was mapped to the reference

human genome (UCSC hg19) by Burrows-Wheeler
Aligner (BWA) software to get the original mapping
results stored in BAM format89,90. If one or one paired
read(s) were mapped to multiple positions, the strategy
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adopted by BWA was to choose the most likely place-
ment. If two or more most likely placements presented,
BWA picked one randomly. Then, SAMtools91 and Picard
(http://broadinstitute.github.io/picard/) were used to sort
BAM files and do duplicate marking, local realignment,
and base quality recalibration to generate final BAM file
for computation of the sequence coverage and depth.
ANNOVAR (version 2017 Jul 17, http://annovar.
openbioinformatics.org/en/latest/)92 was performed to
annotate the Variant Call Format file obtained in the
previous step.
Filter conditions were set to identify the candidate

genetic alterations as follows:
(1) Remove mutations with coverage less than 10×;
(2) Remove variant sites in dbSNP and with mutant

allele frequency (MAF) > 0.001 in the 1000
Genomes databases (1000 Genomes Project
Consortium) and the Novo-Zhonghua (in-house
unrelated healthy individual database), but include
sites with MAF ≥ 0.001 and < 0.1 with COSMIC
evidence (http://cancer.sanger.ac.uk/cosmic)93–95;

(3) Variations in the exosmic or splicing (10 bp
upstream and downstream of splicing sites);

(4) Remove synonymous mutations;
(5) Retain the nonsynonymous SNVs if the functional

predictions by PolyPhen-2, SIFT, MutationTaster
and CADD all show the SNV is not benign96–99;

Retain genes identified by Cancer Gene Census (CGC,
http://www.sanger.ac.uk/science/data/ cancer-gene-
census).

Somatic variant calling
For the 207 melanoma tumor samples without matched

tumor-adjacent tissues as control, we referred to pervious
published papers100,101 and developed a variant selection
pipeline to detect somatic variant calling:
(1) Known constitutional polymorphisms using known

human variation databases, 1000 Genomes
databases (1000 Genomes Project Consortium)
and the Novo-Zhonghua (in-house unrelated
healthy individual database)94;

(2) Known somatic variation in melanoma and other
common malignancies as reported in COSMIC
V90102;

(3) The presence of the same sequence changes in
exome or whole genome sequencing data derived
from 188 constitutional DNA samples analyzed in
CGP (CGP normal panel); specifically, where the
same base change was observed in at least two
constitutional sample at allele fractions greater than
10% and the variant has not previously been
confirmed as somatic in COSMIC or in two or
more samples at < 10%;

(4) Sequence context 5′ and 3′ to the reported sequence

change highlighting s of homopolymer sequence
that are prone to PCR slippage and artefacts altering
the last base of the homopolymer or inserting the
same base as the homopolymer at +1, +2 of the
tracks and often present in unidirectional reads and
< 10% variant allele burden;

(5) Variant specific metrics to include protein
annotation, sequence depth and % of reads
reporting the variant allele.

Exome-based somatic copy number alteration (SCNA)
analysis
SCNA analysis was performed by following somatic

copy-number variation (CNV) calling pipeline in GATK’s
(GATK v 4.1.2.0) Best Practice. The results of this pipe-
line, segment files of every 1000, were put in GISTIC2
version 2.0103 to identify significantly amplified or deleted
s across all samples, which could be accumulated driving
s. To exclude false positives as much as possible, relatively
stringent cutoff thresholds were used with parameters: -ta
0.5 -tb 0.5 -brlen 0.5 -conf 0.75. Other parameters were
the same as the default values. Based on the published
literature88, a log2 ratio cut-off of ± 0.3 was used to define
CNV amplification and deletion.

CNA-driven cis and trans effects
SCNAs affecting protein and phosphoprotein abundance

in either “cis” (within the same aberrant locus) or “trans”
(remote locus) mode were visualized using “multiOmicsViz”
R package104. Spearman’s correlation coefficients and asso-
ciated multiple-test adjusted p values were calculated for all
CNA-protein pairs and CNA-phosphoprotein pairs, which
resulted in CNA-protein pairs for 1631 genes and CNA-
phosphoprotein pairs for 323 genes.

Defining cancer-associated genes
Cancer-associated genes (CAGs) were compiled from

genes defined by Bailey et al.105 and cancer-associated
genes listed in Mertins et al.106 and adapted from
Vogelstein et al.107.

