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Strategy for randomised clinical trials in rare cancers
Say-Beng Tan, Keith B G Dear, Paolo Bruzzi, David Machin

Proving that a new treatment is more effective than current treatment can be difficult for rare
conditions. Data from small randomised trials could, however, be made more robust by taking other
related research into account

The need for randomised trials to establish that
treatments are effective is well established. However,
because the effects of new treatments are usually modest
compared with standard treatment, large numbers of
patients are needed to detect any genuine benefits. This
means that, even for common cancers, studies often
have to be multicentred to ensure enough patients are
recruited in a reasonable time. The strategy for testing
new treatments in rare cancers, where it is impossible to
accrue large number of patients, is unclear. We extend
Lilford and others’ proposal that a bayesian statistical
approach, using related information from earlier
studies, would be useful in designing and subsequently
summarising small randomised controlled trials.1 We
suggest a scoring system for pooling this evidence and
detail how this may be combined with hypothetical sce-
narios to assist in the design of, and justification for, a
small randomised controlled trial.

Problems of small trials
Randomised controlled trials are regarded as the
standard when comparing a new treatment with the
standard treatment for a particular cancer. However, to
be considered clinically worth while in clinical trials,
these (essentially) very toxic regimens typically need to
show relative reductions in the risk of death of 20-30%.
For studies to have sufficient statistical power ( ≥ 80%)
to detect treatment effects of this magnitude, several
hundreds of deaths (typically 200 to 500) need to be
observed. This implies trial sizes that are unrealistically
large for rare cancers. Furthermore, even if a much
larger treatment effect could be expected, estimates
derived from the resulting (small) randomised control-
led trial would lack the precision needed for clinical
decisions.

Thus, investigators who wish to test new treatments
for rare cancers tend to conduct either single arm
studies of tumour response rates or comparative stud-
ies using historical controls. Alternatively, investigators
may attempt to conduct small, underpowered, ran-
domised controlled trials. These give rise to estimates
of outcome that have unacceptably large confidence
intervals and thus fail to provide clear answers. On
these grounds, protocol review boards may regard
such trials as unethical.2 However, some have argued
that in situations such as rare diseases, small

randomised trials are the “only way that any unbiased
measurements of effectiveness can be made.”3

One suggested solution to the problem is to use
bayesian statistical approaches.4 These involve quanti-
fying the information available about the outcome of
interest in the form of a prior probability distribution
at the design stage and combining this with the trial
data to give a posterior distribution. Conclusions are
then drawn from the posterior distribution. The key
step in a bayesian approach is summarising the
information available before the trial. This will often be
from single arm studies or studies of response rate
rather than survival.

Designing a new trial
Suppose we wish to design a randomised controlled
trial to compare a new treatment with the standard
treatment for a rare cancer, with the primary endpoint
being overall survival. In such a case we would typically
estimate the corresponding survival curves by the
Kaplan-Meier technique and use the hazard ratio to
estimate the magnitude of the treatment difference.5 It
is customary when designing any trial to summarise
the available information related to the question under
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consideration and to specify what would be regarded
as a clinically important difference between the
treatments being compared. In addition, there is a need
to specify the type of patients eligible for the trial and
quantify the number of patients that are likely to be
recruited in a reasonable time frame.

Summarising and weighting information
For our model we assume that the evidence available at
the planning stage of the proposed trial is from several
studies, each providing relevant information according
to three main criteria: pertinence, validity, and precision.

Pertinence
Pertinence summarises how close the information is to
that which we wish to obtain during the proposed trial.
The component parts to a full assessment of pertinence
are the precise cancer investigated, the treatment(s)
evaluated, and the endpoint measure. Table 1 lists six
pertinence levels for these components with a score
from 0 (no pertinence) to 1 (fully pertinent) for each.
The minimum of the component scores provides an
overall pertinence score (PS) for each study. By using the
minimum score, we fully acknowledge whatever is the
most serious defect of each study. An alternative would
be to use the product of the scores, but this gives
pertinence greater influence than validity (see below),
which has only one component.

The adjustment factor (table 1) enables hazard ratios
calculated from, for example, event-free survival to be
converted to hazard ratios for overall survival when
these are not reported. The adjustment factor is
calculated as the ratio of two hazard ratios obtained
from other studies that report ratios for both event-free
survival and overall survival. If other end points are
quoted, their relevance will depend on whether they
have been validated as a surrogate for overall survival.6 7

Validity
Validity measures the quality of the available studies
and depends on their design. It is maximal for properly
designed and conducted randomised controlled trials
and minimal for case reports. Table 2 gives a proposed
classification and suggested validity scores.

Precision
Precision indicates how reliably the hazard ratio is
determined. It depends on the number of events
reported in each group. The more events there are, the
more precise the ratio. Note that the study specific haz-
ard ratio should be obtained, even from single arm

studies without a control group. If necessary, this can
be obtained by comparing the results with those from
historical control group(s) mentioned in the study
report or on some other clearly explained basis.

