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Maternal high fat diet induces circadian
clock-independent endocrine alterations impacting
the metabolism of the offspring

Lu Ding,1,2,8 Benjamin D. Weger,2,8 Jieying Liu,1,3 Liyuan Zhou,4 Yenkai Lim,5 Dongmei Wang,1 Ziyan Xie,1

Jing Liu,1 Jing Ren,1 Jia Zheng,6 Qian Zhang,1 Miao Yu,1 Meltem Weger,2 Mark Morrison,5,7 Xinhua Xiao,1,*

and Frédéric Gachon2,9,*
SUMMARY

Maternal obesity has long-term effects on offspring metabolic health. Among the potential mechanisms,
prior research has indicated potential disruptions in circadian rhythms and gutmicrobiota in the offspring.
To challenge this hypothesis, we implemented a maternal high fat diet regimen before and during preg-
nancy, followed by a standard diet after birth. Our findings confirm that maternal obesity impacts
offspring birthweight and glucose and lipidmetabolisms. However, we foundminimal impact on circadian
rhythms and microbiota that are predominantly driven by the feeding/fasting cycle. Notably, maternal
obesity altered rhythmic liver gene expression, affecting mitochondrial function and inflammatory
response without disrupting the hepatic circadian clock. These changes could be explained by a masculin-
ization of liver gene expression similar to the changes observed in polycystic ovarian syndrome. Intrigu-
ingly, such alterations seem to provide the first-generation offspring with a degree of protection against
obesity when exposed to a high fat diet.

INTRODUCTION

The global obesity epidemic has resulted in a rise in metabolic disorders among women of reproductive age. Currently, about 30–50% of

women of reproductive age falling into the overweight or obese range.1,2 This rise has also profound implications for offspring metabolism

spanning from the fetal stage to adulthood.3–5 Both epidemiological and animal studies have shown that maternal high fat diet (HFD) and

obesity increase the offspring’s risk of developing diabetes, obesity, and cardiometabolic diseases.6–9 This phenomenon of metabolic

imprinting has given rise to the concept of Developmental Origins of Health and Disease (DOHaD).10,11

To uncover the mechanisms behind this transgenerational effect, recent hypotheses propose an intergenerational alteration of the inter-

play between gut microbiota and the circadian clock. The circadian clock is an endogenous oscillator that orchestrates most aspects of

mammalian physiology and behavior in the anticipation of environmental day-night changes. This includes the sleep/wake cycle, feeding/

fasting cycles, and rhythmic hormone secretion. Organized in a hierarchical manner, the central circadian clock localized in the suprachias-

matic nuclei (SCN) of the hypothalamus synchronizes peripheral clocks present in virtually every cell of the organism.12,13 While the central

clock is synchronized by light through direct connections between the retina and the SCN, peripheral clocks can be also synchronized by

feeding and other systemic cues.14 The importance of the circadian clock for physiology and metabolism is underscored by its disruption

in scenarios such as shift work, that lead tometabolic diseases.15,16 Conversely, HFD and obesity have been observed to disrupt the circadian

clock.17,18 Accordingly, a few studies have reported a transgenerational impact of maternal HFD and obesity on the circadian rhythm of the

offspring in rodents and primates.19–22

The feeding/fasting cycle not only synchronizes peripheral clocks but also leads to changes in daily fluctuations in the composition of the

gut microbiota, further influencing host physiology.23,24 Given that obesity is known to impact the gut microbiome and is associated with
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dysbiosis,25 alterations in gut microbiota composition are suggested to mediate the metabolic consequences of maternal HFD.26–28 A dis-

rupted rhythmic gutmicrobiome could also potentially impact the diurnal physiology of the offspring. For these reasons, we exploredwhether

themetabolic effects of maternal HFD on offspring could be attributed to disturbances in rhythmic gutmicrobiota and liver physiology. While

the liver circadian clock and feeding rhythms appear not impacted by maternal HFD, we observed alterations in the rhythmic expression of

genes involved in pathways related to mitochondrial activity or ribosome biogenesis. Further analysis revealed an increased expression of

genes involved in pathways related to inflammation, potentially associated with perturbations in endocrine regulations. These findings could

help to elucidate the transgenerational effects of maternal HFD on offspring physiology.
RESULTS

Maternal high fat diet induces glucose and cholesterol metabolism alterations in the offspring

To determine the impact of maternal HFD on offspring metabolism, we established an intergenerational mouse model by feeding female

mice a control (Ctr) diet or HFD starting 5 weeks before mating and throughout pregnancy. The induced metabolic phenotype caused by

this treatment on the dams was described elsewhere.29 All dams and litters were transferred to a normal chow diet after delivery. To avoid

nutritional bias between litters, the litter sizes were homogenized to 6 pups for each damwithin the first 3 post-natal days. Male offspring were

weaned at postnatal day 21 and fed a standard chow diet until 16 weeks of age (Figure 1A). The results showed that maternal HFD results in

reduced body weight of the offspring at birth (Figure 1B). This phenotype is commonly seen in studies using similar mouse models but also

exhibits high experimental variability.8,30 While body weight gain was not statistically different between animals fromCtr or HFD fedmothers,

there was a significant interaction between time and maternal diet and animals from HFD mothers were lighter throughout the experiment

(Figure 1C). While neither liver weight of the offspring at 4 and 16 weeks (Figure S1A) nor liver triglyceride concentration were statistically

different, we observed an increase in liver cholesterol concentration in 16-week-old offspring (Figures S1B and S1C). We also did not detect

significant alterations in serum total cholesterol (TC), triglycerides (TG), free fatty acids (FFAs), high-density lipoprotein cholesterol (HDL-C),

low-density lipoprotein cholesterol (LDL-C), alanine transaminase (ALT), and aspartate aminotransferase (AST) in the offspring, but observed a

significant increase in glucose levels at 4 weeks, suggesting impaired glucose tolerance (Figures S2).