Mutational signature analysis
Mutation signatures were jointly inferred for 188

tumors using the R package “sigminer”. The sigminer
approach (https://github.com/ShixiangWang/sigminer)
was used to extract the underlying mutational signatures.
The 96 mutation vectors (or contexts) generated by
somatic SNVs based on six base substitutions (C > A,
C > G, C > T, T > A, T > C, and T > G) within 16 possible
combinations of neighboring bases for each substitution
were used as input data to infer their contributions to the
observed mutations. Sigminer using a nonnegative matrix
factorization (NMF) approach was applied to decipher the
96 × 188 (i.e., mutational context-by-sample) matrix for
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the 30 known COSMIC cancer signatures (https://cancer.
sanger.ac.uk/cosmic/signatures) and infer their exposure
contributions.

RNA-seq
RNA extraction RNA was extracted from tissues by

using TIANGEN® RNAprep Pure FFPE Kit (#DP439)
according to the reagent protocols. For library preparation
of RNA sequencing, a total amount of 500 ng RNA per
sample was used as the input material for the RNA sample
preparations. Sequencing libraries were generated using
Ribo-off® rRNA Depletion Kit (H/M/R) (Vazyme #N406)
and VAHTS® Universal V6 RNA-seq Library Prep Kit for
Illumina (#N401-NR604) following the manufacturer’s
recommendations and index codes were added to attri-
bute sequences to each sample. The libraries were
sequenced on an Illumina platform and 150 bp paired-end
reads were generated.

RNA-seq data analysis
RNA-seq raw data quality was assessed with the FastQC

(v0.11.9) and the adapter was trimmed with Trim_Galore
(version 0.6.6) before any data filtering criteria was
applied. Reads were mapped onto the human reference
genome (GRCh38.p13 assembly) by using STAR software
(v2.7.7a). The mapped reads were assembled into tran-
scripts or genes by using StringTie software (v2.1.4) and
the genome annotation file (hg38_ucsc.annotated.gtf). For
quantification purpose, the relative abundance of the
transcript/gene was measured by a normalized metrics,
FPKM (Fragments Per Kilobase of transcript per Million
mapped reads). Transcripts with an FPKM score above
one were retained, resulting in a total of 23,655 gene IDs.
All known exons in the annotated file were 100% covered.

Protein extraction and tryptic digestion
To prepare peptides for MS analysis, 10 μM thick slides

from FFPE blocks were macro-dissected, deparaffinized
with xylene, and washed with ethanol. The extracted tis-
sues were then lysed in a buffer comprising 0.1M Tris-
HCl (pH 8.0), 0.1M DTT, and 4% SDS at 99 °C for 30min.
The crude extract was then clarified via centrifugation at
16,000× g for 10 min, and the supernatant was loaded into
a 10 kD Microcon filtration device (Millipore), cen-
trifuged at 12,000× g for 20 min, and then washed twice
with Urea lysis buffer (8M Urea, 100 mM Tris-HCl, pH
8.0) and twice with 50mM NH4HCO3. The samples were
digested using trypsin at an enzyme to protein mass ratio
of 1:25 overnight at 37 °C. Finally, the peptides were
extracted and dried (SpeedVac, Eppendorf)108.

Enrichment of phosphorylated peptides
For the phosphoproteomic analysis, peptides were

extracted from the FFPE slides after trypsin digestion

using the methods described above. The tryptic peptides
were then enriched with High-Select™ Fe-NTA Phos-
phopeptide Enrichment Kit (Thermo Scientific cat.
A32992), following the manufacturer’s recommendation.
Briefly, peptides were suspended with binding/wash buffer
(contained in the enrichment kit), mixed with the equi-
librated resins, and incubated at 21–25 °C for 30min.
After incubation, the resins were washed thrice with
binding/wash buffer and twice with water. The enriched
peptides were eluted with elution buffer (contained in the
enrichment kit), and dried in a SpeedVac.

LC-MS/MS analysis
LC-MS/MS was performed on Easy-nLC liquid chro-

matography system (Thermo Scientific) coupled to an
Orbitrap Fusion Lumos Tribrid platform with FAIMS
(Thermo Fisher Scientific). The peptides were dissolved
with 10 μL loading buffer (5% methanol and 0.2% formic
acid), and 5 μL was loaded onto a 360 μm I.D. × 2 cm,
C18 trap column at a maximum pressure 280 bar with
12 μL solvent A (0.1% formic acid in water). Peptides
were separated on 150 μm I.D. × 30 cm column (C18,
1.9 μm, 120 Å, Dr. Maisch GmbH) with a linear 5%–35%
Mobile Phase B (ACN and 0.1% formic acid) at 600 nL/
min for 150 min. FAIMS separations were performed
with the following settings: inner electrode
temperature= 100 °C (except where noted), outer elec-
trode temperature= 100 °C, FAIMS carrier gas
flow= 2.3 L/min.
The dispersion voltage (DV) was set at −5000 V, and