Correction factor
Once each study has been scored, the precision and
validity scores are used as a correction factor to down
weight the information. This is done by multiplying the
number of events by the two scores in turn. This
adjusted number of events reflects the added
uncertainty associated with the methodological limita-
tions of the study or with its limited pertinence to the
question of interest. Other correction factors for the
estimated hazard ratio may also be introduced at this
stage—for example, to take into account the over-
estimate of treatment effects that is typically observed
in uncontrolled studies.

Prior and posterior distribution
The adjusted numbers of events from each study are
used to calculate the weighted mean prior log hazard
ratio (LHRPrior). The prior distribution is then
constructed as a normal distribution with mean
�Prior=LHRPrior and standard deviation �Prior=√(4/mPrior),
where mPrior is the adjusted number of events (deaths)
from all the studies. If no prior information exists, a
subjective prior distribution can be elicited from the
investigators or other experts.8–10

If �Data is the log hazard ratio based on actual deaths
(mData), then (following Parmar et al11) the posterior dis-
tribution has a normal distribution with mean
�Posterior=(mPrior �Prior+ mData �Data)/(mPrior+ mData) and standard
deviation �Posterior=√[4/(mPrior+ mData)]. At the planning

Table 1 Proposed scales and scores for assessing the three components of pertinence of study relevant to small randomised
controlled trial under design

Cancer Treatment Endpoint Component score

Same disease and stage Same as proposed standard and
experimental treatments

Overall survival 1

Same disease, different stage or type of patient Same standard treatment, similar
experimental treatment (eg different

dose)

PFS, DFS, or EFS; adjustment factor available 0.9

Different site, same biology/histology Similar standard and experimental
treatments

PFS, DFS, or EFS; adjustment factor unavailable 0.8

Same site, different biology/histology Response rate validated as a surrogate endpoint 0.5

Different site, some similarity Some similarity in standard or
experimental treatment, or both

Response rate not validated as surrogate end
point

0.3

Different disease Unrelated treatments Unrelated end points 0

DFS=disease-free survival, PFS=progression-free survival, EFS=event-free survival.

Table 2 Proposed scores for assessing the validity of study
relevant to small randomised controlled trial under design

Design Validity score

Randomised controlled trial:

No major flaws 1

Questionable quality 0.8

Major flaws 0.6

Non-randomised trial:

Prospective controlled 0.4

Single arm study:

With prespecified historical controls 0.3

No historical controls 0.2

Case study:

Series 0.1

Single report 0.05
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stage, �Data and mData are obtained from hypothetical
scenarios, but once the trial is completed they are
obtained from the actual data.

Using scenarios
Once we have constructed the prior distribution and
determined the number of patients likely to be
recruited, the next step is to consider (at least) three
hypothetical scenarios for the outcome of the trial:
enthusiastic (experimental treatment is clearly better),
neutral (treatment is the same), and sceptical
(treatment worse than the control). These correspond
to datasets with log hazard ratios that are negative,
zero, or positive (figure). The prior distribution is com-
bined with the hypothetical datasets to give a posterior
distribution. For example, when the data from the
enthusiastic scenario are combined with the prior dis-
tribution, which assumes no difference between
treatments in this example, the final results suggest an
almost 50% probability of a clinically useful advantage
to the experimental treatment (see the area under the
posterior distribution curve of the figure).

These scenarios can be presented to the protocol
review board to help show that useful conclusions can
be drawn from the proposed “small” trial. If the trial is
given the go ahead, the posterior distribution is obtained
from the real data combined with the prior distribution
derived in the planning stage12 or one modified by new
information that becomes available during the trial.13

Discussion
Our proposed approach offers one way to overcome
the problem of evaluating new treatments for rare con-
ditions in randomised trials. Inferences based on the
posterior distributions obtained in the approach
provide a fuller description of the improved state of
knowledge than is available from merely quoting P
values or confidence intervals. An example of how the
model could be applied in practice for supratentorial
primitive neuroectodermal tumour, a rare childhood
cancer, is available in our companion paper (see
bmj.com).

The pertinence and validity scores that we have
suggested to grade the usefulness of prior evidence
should be modified as necessary to suit each project,
although the investigators should clearly state the scor-
ing systems that they use. Other scoring systems have
been proposed,14 15 but a key feature of ours is that it
reflects the relevance to a specific research question
and is not simply a measure of overall quality. When all
prior information derives from randomised trials, our
approach reduces to a standard meta-analysis. When
no suitable prior information is available, a distribution
can be constructed by eliciting the opinions of experts.

We are not proposing an alternative to conducting
trials of adequate size when these are feasible nor pro-
viding a justification for single centre studies where
multicentre studies are clearly the best option. Rather,
we hope that our proposals will contribute to the
establishment of a clear strategy for randomised
clinical trials in rare cancers and other conditions.
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Prior and posterior distributions and likelihood “data” for
enthusiastic, neutral, and sceptical scenarios. The peak of each
distribution corresponds to the most likely value of the true log
hazard ratio, as estimated from the prior studies or the “data” or
both (see text). The prior distribution in this example assumes that
the two treatments are identical (log hazard ratio=0)
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