Contrary to previous studies suggesting that glucose tolerance is often unaltered when a Ctr diet is provided after birth,31–33 our data re-

vealed a slightly delayed and impaired glucose tolerance in the offspring. This is evidenced by elevated blood glucose levels 30 min post

glucose load and a larger AUC at 4 weeks and 16 weeks compared to the Ctr group (Figure 1D and 1E). These findings are similar to studies

that maintained HFD during lactation.34,35 However, there were no significant changes in insulin tolerance (Figures S1D and S1E). Taken

together, the data suggest that prenatal exposure to maternal HFD, followed by a control chow diet postnatally, slightly impairs glucose

and cholesterol metabolism, but overall physiology appears largely unaffected, aligning with prior findings.31–33
Diurnal rhythms in food intake and energy expenditure are subtly altered by maternal high fat diet

Mice fed an HFD exhibit attenuated rhythms of the circadian clock and feeding rhythms.18,36 A previous study linked gestational obesity with

altered daily rhythms of activity and food intake in 15 weeks old offspring.20 We thus measured the diurnal rhythms of running wheel loco-

motor activity, energy expenditure, and feeding in the offspring of Ctr and HFD dams at 4 and 16 weeks of age. At 4 weeks, we observed

an increase in total locomotor activity and a mild but not significant increase in energy expenditure. However, these differences were not pre-

sent at 16 weeks (Figure 2A–2D), diverging from a previous report.20 In addition, there were no observed differences in feeding rhythms

(Figures 2D and 2E), suggesting that metabolic alterations were not associated with changes in diurnal feeding behavior.
Maternal high fat diet modifies the rhythmic gut microbiome of the offspring

Given that maternal HFD before and during pregnancy leads to changes in the rhythmic cecal microbiome composition of the dams29 and

microbiome alterations are transmitted to the offspring,27,37 we aimed to investigate potential alterations in the rhythmic gut microbiome of

the offspring through the analysis of 16S rRNA gene amplicon profiles. At the global level, a-diversity analysis revealed that the expected

altered Simpson index diversity observed in dams under HFD was still present in 4-weeks old offspring, albeit less pronounced. However,

this difference disappears in 16-weeks old offspring, suggesting that the Ctr diet after birth normalized the altered diversity caused by

maternal HFD (Figure S3A). Accordingly, while the Shannon diversity index was also different in dams, this difference disappears in the

offspring (Figure S3A). Overall, the 16S rRNA analyses revealed that microbiota communities were dominated by Firmicutes in all mice

and timepoints (Figure S3B and Table S1) and that the difference in gutmicrobiota abundance observed inHFD fed dams is normalized under

Ctr diet after birth.

We employed dryR38 to analyze the rhythmic amplicon sequence variants (ASV) identified in the 16S profiles that were among the ones

present in at least 50% of samples in Ctr and HFD offspring. This resulted in the characterization of five models defined by the differential

rhythmicity between the groups (Figure 3A and Table S1). At both 4 and 16 weeks, most ASVs were found inmodel 1 (not rhythmic) andmodel

4 (similar rhythmicity in Ctr and HFD offspring) (Figures 3B and 3C). This observation aligns with previous studies indicating that feeding

rhythm, which shows no difference between Ctr and HFD offspring (Figures 2E and 2F), is the primary driver of microbiome rhythmicity,

with only a limited influence from other factors.39–41 Among the rhythmic microbiome, we found that Oscillospirales exhibited robust rhyth-

micity in 4- and 16-week offspring across all feeding conditions (Figure 3D).We identified only a few bacterial groups with different rhythmicity

between Ctr and HFD offsprings that globally showed a gain in rhythmicity in the HFD offspring (Figure 3B, Table S1). To determine the
2 iScience 27, 110343, July 19, 2024
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Figure 1. Maternal HFD impacts glucose and cholesterol metabolism in offspring

(A) Experimental setup assessing the effects of maternal HFD before and throughout pregnancy on metabolic and circadian changes in offspring.

(B) Offspring birthweight.

(C) Percentage change in offspring body weight throughout the study.

(D and E) Glucose tolerance test (left) and the corresponding area under the curve (right, each color represents different litter) for 4-week-old offspring (D) and

16-week-old offspring (E). N = 5–6 mice (from different litters) per experimental group. All boxplots are Tukey boxplots and data is assessed with a Student’s

t-test; line chart data are presented as mean G S.E.M. and are analyzed via a repeated measure two-way ANOVA or mixed linear model followed by �Sı́dák

post hoc tests. The details of the statistical analysis results are available in Table S6. Ctr: maternal control diet (black); HFD: maternal high-fat diet (red).
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association between the microbiome composition and metabolism, we performed a correlation analysis between the relative abundance of

each bacterial groupwith themeasuredmetabolic parameters (Figure 3E). Circulating triglyceride levels were the only parameter that showed

a broad correlation with ASVs, likely reflecting that feeding rhythm is the main drivers of the microbiome and triglyceride rhythms.42

Interestingly, a similar rhythmic analysis of the metagenomic data and the predictedmetabolic functions of the cecal microbiome showed

a slightly different result. While most of the KEGG pathways were still in models 1 and 4, we detected a gain of rhythmicity (model 3) in HFD
iScience 27, 110343, July 19, 2024 3
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Figure 2. Maternal HFD marginally affects diurnal food consumption and energy expenditure

(A, C, and E) Diurnal rhythms of running wheel activity (A), energy expenditure (C), and food intake (E) in 4-week-old (left) and 16-week-old offspring (right).