the compensation voltage was stepped into 40 V, 55 V and
70 V.
For MS scans, Orbitrap (OT) was utilized as detector,

with resolution 120,000, scan range 300–1500m/z, AGC
target 3.0e5, Maximum Injection Time 50ms, charge state
2–7, and data type Profile. For MS/MS scans, Ion Trap
(IT) was utilized as detector, AGC target 1.0e4, Maximum
Injection Time 80ms, normalized collision energy of
30%). The dynamic exclusion time of previously obtained
precursor ions was 45 s, cycle time= 1 s.

Peptide and protein identification
MS raw files were processed with “Firmiana” (a one-

stop proteomic cloud platform109 against the human
RefSeq protein database (updated on 04-07-2013) in the
National Center for Biotechnology Information. The
maximum number of missed cleavages was set to two. A
mass tolerance of 20 ppm for precursor and 0.5 Da for
production was allowed. The fixed modification was car-
bamidomethyl (C), and the variable modifications were
N-acetylation and oxidation of methionine. For the
quality control of protein identification, a target-decoy-
based strategy was applied to control the FDR of both the
peptides and proteins to less than 1%. Percolator was used
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to obtain the probability value (q value), and to validate
the FDR (measured by the decoy hits) of every peptide-
spectrum match (PSM) lower than 1%. Thereafter, all the
peptides with lengths shorter than seven amino acids were
removed. The cutoff ion score for peptide identification
was 20. All PSMs in all fractions were combined for
protein quality control, which is a more stringent quality
control strategy. The q values of both the target and decoy
peptide sequences were dynamically increased until the
corresponding protein FDR was less than 1% using the
parsimony principle.
For the phosphoproteomic data, a label-free based

identification analysis was performed by Proteome Dis-
cover (version 2.3). The maximum number of missed
cleavages was set to 2. A mass tolerance of 20 ppm for
precursor and 0.5 Da for production was allowed. The
fixed modification was carbamidomethyl (C), and the
variable modifications were oxidation (M), acetylation
(protein N-term), and phospho (S/T/Y). The cutoff FDR,
using a target-decoy strategy, was set at 1% for both the
proteins and peptides.

MS quantification of proteins and phosphoproteins
For the proteomic data, Firmiana was employed for

protein quantification, and both the results and raw data
from the mzXML file were loaded. Next, for each iden-
tified peptide, the extracted-ion chromatogram (XIC) was
extracted by searching against the MS1 based on its
identification information, and the abundance was esti-
mated by calculating the area under the extracted XIC
curve. For the protein abundance calculation, the non-
redundant peptide list was used to assemble the proteins
by following the parsimony principle. Thereafter, the
protein abundance was estimated with a traditional label-
free, intensity-based absolute quantification (iBAQ)
algorithm, which divided the protein abundance (derived
from intensities of the identified peptides) by the number
of theoretically observable peptides110,111. The fraction of
total (FOT), a relative quantification value that was
defined as a protein’s iBAQ divided by the total iBAQ of
all identified proteins in one experiment, was calculated as
the normalized abundance of a particular protein in the
experiments. Finally, the FOT was further multiplied by
1e6 for the ease of presentation, and NA values were
replaced with 1e−5 to adjust extremely small values.
For the phosphoproteomic data, the intensities of the

phosphopeptides were extracted from the Proteome Dis-
cover (version 2.3). For the phosphoprotein abundance
calculation, the non-redundant phosphopeptide list was
used to assemble the proteins by following the parsimony
principle. Next, the phosphoprotein abundance was esti-
mated by a traditional label-free, iBAQ algorithm, which
divided the protein abundance (derived from the inten-
sities of the identified peptides) by the number of

theoretically observable peptides108. For phosphosite
localization, the ptmRS112 was used to determine phos-
phosite confidence and phosphosite probability > 0.75 is
considered as confident phosphosites.

Quality control of the MS data
For the quality control of MS performance, the

HEK293T cell (National Infrastructure Cell Line
Resource) lysate was measured every 3 days as the quality
control standard. The quality control standard was
digested and analyzed using the same method and con-
ditions as that of the 10 samples. A pair-wise Spearman’s
correlation coefficient was calculated for all quality con-
trol runs in the statistical analysis environment R (version
4.0.0), and the results are shown in Supplementary Fig.
S1d. The average correlation coefficient among the stan-
dards was 0.9, and the maximum and minimum values
were 0.92 and 0.88, respectively. The result demonstrated
the consistent stability of the MS platform.

