
 | Human Microbiome | Research Article

Comparison of the full-length sequence and sub-regions of 16S 
rRNA gene for skin microbiome profiling

Han Zhang,1,2 Xiang Wang,3 Anqi Chen,1 Shilin Li,1,4 Ruiyang Tao,5 Kaiqin Chen,6 Ping Huang,1 Liliang Li,7 Jiang Huang,8 Chengtao 
Li,1 Suhua Zhang1

AUTHOR AFFILIATIONS See affiliation list on p. 16.

ABSTRACT The skin microbiome plays a pivotal role in human health by providing 
protective and functional benefits. Furthermore, its inherent stability and individual 
specificity present novel forensic applications. These aspects have sparked considera­
ble research enthusiasm among scholars across various fields. However, the selection 
of specific 16S rRNA hypervariable regions for skin microbiome studies is not standar­
dized and should be validated through extensive research tailored to different research 
objectives and targeted bacterial taxa. Notably, third-generation sequencing (TGS) 
technology leverages the full discriminatory power of the 16S gene and enables more 
detailed and accurate microbial community analyses. Here, we conducted full-length 
16S sequencing of 141 skin microbiota samples from multiple human anatomical sites 
using the PacBio platform. Based on this data, we generated derived 16S sub-region 
data through an in silico experiment. Comparisons between the 16S full-length and 
the derived variable region data revealed that the former can provide superior taxo­
nomic resolution. However, even with full 16S gene sequencing, limitations arise in 
achieving 100% taxonomic resolution at the species level for skin samples. Additionally, 
the capability to resolve high-abundance bacteria (TOP30) at the genus level remains 
generally consistent across different 16S variable regions. Furthermore, the V1-V3 region 
offers a resolution comparable with that of full-length 16S sequences, in comparison 
to other hypervariable regions studied. In summary, while acknowledging the benefits 
of full-length 16S gene analysis, we propose the targeting of specific sub-regions as a 
practical choice for skin microbial research, especially when balancing the accuracy of 
taxonomic classification with limited sequencing resources, such as the availability of 
only short-read sequencing or insufficient DNA.

IMPORTANCE Skin acts as the primary barrier to human health. Considering the 
different microenvironments, microbial research should be conducted separately for 
different skin regions. Third-generation sequencing (TGS) technology can make full use 
of the discriminatory power of the full-length 16S gene. However, 16S sub-regions are 
widely used, particularly when faced with limited sequencing resources including the 
availability of only short-read sequencing and insufficient DNA. Comparing the 16S 
full-length and the derived variable region data from five different human skin sites, we 
confirmed the superiority of the V1-V3 region in skin microbiota analysis. We propose the 
targeting of specific sub-regions as a practical choice for microbial research.

KEYWORDS full-length sequencing, in silico experiment, 16S variable region, skin 
microbiota

T he skin microbiome, comprising a diverse ecosystem of bacteria, fungi, and viruses, 
plays a pivotal role in human health by providing protective and functional benefits. 

Its medical applications range from diagnosing and treating skin disorders to developing 
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personalized skincare solutions, underscoring its potential for therapeutic interven­
tions (1–4). Research has particularly focused on the interaction between the 
skin microbiome and the immune system, demonstrating how microbial diversity and 
imbalances are associated with dermatological conditions (5–7). These insights are 
propelling the development of microbiome-modulating therapies. Furthermore, the 
inherent stability and individual specificity of the skin microbiome present novel forensic 
applications, where microbial traces on objects or at crime scenes may provide unique 
identifiers or insights into environmental interactions (8–12). However, the microbio­
me’s variability across different skin areas, influenced by unique microenvironmental 
factors such as pH, moisture levels, and sebaceous gland activity poses challenges (13–
15). Therefore, a thorough taxonomic characterization of skin microbial communities, 
alongside the creation of uniform research protocols tailored to various skin types 
and DNA qualities (which are often compromised in forensic contexts), is critical for 
progressing in this domain. This approach will not only enhance our understanding of 
the skin microbiome’s role in medicine but also bolster the reliability and applicability 
of microbiome research in forensic science, where unique microbial signatures can be 
pivotal (9, 13, 16, 17).

Microbiome profiling typically involves amplicon sequencing of the bacterial 16S 
rRNA gene’s variable regions (V1-V9), which exhibit significant sequence diversity, 
facilitating bacterial identification and phylogenetic analyses (18–21). The selection 
of specific hypervariable regions for skin microbiome studies is not standardized but 
depends on the research objectives, targeted bacterial taxa, sequencing technology, 
and a balance between resolution, cost, and sample quality (22). The choice among 
the V1-V3, V3-V4, and V4 regions is pivotal for optimizing phylogenetic resolution, 
cost-effectiveness, and microbial diversity assessment. Although V1-V3 regions offer 
broad bacterial diversity coverage at a lower cost, they may not provide the finest 
species-level resolution. Conversely, the V3-V4 regions, preferred for Illumina sequencing 
due to their depth and breadth of bacterial detection, allow for distinguishing closely 
related taxa (23). The V4 region, compatible with universal primers and shorter read 
lengths, offers adequate resolution for many applications cost-effectively, albeit with 
reduced diversity capture compared with the combined regions. This necessitates a 
careful trade-off between taxonomic resolution and practical considerations, guiding 
researchers based on specific study requirements and constraints (16, 17).