(B, D and F) Daily alterations in running wheel activity (B), energy expenditure (D), and food intake (F) in 4-week-old (left) and 16-week-old offspring (right).

Zeitgeber time (ZT) indicates light entrainment periods (ZT0-12: lights on; ZT12-24: lights off). N = 4 mice (from different litters) per group. All boxplots are

Tukey boxplots and line chart data are presented as mean G S.E.M. Data are analyzed via a repeated measure two-way ANOVA followed by �Sı́dák post hoc

tests. The details of the results of the statistical analyses are available in Table S6. Ctr: maternal control diet (black); HFD: maternal high-fat diet (red).
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offspring at both 4 and 16 weeks for some pathways, in agreement with the analysis of 16S rRNA (Figures 4A, S4A, and Table S2). Among the

KEGGpathways that showed conserved rhythmicity at both 4 and 16 weeks (model 4) were pathways involved in cell motility or environmental

adaptation (Figure S4B), confirming that such general functions are mainly driven by feeding rhythms.40 Many of the pathways that gained

rhythmicity under a maternal HFD were involved in metabolism, including metabolisms of nicotinamide at 4 weeks and steroid hormones

at 16 weeks, potentially influencing in this way the rhythmic host metabolism (Figure 4B). Our observation was different for KEGG modules

that showed a gain of rhythmicity at 4 weeks (model 3) but a loss of rhythmicity at 16 weeks (model 2) (Figures 4C, S4C, and Table S2). Among

those modules with conserved rhythmicity at 4 and 16 weeks were those involved with hydrogen sulfide (H2S) and methane metabolism (Fig-

ure S4D). Both these modules can support important hydrogen ‘‘sinks’’ during fermentation: sulfide in particular can be produced and

released by some gut bacteria during their metabolism of sulfur-containing dietary proteins and/or other endogenous sulfated compounds

(e.g., sulfomucins and/or some secondary bile acids) and has a broad physiological role, including influencing local microbiome.43,44
4 iScience 27, 110343, July 19, 2024
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Figure 3. Maternal exposure to HFD alters gut microbiome composition in offspring

(A) Model selection for rhythmic ASVs in male offspring from maternal HFD and maternal Ctr groups: black line, non-rhythmic ASVs; black sinus wave: rhythmic

ASVs; red sinus wave, rhythmic ASVs with different phase and/or amplitude.

(B) Model distribution percentage of ASVs across models 1–5, with different colors indicating the respective model as illustrated in (A).

(C) Heatmap showing rhythmic ASVs in 4-week-old (left) and 16-week-old offspring (right). Standardized relative ASV abundance is indicated in blue (low) and

yellow (high). The white and black bars denote light conditions. Different color indicates the corresponding model as shown in (A).
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Figure 3. Continued

(D) Exemple of rhythmic ASV in 4-week-old (top) and 16-week-old offspring (bottom). Each dot represents the mean ASV abundance for each zeitgeber time (ZT)

with the line illustrating the cosinor regression fit. The ZT defines the timing of entrainment by light (ZT0: lights on; ZT12: lights off).

(E) Correlation plots based on Pearson coefficient between serummetabolic profiles and ASV abundance. Only correlations with a Pearson coefficient that had an

associated Benjamini-Hochberg adjusted p-value of less than 0.05 (determined through Fisher’s Z transform) were deemed statistically significant. The details of

the results of the statistical analyses are available in Table S6. Colors represent positive (blue) and negative (red) correlation. Size of the circles indicates the

corresponding p-value. N = 4 mice (from different litters) per group. Ctr: maternal control diet (black); HFD: maternal high-fat diet (red).
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Interestingly, we also noticed in the HFD offspring at 4 weeks a gain of rhythmicity for nicotinamide adenine dinucleotide (NAD+) synthesis

which can play a central role in hydrogen (proton) transactions (Figure 4D).
Impact of maternal high fat diet on liver gene expression

To gain more insight into the impact of maternal HFD on rhythmic liver gene expression, we quantified mRNA by RNA sequencing and

analyzed differential rhythmic gene expression with dryR. A focused analysis of the rhythmic expression of the core circadian clock genes

shows that the temporal expression profiles of liver circadian clock genes are globally unaffected by maternal obesity (Figures 5A, S5A,

and Table S3), in contrast to previous reports.19,22 A more global analysis of rhythmicity shows that most of the rhythmic genes exhibited

a similar rhythmicity in Ctr and HFD mice at both 4 and 16 weeks (Figures 5B and 5C). Nevertheless, more differentially expressed genes

were found in 16-week-old mice compared to 4-week-old. Among all the genes that showed rhythmicity, 15.6 and 11.7% of genes showed

a loss (model 2) or gain (model 3) of rhythmicity, respectively, at 16 weeks compared to 4.1 and 6.0% at 4 weeks. 0.2 and 3.7% of genes also

showed differential rhythmicity (model 5, altered acrophase and/or amplitude) at 4 and 16 weeks, respectively. Interestingly, at 4 weeks, we

found enrichment for biological processes only among the genes that gain rhythmicity (Figure 5D, Table S4). Most of these enrichedgenes are

involved in ribosome biogenesis and mitochondrial function (Figure S5B), processes regulated by the circadian clock and feeding

rhythms.45–47 Surprisingly, the exact same pathways were enriched among the genes that lost rhythmicity at 16 weeks (Figures 5E, S5C,

and Table S4). Interestingly, both ribosome biogenesis48,49 and mitochondrial activity50–52 are regulated by NAD+-dependent SIRT7 and