Data filtering and missing data imputation
Four pathological types of melanomas, nevi, cutaneous

melanomas, acral melanomas, and mucosal melanomas,
were included in this study. Before performing any
downstream analysis, the proteins and phosphosites with
more than 50% missing rates observed in at least one of
the subtypes were filtered out. In total, 11,206 proteins
and 25,318 phosphosites (belonging to 4922 phospho-
proteins) were identified.
K-nearest neighbor (k-NN) imputation was applied to

impute the missing values. The imputation method was
implemented in the pamr package in R. Specifically, for
proteins expressed in at least 50% of samples in each
histological subtype, we performed KNN imputation
separately on the data from each histological subtype
using the “impute.knn” function from the “impute” R
package113,114. After merging the data across histological
subtypes and again replacing the missing data structure
with the KNN imputation algorithm.

Survival analysis
All the survival analysis presented in this manuscript

(e.g., OS and PFS of the proteomic and phosphoproteomic
sub-types, etc.), were based on Kaplan–Meier survival
curves (log-rank test)115.

Pathway enrichment analysis
Pathway enrichment analysis was performed by DAVID

(https://david.ncifcrf.gov/) and ConsensusPathwayDB
(http://cpdb.molgen.mpg.de/), and the significance of the
pathway enrichment analysis was determined by Fisher’s
exact test on the basis of KEGG pathways and categorical
annotations, including the GO “biological process” term
and Reactome (https://reactome.org/).
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Functional enrichment analysis of proteome data using
GSVA/ssGSEA analysis
To further analyze biological characteristics of different

samples, we performed single-sample gene set enrichment
(ssGSEA/GSVA) analysis. Gene expression data of pro-
teome across different samples were used to achieve
enrichment scores over ontology gene sets (browse 14,998
gene sets) with at least 10 overlapping genes and the R/
Bioconductor package GSVA. The significance of the
pathway enrichment scores (PES) over different samples
was estimated by linear model and moderated with the
F-statistic using the R/Bioconductor package limma. The
resulting significant PES among different samples were
corrected by the Benjamin–Hochberg method, which
used an adjusted p value cut-off of 0.05.

mRNA–protein correlation
Spearman correlation coefficients and the correspond-

ing p values of shared 4429 mRNA/protein pairs detected
in all samples at both mRNA and protein levels were
calculated across melanoma samples with RNA-Seq and
MS data. In addition, the corresponding p values were
adjusted by the Benjamini-Hochberg correction and a
cut-off of 0.05 was determined as the significance of
correlation pairs. In order to explore the biological
functions of different expression correlations, pathway
enrichment analysis was performed by DAVID.

Investigation of proteins associated with SBS7a mutation
signature
To identify proteins that altered in patients with SBS7a

mutation signature, we followed published research78,116 and
performed a regression analysis to compare the SBS7a+

group and SBS7a– group, with the age of diagnosis, gender,
and pathological stage as covariates. In total, 313 proteins
were identified to be differentially expressed between
SBS7a+ group and SBS7a– group (Supplementary Table S1).

Global heatmap
Two-way hierarchical clustering was applied to the

global proteomic data of the samples and proteins to
identify the global differential protein expression and
protein coexpression patterns. Each gene expression value
in the global proteomic expression matrix was trans-
formed to a z-score across all the samples. For the sample-
wise and protein-wise clustering, distance was set as
“Euclidean distance”, and weight method was “complete”.
The z-score-transformed matrix was clustered using the
“pheatmap” (version 1.0.12) R package.

Kinase activity prediction via PTM-SEA
Kinase activity scores were inferred from phosphoryla-

tion sites by employing PTM signature enrichment ana-
lysis (PTM-SEA) using the PTM signatures database

(PTMsigDB) v1.9.0 (https://github.com/broadinstitute/
ssGSEA2.0). Sequence windows flanking the phosphor-
ylation site by 7 amino acids in both directions were used
as unique site identifiers. Only fully localized phosphor-
ylation sites as determined by Spectrum Mill software
were taken into consideration. Phosphorylation sites on
multiply phosphorylated peptides were resolved using the
approach described in Krug et al.117 resulting in a total of
27,849 phosphorylation sites that were subjected to PTM-
SEA analysis using the following parameters:
gene.set.database = “ptm.sig.db.all.flanking.human.
v1.9.0.gmt”
sample.norm.type = “rank”
weight = 0.75
statistic = “area.under.RES”
output.score.type = ”NES”
nperm = 1000
global.fdr = TRUE
min.overlap = 5
correl.type = “z.score”

TF activity inference
TF activities for tumors were computed using ssGSEA

via the GSVA package118. TF targets obtained from
DoRothEA (v1.6.0)119 were set as background.