Notably, third-generation sequencing (TGS) technology, pioneered mainly by Pacific 
Biosciences (PacBio) and Oxford Nanopore, has reached a level of maturity that enables 
the acquisition of complete or near-complete 16S rRNA gene sequences in a single, long 
read (24–28). This development enables more detailed and accurate microbial commun­
ity analyses, extending to species and strain levels, and underscores the potential of 
leveraging the full discriminatory power of the 16S gene in high-throughput studies 
(21, 29). Although not yet universally adopted over short-read sequencing, PacBio’s 
full-length 16S sequencing has been instrumental in evaluating the taxonomic efficacy of 
individual or combined variable regions (30, 31).

In this study, we analyzed a data set of full-length bacterial 16S rRNA sequences 
obtained via PacBio sequencing of 141 skin samples across different human anatomical 
sites. By in silico extracting 16S sub-region data from the full data set and comparing 
microbial profiles and taxonomic hierarchies, we systematically assessed the impact 
of different sub-regions on classification efficiency. Our objective was to determine if 
certain sub-regions could achieve taxonomic resolutions comparable with full-length 
sequences, providing a valuable reference for skin microbiome researchers, especially 
those constrained to short-read sequencing platforms.
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MATERIALS AND METHODS

Sample collection

In this study, we meticulously collected 141 skin microbiome specimens from 22 
consenting volunteers. The collection comprised 30 intraaural skin (InaS) swabs from 
the external auditory canal, 31 circumaural skin (CiraS) swabs from the posterior side 
of the auricle and the retroauricular crease, 30 palmar skin (PaS) swabs, 20 nasal skin 
(NaS) swabs, and 30 oral epithelial skin (OrE) swabs. It is noteworthy that the selected 
participants exhibited no signs of chronic illnesses, dermatological issues, or any specific 
health conditions and had not undergone antibiotic treatment in the three months 
leading up to the sampling phase. Comprehensive information regarding the study’s 
objectives, methodology, and potential risks was provided to all participants, from whom 
written consent was secured, adhering to the ethical standards set forth in the Declara­
tion of Helsinki (32).

The sampling procedure involved the use of sterile polyester fiber swabs, which 
were initially saturated in a sterile solution containing 0.15 M NaCl and 0.1% Tween 20, 
with the exception of the OrE swabs. For all samples, any excess solution was removed 
before application. Subsequently, the swabs were employed to meticulously collect 
samples from the skin’s surface, adopting an “S” pattern for a minimum duration of 
20 seconds and incorporating a rotating movement for the collection of InaS and NaS 
samples, ensuring a comprehensive and uniform sample collection. The protocol and all 
experimental procedures received approval and were under the continuous oversight 
of the Ethics Committee of Fudan University, documented under approval number 
2023C011, guaranteeing the adherence to ethical guidelines and integrity throughout 
the study’s course.

Full-length 16S rRNA gene sequencing

Genomic DNA was extracted using the PowerSoil DNA Isolation kit. Amplification of the 
complete 16S rRNA gene was achieved using primers 27F (AGRGTTTGATYNTGGCTCAG) 
and 1492R (TASGGHTACCTTGTTASGACTT). The PCR reaction system consisted of 15 µL 
KOD One PCR Master Mix, 3 µL mixed PCR primers, 1.5 µL genomic DNA, and 10.5 µL 
nuclease-free water, with a total volume of 30 µL. PCR conditions included an initial 
denaturation at 95°C for 2 min, followed by 25 cycles of denaturation at 98°C for 10 s, 
annealing at 55°C for 30 s, extension at 72°C for 90 s, and a final extension at 72°C 
for 2 min. Subsequently, the PCR amplicons underwent a series of processing steps 
including damage repair, end repair, and adapter ligation via the SMRTbell Template 
Prep Kit. Purification of the PCR products was achieved using AMPure PB magnetic 
beads. The DNA fragment sizes were evaluated using an Agilent 2100 bioanalyzer, and 
concentrations were determined through Qubit fluorometry.

Prior to sequencing, the library underwent primer and polymerase attachment using 
the PacBio Binding kit, followed by a final purification step with AMPure PB Beads. The 
sequenced library, meeting all quality criteria, was analyzed on the PacBio Sequel II 
system by BioMarker company (Biomarker Technologies Co. Ltd., Beijing, China). Data 
analysis was facilitated by SMRT Link Analysis software, converting sequencer-generated 
BAM files into CCS sequence files, adhering to stringent parameters (minimum number 
of passes ≥5, minimum predicted accuracy ≥0.99). Demultiplexing of CCS sequences, 
based on barcode identification, was performed using lima v1.7.0. Cutadapt v1.9.1 
software played a crucial role in filtering the CCS sequences by eliminating those 
lacking primer sequences, removing primer sequences, and selecting CCS sequences 
with lengths ranging from 1,200 bp to 1,650 bp.