SIRT3. This observation may align with the rhythmic NAD+ metabolism observed through metagenomics at 4 weeks, highlighting the signif-

icant role of the microbiome in regulating host NAD+ levels.53,54

Focusing on differential gene expression at themean level, upregulated genes at 4 weeks showed a strong enrichment for the type I inter-

feron (IFN) pathway and genes upregulated at 16 weeks exhibited a strong enrichment in mitochondria-associated processes (Figures 6A, 6B,

S6A–S6C, Tables S3, and S4). This correlates with a transcriptional signature associated with the IFN-activated IRF9 and STAT1/2 transcription

factors at 4 weeks (Figure S6D, Table S5). Previous studies reported that the activation of IFN signaling decreases mitochondrial activity and

gene expression and induces mitochondrial stress,55,56 a process that protects against HFD induced obesity57–59 and alters mitochondrial

gene expression.60,61 This could therefore constitute an adaptation process to protect against HFD induced obesity.

At 16 weeks, we noticed a transcriptional signature corresponding to the activation of the SUZ12 transcription factor. SUZ12 is one of the

three components of the polycomb repressive complex-2 (PRC2)62 that plays a role in the liver sex-biased gene expression.63 Sex-biased liver

gene expression develops after puberty and is regulated by the interaction between growth hormone (GH) and sex hormones.64–66 Therefore,

we investigated the sex-biased gene expression and identified a striking increase in male-biased gene at 16 weeks (Figures 6C and 6D). Inter-

estingly, a similar analysis of differential gene expression from a related study using female mice67 revealed a similar increase in GH-male

induced genes associated with a similar increase of IFN-regulated genes (Figure S6F and Table S5). Therefore, it is plausible that maternal

obesity impacts these pathways, influencing in this way the sexual development and fertility of the offspring.68,69 Interestingly, similar sexual

development phenotypes are observed in the offspring of female with polycystic ovary syndrome (PCOS),70–72 a condition defined by a com-

bination of androgen excess and ovarian dysfunction from complex etiology.73 We therefore analyzed the liver gene expression of a mouse

model of PCOS74 and found a similar masculinization phenotype of liver gene expression, with an increase of GHmale-induced genes and a

decrease of GH male repressed genes (Figure S6G). This suggests that these two phenomena, despite having different etiology, may repre-

sent the manifestation of a similar physiological condition.

Sex difference influences mitochondrial activity, that is higher in female,75,76 as well as inflammation, with prepubertal male displaying an

increase inflammatory response.77 It is therefore conceivable that this ‘‘masculinization’’ plays a role in the observed increase in inflammation

and disrupted mitochondrial activity, contributing to the observed glucose intolerance. Nevertheless, because these processes have also

been shown to protect against HFD-induced obesity,57–59 we hypothesized that it can somehow protect against metabolic syndrome. To

test this assumption, we reanalyzed our previously published study with the goal of elucidating the effects of maternal obesity on the meta-

bolism of the offspring33 (Figure 6E). While still obese and showing impaired metabolism when exposed to HFD throughout lactation and

weaning, male offspring from obese dams unexpectedly exhibited a lower body weight gain (Figures 6F and S6H), improved glucose toler-

ance (Figure 6G), and insulin sensitivity33 compared to animals fromCtr dams. These results suggest that maternal HFD can confer short-term

moderate transgenerational protection against metabolic syndrome through endocrine adaptation.
DISCUSSION

The present study corroborates that maternal HFD before and during pregnancy alters physiology in male offspring, reinforcing the DOHaD

concept. This includes a lower body weight at birth, associated with later metabolic defect.78 However, while this phenomenon is often
6 iScience 27, 110343, July 19, 2024
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Figure 4. Maternal HFD alters the functional attributes of the offspring’s gut microbiome

(A and C) Heatmap for rhythmic KEGG pathway (A) and KEGG module (C) in 4-week-old offspring (left) and 16-week-old offspring (right). Standardized relative

pathway/module abundance is indicated in blue (low) and yellow (high). White and black bars indicate light conditions. Different color indicates the

corresponding model as shown in Figure 3A.

(B) Nicotinate and nicotinamide metabolism pathway in 4-week-old (top) and steroid hormone biosynthesis pathway in 16-week-old offspring (bottom).

(D) NAD+ biosynthesis module in 4-week-old offspring. The dots mark values of inferred functional activity for each zeitgeber time (ZT) with the line illustrating the

cosinor regression fit. The ZT defines the timing of entrainment by light (ZT0: lights on; ZT12: lights off).N = 3mice (from different litters) per group. Ctr: maternal

control diet (black); HFD: maternal high-fat diet (red).
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Figure 5. Impact of maternal HFD on rhythmic liver gene expression

(A) Hepatic circadian clock genes show an unaltered temporal expression profile under maternal HFD, with most genes assigned to model 4.