Consensus clustering analyses
We chose the top 1000 most varied proteins from the

tumor tissues for subgrouping. K-means consensus clus-
tering was applied to the selected proteins to generate
subgroups. Consensus clustering was implemented on these
differentially expressed proteins using the “Consensu-
sClusterPlus” R package120, and the following detailed set-
tings were used: number of repetitions= 1000 bootstraps,
pItem= 0.8 (resampling 80% of any sample), pFeature= 0.8
(resampling 80% of any protein), and k-means clustering
with up to 10 clusters. The number of clusters was deter-
mined by three factors based on a previous paper104. We
selected three clusters as the best solution for the consensus
matrix since k= 3 provided the clearest separation among
the clusters. Additionally, the consensus CDF and delta
plots showed a significant increase in the area for k= 3 than
that in k= 2, whereas a smaller increase was observed in the
area for k= 3 compared with that in k= 4 or k= 5. Based
on this, the melanoma proteomic data were clustered into
three groups (Supplementary Fig. S3a, b).

Estimation of stromal and immune scores
ESTIMATE121 and XCell122 were used to infer immune

scores based on the transcriptome data.

IHC
Formalin-fixed, paraffin-embedded tissue sections of

10 µM thickness were stained in batches for detecting
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MCM2, CDK4, RCOK2, CD8, CD163, and IL17D in a
central laboratory at the Zhongshan Hospital according
to standard automated protocols. Deparaffinization and
rehydration were performed, followed by antigen
retrieval and antibody staining. IHC was performed
using the Leica BOND-MAX auto staining system
(Roche). Antibody was introduced, followed by detec-
tion with a Bond Polymer Refine Detection DS9800
(Bond). Slides were imaged using an OLYMPUS BX43
microscope (OLYMPUS) and processed using a Scan-
scope (Leica).

Macrophage polarization in melanoma
Microphage polarization signatures were constructed

with ssGSEA118 using RNaseq measurements based on
genes described in recent literature122–124. Specifically, the
following gene sets were considered: Proinflammatory
(M1)= (IL1B, TLR4, TNF, NOS2, APOE, CLEC7A,
LGALS3, GPNMB, ITGAX, SPP1, CCL2, FABP5, CYBB);
Anti-inflammatory (M2)= (COQ7, IL4, IL13, IL10,
ARG1, TGFB1, SMAD3, HEXB, P2RY12, MERTK,
ENTPD1, TMEM119, TGFBR1, CD163, CD206). M2-
0.65*M1 difference was used for Supplementary Fig. S4c.

Cell cycle analysis
Multi-Gene Proliferation Scores (MGPS) were calculated

from the median-MAD normalized RNA-seq data as
described previously125. Briefly, MGPS was calculated as the
mean expression level of all cell cycle-regulated genes
identified by Whitfield et al.49 in each sample. Apoptosis and
E2F TG scores were the ssGSEA normalized enrichment
scores from the corresponding MSigDB Hallmark gene sets
calculated above (Pathway projection using ssGSEA).

Identification of immune clusters based on cell type
composition
The abundance of 64 different cell types in 75 primary

melanomas was computed via xCell. For this analysis, the
mRNA expression matrix, excluding > 30% missing values
across all the samples, was utilized. Consensus clustering was
performed based on cells only detected in at least 30% of
patients (adjusted p < 0.01). This filtering resulted in 36 cell
types. To identify sample groups with similar immune/stro-
mal characteristics, consensus clustering was performed
using the R packages ConsensusClusterPlus based on the
normalized Z-score of these 36 xCell signatures selected
above. Specifically, 80% of the original 75 samples were
randomly subsampled without replacement and partitioned
into three major clusters using the Patitioning Around
Medoids (PAM) algorithm, which was repeated 200 times120.

Multivariate COX regression analysis
The multivariate COX regression analysis was con-

ducted, accounting for the baseline of our cohort,

including, age, gender, clinical variables such as histology
typing, pathological subtyping, tumor site, Clark level,
ulcer, and our prognostic relevant findings, including the
SBS7a+ mutational signature, PRKDC amplification status,
MTHFD2, and TYM protein expression, as well as pro-
teomic and immune classifiers. The results emphasized the
findings in our study could serve as an independent pre-
dictive factor in the multivariable analysis after adjusting
for clinical stage and covariates (Supplementary Table S2).

PDC proteome
For the proteomic analysis of patient-derived cells

(PDCs), Cells were lysed in lysis buffer (8M Urea,
100mM Tris Hydrochloride, pH 8.0) containing protease
and phosphatase Inhibitors (Thermo Scientific) followed
by 1min of sonication (3 s on and 3 s off, amplitude 25%).
The lysate was centrifuged at 14,000× g for 10 min and the
supernatant was collected as whole tissue extract. Protein
concentration was determined by Bradford protein assay.
Extracts from each sample (500 μg protein) was reduced
with 10 mM dithiothreitol at 56 °C for 30min and alky-
lated with 10mM iodoacetamide at room temperature
(RT) in the dark for additional 30 min. Samples were then
digested using the filter aided proteome preparation
(FASP) method with trypsin. Briefly, samples were
transferred into a 30 kD Microcon filter (Millipore) and
centrifuged at 14,000× g for 20 min. The precipitate in the
filter was washed twice by adding 300 μL washing buffer
(8M urea in 100mM Tris, pH 8.0) into the filter and
centrifuged at 14,000× g for 20 min. The precipitate was
resuspended in 200 μL 100 mM NH4HCO3. Trypsin with
a protein-to-enzyme ratio of 50:1 (w/w) was added into
the filter. Proteins were digested at 37 °C for 16 h. After
tryptic digestion, peptides were collected by centrifuga-
tion at 14,000× g for 20 min and dried in a vacuum con-
centrator (Thermo Scientific), and dried.

Cell viability analysis
The inhibitory effects of Nedisertib (PRKDC inhibitor) and

Palbociclib (CDK4 inhibitor) (purchase from Selleck Che-
micals, Houston, TX, USA) on the viability of PDCs from
melanoma patients were measured by the CCK-8 assay
(Sigma Aldrich, USA) according to the protocol provided by
the manufacturer. Briefly, cells were seeded in 96-well plates
(Corning Incorporated, Corning, MA, USA) at a density of
about 5 × 103 cells/dish in 100 μL of culture media and
grown at 37 °C for 24 h. Thereafter, they were treated with
different concentrations of inhibitors for 48 h under nor-
moxic or hypoxic conditions, respectively. Subsequently,
10 μL CCK-8 solution was added to each well and the plates
were incubated at 37 °C for 0–4 h. The optical density of
each well was determined at 450 nm with a microplate
reader (Bio-Rad, Hercules, CA, USA). All experiments were
independently repeated three times. The IC50 values of
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Nedisertib and Palbociclib in PDCs from melanoma patients
were calculated using GraphPad Prism 8 software.

Cell culture
Human malignant melanoma cells (A375 and HMCB)

were obtained from ATCC and their authentication was
confirmed by DNA fingerprinting with small tandem repeat
(STR) profiling. A375 and HMCB cells were cultured in
DMEM supplemented with 10% fetal bovine serum (FBS)
(Biochrom), 100 units/mL penicillin (Invitrogen), and
100mg/mL streptomycin (Invitrogen). Media for metabo-
lite profiling experiments used dialyzed fetal bovine serum
(FBS), prepared by dialyzing FBS for 72 h using SnakeSkin
Dialysis Tubing, 3.5 K MWCO, 22mm (Thermo Fisher)
against a tenfold higher volume of phosphate-buffered sal-
ine (PBS) with a complete PBS exchange every 6 h.

Overexpression of genes
Lenti-ORF clone of MTR was bought for origene (CAT

＃: RC214275L4), full length human MTHFD2 or
SHMT2 or TYMS was cloned into pLVX-IRES-Puro, the
primers used were as follows:
MTHFD2-Forward (5’ to 3’):
GGATCTATTTCCGGTGAATTCATGAAACCAGCT
TCAATTTCAGAGG
MTHFD2- Reverse (5’ to 3’):
GGGATCCGCGGCCGCTCTAGAATTAGTGGCTA
CCCCAAGCTCTT
SHMT2-Forward (5’ to 3’): GGATCTATTTCCGGT-

GAATTCATGCTGTACTTCTCTTTGTTTTGGG
SHMT2- Reverse (5’ to 3’):
GGGATCCGCGGCCGCTCTAGAATGCTCATCAA
AACCAGGCATG
TYMS- Forward (5’ to 3’):
GGATCTATTTCCGGTGAATTCATGCCTGTGGC
CGGCTCG
TYMS- Reverse (5’ to 3’):
GGGATCCGCGGCCGCTCTAGAAACAGCCATTT
CCATTTTAATAGTTG
Retrovirus in supernatants was generated by using

Lipofectamine 2000 transient transfection. A375 and
HMCB cells were infected with retrovirus by spin infec-
tion (2250 rpm for 30min) in polybrene. After 24 h, A375
cells were selected with 2 μg/mL puromycin.