(B) Model distribution percentage of genes in model 1–5. Different color indicates the corresponding model as shown in (A).

(C) Heatmap for rhythmic genes in 4-week-old offspring (left) and 16-week-old offspring (right). Standardized relative gene expression is indicated in blue (low)

and yellow (high). White and black bars indicate light conditions. Different color indicates the corresponding model as shown in (A).

(D and E) Enrichment of GO biological process for genes in model 3 in 4-week-old offspring (D) and in model 2 in 16-week-old offspring (E). N = 2–3 mice (from

different litters) per group. Ctr: maternal control diet (black); HFD: maternal high-fat diet (red).
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observed inmice,8,30 it is less common in humanswherematernal obesity is rather associatedwith increasedbodyweight at birth.79 In contrast

to previous publications,19–22 maternal obesity was not associated with a significant alteration of the diurnal circadian clock genes expression

and behavior. Nevertheless, our findings are consistent with previous reports showing that changes in diurnal behavior and gene expression

are absent when offspring from obese rat dams were nursed by non-obese foster dams during lactation and later switched to standard chow

diet post-weaning.19 Alterations in the expression patterns of circadian clock genes observed in these studies were consistently associated

with obesity in the offspring, while a functional circadian clock correlated with normal body weight.19,80 Therefore, the disruption of the
8 iScience 27, 110343, July 19, 2024
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Figure 6. Differential gene expression in offspring exposed to maternal HFD

(A and B) GO enrichment analysis of hepatic genes showing a mean increase in expression in 4-week-old (A) and 16-week-old offspring upon maternal HFD (B).

(C) Volcano plots illustrating sex-biased differentially expressed genes in the livers of 16-week-old offspring upon maternal HFD.

(D) Barcode plots for male-biased genes in the liver of 16-week-old offspring with genes ordered from most down to most upregulated.

(E) Experimental design of Zheng et al.33

(F) Changes in offspring bodyweight from 4 to 32 weeks of age.

(G) Area under the curve for the glucose tolerance test and blood glucose levels at 30-, 60-, and 120-min post-glucose load (2 g/kg) in 32-week-old offspring. N =

2–3 mice (from different litters) per group. All boxplots are Tukey boxplots and line chart data are presented as mean G S.E.M. Data are analyzed via two-way

ANOVA followed by Holm-�Sı́dák post hoc tests. The details of the results of the statistical analyses are available in Table S6. **p < 0.05 and ****p < 0.0001, mHF-

oHF vs. mHF-oCtr; ##p< 0.01 and ####p< 0.0001, mCtr-oHF vs. mCtr-oCtr; & p< 0.05, mCtr-oHF vs. mHF-oHF. mCtr, maternal control diet; mHFD, maternal high-

fat diet; oCtr, offspring control diet; oHFD, offspring high-fat diet.
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circadian clock in these cases is likely a direct consequence of the observed obesity in the offspring rather than a result of maternal obesity.

Indeed, obesity induced by an HFD is associated with disruptions of circadian rhythms and circadian clock genes expression.18,36 However,

these alterations are absent in mice protected fromHFD induced obesity.17,81 This underscores the notion thatmaternal HFD during lactation

and after weaning is an independent risk factor for offspring health outcomes.82 Hence, extending maternal dietary intervention to the lacta-

tion period likely obscures the effects caused by in utero exposure to maternal HFD. In this study, we restricted maternal HFD to the prenatal

period to avoid potential confounding effects of lactational exposure, which is generally associated with greater body weight gain in the

offspring.82 Our findings suggest that while maternal obesity does not directly impact offspring diurnal feeding behavior, it can predispose

offspring to alteration induced by HFD through changes in synaptic connections in the hypothalamus.83,84

Analysis of the 24h-rhythmicity of the microbiome confirms the predominant influence of feeding rhythms on microbiota composition and

abundance.39–41 Although dysbiosis is associated with obesity, increasing evidence suggests that these changes are primarily driven by

caloric load and food composition.85,86 In our study, all animals were fed an identical standard chow diet and exhibited similar feeding

rhythms (Figure 2E and 2F). Under these conditions, we observed that the dysbiosis in 4-weeks old offspring from HFD dams gradually re-

solves, and by 16 weeks, themicrobiome composition is similar across all animals. Similarly, another study found little difference inmicrobiota

diversity in adult offspring87 and an analysis of various factors influencingmicrobiota composition highlighted a significant impact of sex which

correlates with the obese phenotype observed only in males.88,89 Interestingly, a study using a cross-fostering paradigm demonstrated that

the maternal feeding regimen is the main driver of the offspring’s microbiota composition and diversity,90 reinforcing the notion that micro-

biomediversity is largely dictated by feeding.Nevertheless, we found a gain in rhythmicity for a fewbacterial groups and associated functions,

such as NAD+ metabolism, in HFD offspring. This correlates with altered rhythmicity of NAD+-regulated ribosome biogenesis and mitochon-

drial function in the liver of the offspring. Further research will be required to establish a causal relationship between these two phenomena.