Cell proliferation assay
For cell growth assays, A375 and HMCB cells were

plated in 96-well plate (2 × 103 cells/well). CCK-8 solution
(C0039, Beyotime Biotechnology) was added to the wells
for 2 h and the absorbance was measured at 450 nm.

Cell cycle detection
A375 and HMCB cells were synchronized in G1/S phase

via the double thymidine block method. Briefly, A375 cells

of 20%–25% density were cultured with 2 mM thymidine
medium for 18 h, washed twice with PBS, and placed in
fresh 10% FBS DMEM for 9 h. For the second block, cells
were cultured with 2 mM thymidine medium for another
17 h. After release from the block, cells could be harvested
for flow cytometric analysis every 2 h for up to 14 h for
whole cell cycle detection.

RNA interference
MTR knockdown was carried out using synthetic siRNA

oligonucleotides synthesized by Genepharma. We
employed two effective target sequences to exclude off-
target effects. For each siRNA, a scrambled siRNA was
used as a control. Transfections were performed by using
RNAiMax (Invitrogen). The knockdown efficiency was
verified by q-RT-PCR. Targets sequences of MTR
knockdown are listed below:
MTR-KD-1: 5’- GGGATGAGATCAATGCCATTCT

GCA-3’
MTR-KD-2: 5’- CAAGGCAGCCTTGTTTGCACTC-

CAA-3’

Steady-state and labeling metabolite profiling
Cells were evenly seeded at 400,000 cells per well of a

6-well plate and allowed to attach for 24 h. Cells were
pretreated with 10 μM compound or an equivalent
volume of DMSO in DMEM for 1 h before labeling. For
steady-state metabolite concentrations, cells were washed
with PBS twice before pretreatment and treatment in
DMEM lacking serine and glycine. For labeling experi-
ments, [U-13C] serine replaced the unlabeled DMEM
component. cells were treated with cold aqueous metha-
nol solution (80% v/v) to quickly stop cell metabolism.
Samples were then centrifuged for 15 min at 15,000× g
and 4 °C, after which the supernatants were collected. The
supernatants were then lyophilized and stored at −80 °C
until analysis.

LC-MS/MS analysis of metabolics
Dried samples were resuspended in 500 μL methanol/

water (10:90 v/v) with 0.01 ng/mL Val-d8 and Phe-d8
used as internal extraction standards. The separated
metabolites were acquired by performing high-
performance liquid chromatography (HPLC) using an
LC-20AB pump (Shimadzu, Kyoto, Japan) and a Luna
NH2 column (P/N 00 B - 4378-B0; 5 μm, 50 × 2.0 mm;
Phenomenex, Torrance, CA). The mobile phase com-
prised eluent A (0.77 g NH4OAc, 1.25 mL NH4OH,
25mL ACN, and 300 µL acetic acid62 dissolved in 500 mL
water) and eluent B (ACN). The elution program was as
follows: 0.1 min, 85% B; 3 min, 30% B; 12 min, 2% B;
15 min, 2% B; and 16–28min, 85% B. The flow rate of the
pump was 0.3 mLmin−1 and the mass spectrometer used
was the Orbitrap Exactive (Thermo Scientific); the MS
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parameters were positive voltage of 4.5 kV and negative
voltage of 3.5 kV. Metabolites were monitored using a
polarity switching full-scan method and were identified by
performing accurate mass measurements (± 10 ppm).
Furthermore, validation was performed by concordance
with the standard retention times within 15 s. The ions
arising from TMP were monitored at 321–195, methio-
nine ions were monitored at 150–103.8, dUMP ions were
monitored at 307–195, SAM ions were monitored at
399–250, and SAH ions were monitored at 385–136.
Metabolite peaks were identified and integrated using the
Xcalibur v.2.2 software (Thermo Fisher Scientific) and
normalized to internal standards and total cell volume.
The m/z ratios for stable isotopically labeled metabolites
were obtained by using IsoMETLIN and were corrected
for natural abundance.