One important observation of the present study includes the activation of the type I interferon pathway in 4-week-old HF offspring and

mitochondrial pathway activation at 16 weeks of age. The role of the IFN pathway in obesity is complex. While the inactivation of the type

I IFN pathway exacerbates metabolic dysfunction associated with obesity,91,92 the activation of the type II IFN pathway protect against

HFD induced obesity by altering mitochondrial activity.93,94 Interestingly, recent studies suggest that the simultaneous activation of both

IFN pathway andmitochondrial stress can confer protection against HFD-induced obesity.57–59 This might contribute to the partial resistance

observed inmale offspring fromHFD-fedmothers to HFD inducedweight gain and glucose intolerance, potentially due to a predictive adap-

tive response (PAR).95 The PAR hypothesis describes a type of developmental plasticity where early life signals shape the development of a

phenotype that helps the offspring to adapt better in their future environment. In light of the PAR hypothesis, male offspring in the present

study would benefit frommaternal HFD due to amatch between the in utero environment (maternal HFD) and the likely future environment of

postnatal HFD exposure. However, published data demonstrate that mitochondrial dysfunction is a risk factor for liver disease andmetabolic

dysfunction-associated steatohepatitis96 and increases the transgenerational susceptibility to metabolic dysfunction-associated steatohepa-

titis.97 It is therefore likely that the short-term benefits of maternal HFD have long-term detrimental effects. In addition, this transgenerational

mitochondrial dysfunctionmight be a contributing factor to the recently described global decrease in basal energy expenditure over the past

thirty years, as documented in the study of a human cohort from the United States and Europe.98

Another striking observation of the present study is the ‘‘masculinization’’ of liver gene expression of 16 weeks offspring that displays some

similarities with a PCOS mouse model. Similar to what is detected in animal models of maternal obesity8,30 or in utero exposure to testos-

terone,99,100 offspring from PCOS women show a lower gestational body weight101 that correlates with maternal testosterone levels.102

Offspring from PCOS females also show similar metabolic dysfunction70,72 and perturbed sexual development and fertility,71,72 raising the

question about what could explain these similarities between maternal obesity and PCOS. Among the different animal models of

PCOS,103 prenatal exposure to testosterone in primates,104 sheep,105 mice,106 and rats107 induces phenotypes similar to PCOS, associated

with an increased circulating testosterone level in the offspring. Interestingly, although testosterone levels rise during pregnancy in hu-

mans,108 this surge in testosterone is more pronounced during the last trimester of pregnancy in obese women109 and obese rats.110 There-

fore, it appears that high testosterone during the prenatal period of the pregnancy of obese female could play a role in theDOHaDassociated

with maternal obesity during pregnancy. Additionally, testosterone impacts glucosemetabolism107 and locomotor activity,111,112 which could

explain the observed increases in glucose intolerance (Figure 1D), glucose levels (Figure S2A), and locomotor activity at 4 weeks (Figure 2A). In

addition, testosterone exposure in utero could play a role in the reported alteration of DNA methylation observed in the offspring of obese

mothers,113 testosterone inducing DNA demethylation after puberty.114 Altogether, these results demonstrate similarities between PCOS
10 iScience 27, 110343, July 19, 2024
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and the intergenerational effect of maternal obesity, suggesting that both conditions are part of the same spectrum of endocrine

perturbations.
Limitations of the study

Given the differences between the analysis of 4 and 16-week offspring data, particularly in gene expression, including intermediate time

points and additional data on protein-level changes could have provided deeper insights into the underlying phenomena and the dynamics

of the transition. Furthermore, while an increasing body of literature points to an impact of paternal obesity on the metabolic trajectory of the

offspring,115–118 this aspect was not explored in our study. Although othermetabolic tissues, such as adipose tissue andmuscle, are significant

inmetabolic physiology, our study focused solely on rhythmic liver physiology andmicrobiota.While 16S rRNAgene amplicon sequencing is a

common method for characterizing microbiome composition, the resolution is typically at the genus level, and thereby precludes a precise

assessment of the functional attributes of the communities, hence the value and utility of the metagenomic data generation and analyses

included here.
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Silva Quast et al.127 http://www.arb-silva.de/

Microeco Liu et al.128 https://github.com/ChiLiubio/microeco

Readfq Chen et al.129 https://github.com/cjfields/readfq

MetaGeneMark Zhu et al.130 http://topaz.gatech.edu/GeneMark/

MEGAHIT Karlsson et al.131 N/A

CD-HIT Li et al.132 http://www.bioinformatics.org/cd-hit/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Bowtie2 Langmead et al.133 https://sourceforge.net/projects/bowtie-

bio/files/bowtie2/2.4.4/

DIAMOND Buchfink et al.134 https://github.com/bbuchfink/diamond/

Hisat2 Kim et al.135 https://daehwankimlab.github.io/hisat2/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the lead contact, Frédéric Gachon (f.

gachon@uq.edu.au).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The RNA-Seq data have been stored in the NCBI Gene Expression Omnibus136 and are publicly accessible through GEO Series accession

number GSE240147 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE240147). The raw data for the 16S rRNA and metagenomics

data have been deposited in the NCBI Sequence Read Archive137 and are publicly accessible under the accession number PRJNA881293

(https://www.ncbi.nlm.nih.gov/bioproject/PRJNA881293).

This paper does not report any original code.

Any additional information required to reanalyse the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice

All animal studies were approved by the Animal Care and Ethics Committee at Peking Union Medical College Hospital (Beijing, China,

XHDW-2020-041) and compliant with the National Institutes of Health guide for the care and use of laboratory animals.

As previously described,29,138 4-week-old female C57BL/6 mice were purchased from Huafukang Biological Technology Co. Ltd (Beijing,

China, SCXK-2020-0026). Mice were housed in a specific pathogen-free (SPF) environment. The temperature wasmaintained at 22G 2�C, and
the lighting followed a 12:12 light/dark cycle (lights on at 06:00 h = zeitgeber time (ZT) 0). After a 7-day acclimation period, 5-week-old mice

were randomized according to body weight into two groups: the control group (Ctr, n = 40) fed a standard chow diet (AIN-93G, Research

Diets, 15.8 kcal% fat), and the HFD group (HFD, n = 40) fed a fat-rich diet (D12492, Research Diets, 60 kcal% fat). After 5 weeks on these diets,

female mice were bred with 9-week-old C57BL/6 male mice, fed a control diet, in trio configuration (one male and two females) for 5 days,

maintaining the allocated dietary regimen [i.e., HFD or Ctr diet]. Post-delivery, both dams and offspring were transitioned to the same control

chow diet. Body weights were recorded weekly.

To investigate the effects of maternal HFD consumption before and during pregnancy on the diurnal physiology of juvenile and adult

offspring, male offspring aged 4 and 16 weeks were sacrificed every 4 h (n = 4 per time point) over a 24-h period at six time points: 07:00

(ZT1), 11:00 (ZT5), 15:00 (ZT9), 19:00 (ZT13), 23:00 (ZT17), and 03:00 (ZT21). To minimize the influence of litter on experimental outcomes,

we randomized across the six time points. Mice were sacrificed, and livers, blood serum, and cecal content were collected and snap-frozen

in liquid nitrogen and stored at �80�C until further processing.

METHOD DETAILS

Indirect calorimetry and behavior

Male offspring at 4 weeks old and 16 weeks old were randomly picked from each group. Indirect calorimetry, feeding rhythm, and locomotor

activity were measured using Promethion 8-channel respirometry cages (Sable Systems International). After acclimation for 24 h to the meta-

bolic cage, they were monitored for 2 consecutive days (24 h per day). Measurements were taken every 5 min at a 12:12 light/dark cycle. Data

were averaged and graphed at 1-h intervals. Indirect calorimetry and feeding rhythm data were corrected for body weight.

Glucose and insulin tolerance tests

For glucose tolerance test, mice were fasted for 6 h and injected intraperitoneally with a glucose load (2 g/kg of body weight) at ZT8. For

insulin tolerance test, mice were fasted for 4 h and injected intraperitoneally with insulin (Humulin R; 1.0 U/kg of body weight) at ZT6. Blood

glucose levels were measured from tail bleeding before intervention and 15, 30, 60, 90, and 120 min after intervention using a glucometer

(Bayer).
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Serum biochemical parameters measurement

Blood samples were collected from the intraorbital retrobulbar plexus of mice. All blood samples were separated by centrifugation at 3,000g

for 10 min at 4�C, and the serum was stored in aliquots at�80�C. Serum total cholesterol (TC), total triglyceride (TG), low-density lipoprotein

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), free fatty acids (FFAs), alanine transaminase (ALT), and aspartate amino-

transferase (AST) were measured using chemistry analyzer (Beckman Coulter, AU5800) as previously described.33
Liver total cholesterol and triglyceride

Levels of liver TC and TG were determined using the TC (M1010A) and TG (M1009A) assay kits from Michybio. Briefly, lipids were extracted

from approximately 100 mg of frozen liver tissue using 1 mL of isopropanol. Subsequently, 3–4 mm steel beads were added, and the mixture

was homogenized for two rounds of 30 s each, with a 10-s pause in between, using a homogenizer (KZ-III-F, Servicebio) at 4�C. After homog-

enization, the mixture was centrifuged at 8,000g for 10 min at 4�C. The supernatant was then collected and used for measurements, following

the manufacturer’s instructions.
Cecal 16S ribosomal RNA and metagenomics sequencing and analysis

16S rRNA gene amplicon sequencing and metagenomic analysis were conducted as previously described122 with minor modifications.

Genomic DNA was extracted from the cecal contents using the cetyltrimethyl ammonium bromide (CTAB) method.139 The V3-V4 regions

of the 16S rRNA genes were amplified using barcoded region-specific primers (341F, 50-CCTAYGGGRBGCASCAG-3’; 806R, 50-GGAC

TACNNGGGTATCTAAT-30). The PCR products were purified using a Qiagen Gel Extraction Kit. Sequencing libraries were prepared using

the TruSeq DNA PCR-Free Sample Preparation Kit (Illumina) according to the manufacturer’s instructions. Sequencing was performed on

an Illumina NovaSeq platform (250 bp paired-end reads). Raw sequence reads were processed and analyzed using quantitative insights

into microbial ecology (QIIME) 2 version 2022.8126 according to the developer’s recommendations. Sequence quality control was carried

out using DADA2 algorithm and taxonomies were assigned based on the SILVA_138 library.127 The comparison of alpha diversity indexes

between subject categories were performed using R studio with microeco package128 according to the developer’s operating manual,

with those reads annotated as ‘‘unassigned’’ excluded from these specific analyses.