Xenograft tumorigenesis assay
Four-week-old male BALB/c nude mice were purchased

from the SLAC Company (Shanghai, China) and main-
tained in pathogen-free conditions. All animal experiments
were approved by the animal care regulations of the
Institutional Animal Care and Use Committee of Fudan
University. All procedures were approved by IACUC,
Fudan University. Ethical review approval number
2018JS0027 was obtained from the Department of experi-
mental animal science, Fudan University. All animals were
acclimated for 1 week before experiments. 5 × 106 A375
cells (MTHFD2-overexpressing or MTHFD2/MTR-over-
expressing or MTHFD2-overexpressing/MTR knock
down) in 100 μL PBS were subcutaneously inoculated at
the flanks of nude mice. After 2 weeks, the tumors were
palpable, and the mice were pooled by tumor type and
divided randomly to two groups, which were assigned
blindly to vehicle or NCT-503 treatment. Each group
contained 6 mice for a total of 48 mice in all groups. NCT-
503 was prepared in a vehicle of 5% ethanol, 35% PEG300
(Sigma), and 60% of an aqueous 30% hydroxypropyl-
β-cyclodextrin (Sigma) solution, and injected intraper-
itoneally once daily. Dose was adjusted to mouse weight,
and the volume of injection did not exceed 150 μL. All
mice were euthanized and tumors were harvested 6 weeks
after inoculation. tumor volumes were calculated with this
formula: volume= 0.52 × (width)2 × length.

Western blotting
Cells were lysed in EBC lysis buffer (50mM Tris HCl, pH

8.0, 120mM NaCl, 0.5% Nonidet P-40) supplemented with
protease inhibitors (Selleck Chemicals) and phosphatase
inhibitors (Selleck Chemicals). Proteins were separated by
10% SDS-PAGE gel and blotted with indicated primary
antibodies. Primary antibodies used for western blot ana-
lysis were as follows: anti-MTR (1:1000; 25896-1-AP; Pro-
teintech), anti-BHMT (1:1000; 15965-1-AP; Proteintech),

anti-MTHFD2 (1:500; #41377; CST). anti-SHMT1 (1:3000;
#80715; CST), anti-TYMS (1:1000; 15047-1-AP; Pro-
teintech), anti-TYMS (1:1000; 14513-1-AP; Proteintech) or
anti-PGAM1 (1:1000; 16126-1-AP; Proteintech) were used.
The western blot gel image was obtained with a Typhoon
FLA 9500 scanner (GE Healthcare).

EDU staining
Various groups of A375 and HMCB cells were cultured at

the same concentration for growth and 20 μM EDU were
added to the cell culture medium for 1 h. Cells were har-
vested and washed with PBS twice to remove the remaining
medium. Paraformaldehyde (4%) was used to fix the cells at
room temperature (RT); 0.5%Triton X-100 in PBS was
added and incubated for 20min at RT. The cocktail (PBS:
215 μL, 100mM CuSO4: 10 μL, 2mM Azide: 0.6 μL, 1M
Sodium Ascorbate: 25 μL) was added for 30min at room
temperature in the dark. DAPI was subsequently added, for
nuclear staining. Results were acquired in flow cytometer or
cells were observed under a fluorescence microscope.

ELISPOT assay
The ELISPOT plate was processed according to the

manufacturer’s instructions. Briefly, ELIIP plates (Abcam,
Cat# ab62899) were pretreated with 100 mL/well of PBS
for 10min. Then, we dispense into wells 100 mL of cell
suspension containing nearly 105 cells. Cover the plate
with a standard 96-well plate plastic lid and incubate cells
at 37 °C in a CO2 incubator. After 20 h of co-culture, the
ELISPOT plates were washed with 100mL of PBS-0.1%
tween 20 (PBS-T) in wells, and then incubated for 1 h at
room temperature (RT) with 100mL/well of anti-human
IFNγ detection antibody solution. The plate was then
washed 3 times with PBS-T, followed by a 1 h incubation
with 100 mL/well of Streptavidin-Alkaline phosphatase.
The plate was then washed 3× with PBS followed by
development with 100 mL/well of ready-to-use BCIP/
NBT buffer. The reaction was stopped by rinsing thor-
oughly with cold tap water. ELISPOT plates were scanned
and counted using an ImmunoSpot plate reader and
associated software (Cellular Technologies, Ltd).

Limitations
In this study, to ensure the clinical relevance of our

research, samples from patients with prognostic information
were enrolled as a priority. Thus, some samples collected
were too tiny to be segmented into four parts for multi-omics
analysis. For those samples, only one layer of omics analysis
could be performed, and since proteins were the final func-
tional regulators, the proteomic analysis was performed.
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