We utilized 1 mg of DNA as starting material from each sample to prepare the metagenomic sequencing libraries. To ensure a sufficient

amount of genomic DNA for metagenomic analysis, certain cecal samples had to be reextracted. Following the manufacturer’s instructions,

we employed theNext Ultra DNA Library Prep Kit for Illumina (NEB) to generate sequencing libraries. This involved sonication to fragment the

DNA to approximately 350 bp, followed by end-polishing, A-tailing, and adapter ligation for Illumina sequencing. After PCR amplification,

the PCR products were purified using the AMPure XP beads (Beckman-Coulter). We then assessed the size distribution of the libraries using

the Agilent 2100 Bioanalyzer and quantified them via real-time PCR. Quantified libraries were equimolarly pooled and clustered on a cBot

Cluster Generation System, according to themanufacturer’s protocol. Subsequent sequencing was performed on the Illumina NovaSeq plat-

form (250 bp paired end reads).

Raw sequencing data was cleaned using Readfq (V8) with subsequent host contamination checks using Bowtie2 (version 2.2.4).133 Assem-

bly of metagenome was performed using MEGAHIT (v1.0.4-beta),131 followed by gene prediction and abundance analysis with

MetaGeneMark (V3.05)130 and CD-HIT (V4.5.8).132 Unigenes were annotated for species using DIAMOND (v0.9.9,25402007)134 against NCBI’s

Nucleotide (non-redundant) database and for functional characteristics using Kyoto Encyclopedia of Genes and Genomes (KEGG).140 Differ-

ential rhythmicity analysis was performed using the drylm function of dryR.38 For the metagenomics data, we introduced a batch effect to

account for effects caused by the re-extraction of some samples.
RNA extraction, sequencing, and analysis

Total RNAwas extracted from liver tissues using the E.Z.N.A. Total RNAKit II (OMEGA, R6934). Briefly, 500 mL of RNA-Solv Reagent was added

to approximately 50 mg of frozen liver tissue. We then added 3–4 mm zirconia beads. This mixture was subjected to homogenization in two

30s cycles, interspersed with a 10s interval, at 4�C using a KZ-III-F homogenizer (Servicebio). Following this, 200 mL of chloroform was added,

and the solutionwas vigorously shaken for 20s. Themixturewas then allowed to settle for 3min at room temperature before being centrifuged

at 12,000g for 15 min at 4�C. The resulting RNA supernatant was collected and subsequently purified using the columns provided with the kit,

in accordance with the manufacturer’s protocol. RNA integrity of all samples was assessed using the RNA Nano 6000 Assay Kit of the Bio-

analyzer 2100 system (Agilent Technologies). Only RNA with a RIN above 8.0 were further processed. mRNA was purified from total RNA

(3 mg of total RNA) using poly-T oligo-attachedmagnetic beads. Sequencing libraries were obtained using theNEBNext UltraTM RNA Library

Prep Kit for Illumina following themanufacturer’s instructions.141 Libraries were then sequenced by the IlluminaNovaSeq 6000. Raw data from

published RNA-Seq studies were retrieved from NCBI GEO (accession number: GSE197765)74 and NCBI SRA (accession number:

PRJNA723771).67

Reads were trimmed from adapters and mapped with Hisat2 (v2.0.5)135 to align the reads to the mouse reference genome (GRCm38/

mm10). Uniquely mapped reads per genes were counted using FeatureCounts (v1.5.0-p3)142 based on the annotation from Ensembl release

94. We tested for functional enrichment using annotated gene sets fromGeneOntology (GO)143 using Enrichr.125 To statistically assess mean

differences between two treatment groups we employedDESeq2,124 incorporating time as a covariate in the statistical model when available.

We conducted differential rhythmicity analysis using dryR.38
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Transcription factor activity analysis

Target genes of transcription factors were sourced from ChIP-Atlas119 for the mouse genome (mm10). Peak-calls overlapping a 5,000 bp win-

dow around a gene’s TSS were attributed to that gene. Hepatic sex-biased genes and genes that are up (GH_induced_male) or downregu-

lated (GH_induced_male) upon injection of GH in germ-freemalemice were taken from.66 To conduct an enrichment analysis of the genesets

containing sex-specific biased genes or predicted target genes of transcription factors, we used the geneSetTest function from the limma

package. This analysis was applied to gene lists that were pre-ranked defined based on results from DESeq2.124
QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analysis, two groups with a normal distribution were assessed using the Student’s t test, while the Mann–Whitney U test was

used for non-normally distributed data.When examining a 23 2 factorial design, we utilized a two-way ANOVA. If valuesmatched, a repeated

measures two-way ANOVA or a mixed linear model was used, complemented by the indicated post hoc test. The details of the results of the

statistical analyses are available in Table S6. Differential rhythmicity analyses were performedwith dryR38 using the drylm function for normally

distributed data and the dryseq function for count data. Only features (e.g., gene expression profiles, ASV abundance) with a signal inR50%

of samples per condition were included in the analysis.

The correlation matrix between serum metabolic profile measures and ASV abundance was determined using the corrplot R package.

Only correlations with a Pearson coefficient that had an associated Benjamini-Hochberg adjusted P-value of less than 0.05 (determined

through Fisher’s Z transform) were deemed statistically significant. We used R v.1.4.1717 with ggplot2 v 3.4.4 and GraphPad Prism version

8.0 to perform the described statistical analysis and data visualization. If not otherwise stated, data is represented as mean and error bars

indicate the standard error of the mean (S.E.M).
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