In silico extraction of 16S sub-regions from full-length sequencing data

In the computational analysis of 16S rRNA gene sequences, the delineation of the V1-V9 
region represents the entirety of the full-length 16S rRNA gene for the purposes of 
this investigation. Distinct sub-regions of the 16S rRNA gene, including V1-V2, V1-V3, 
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V3-V4, V4, and V5-V9, were meticulously extracted from the comprehensive full-length 
sequences. This extraction process was guided by the specific locations of PCR primer 
binding sites, which are routinely utilized in microbiome research endeavors (Fig. 1a). The 
extraction methodology is detailed in the following procedural steps:

1. Primer pair identification: Commence by cataloging all possible primer pair 
combinations located in the conserved regions flanking the target variable 
regions. These primer pairs are then aligned with the full-length 16S rRNA 
gene sequence. Subsequently, sequences encapsulated by these primer pairs are 
extracted and preserved as Fastq format files.

2. Tolerance setting for primer matching: Implement a tolerance threshold that 
allows for up to four base mismatches within both the forward and reverse 
primers during the matching process. This flexibility aims to accommodate minor 

FIG 1 Overview of methodology and results for microbial community analysis in skin samples. (a) Schematic representation of the study’s workflow, encom­

passing sample collection from various skin sites, experimental procedures, and the analytical pipeline employed for data interpretation. (b) Distribution of 

Operational Taxonomic Units (OTUs) identified in different 16S rRNA gene regions across five skin sample types: intraaural skin (InaS), circumaural skin (CirS), 

palm skin (PaS), nasal skin (NaS), and oral epithelial skin (OrE). (c) Comparative analysis of Amplicon Sequence Variants (ASVs) across different 16S rRNA gene 

regions for the InaS, CirS, PaS, NaS, and OrE.
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sequence variations, thereby ensuring a comprehensive capture of the target 
sequences.

3. Read count verification: Post-extraction, perform a quantitative assessment of the 
derived reads to verify that the capture efficiency surpasses the 98% threshold. 
This step is critical for confirming the robustness and reliability of the primer 
matching and sequence extraction process.

4. Accuracy assessment through random selection: To validate the fidelity of the 
extracted variable region sequences, a random subset of these sequences is 
selected and compared against the original full-length 16S sequences. This 
comparative analysis serves to confirm the precision of the sequence capture and 
the integrity of the variable regions extracted.

Refer to Table S1 for detailed primer specifications utilized in this study.

Data analyses

The data analysis framework encompassed a series of sophisticated bioinformatics 
procedures designed to refine and interpret the 16S rRNA gene sequencing data. Initially, 
low-quality sequences were rigorously excluded, and chimeric sequences were identified 
and excised employing the default settings of Cutadapt software. This pre-processing 
step ensured that only high-quality, authentic sequences were advanced for further 
analysis.

Subsequent to the quality filtration, representative sequences for each Amplicon 
Sequence Variant (ASV) were delineated utilizing QIIME2 software (v1.9.1) (33). This 
delineation was conducted based on both the full-length 16S rRNA gene sequences and 
their respective variable regions. The ASVs identified were then subjected to annotation 
and comparison against the SILVA database (version 138) using the q2-feature-classifier 
plugin, facilitating a precise taxonomic classification (34).

OTUs were generated at different sequence similarity thresholds (97%, 98%, and 99%) 
through the application of USEARCH software (v11) (35). Subsequently, each representa­
tive OTU underwent genus-level annotation, employing the Ribosomal Database Project 
(RDP) classifier (v2.13), with a confidence threshold set at 0.8.

Diversity within the microbial communities was quantified through alpha-diversity 
(Shannon index) and beta-diversity (Bray-Curtis distances) metrics (36), calculated using 
QIIME2 software. To visualize the microbial community structure and diversity, Prin­
cipal Coordinate Analysis (PCoA), Non-Metric Multidimensional Scaling (NMDS), and 
Unweighted Pair Group Method with Arithmetic Mean (UPGMA) were constructed based 
on Bray-Curtis dissimilarity matrices. These visual representations were generated using 
the ggplot2 package within the R programming environment.

For the identification of statistically significant biomarkers across different sample 
groups, Linear Discriminant Analysis Effect Size (LEfSe) analysis was conducted (37), 
setting the Linear Discriminant Analysis (LDA) score threshold to 4. The random forest 
machine learning methods were implemented with R script to predict the origin of the 
samples (38). Additionally, sequence variation within the primer-binding sites of the 16S 
rRNA gene was meticulously analyzed using custom in-house R scripts, offering insights 
into the primer specificity and efficiency across diverse microbial taxa.

RESULTS

Characterization of 16s rRNA full-length sequencing data

The comprehensive sequencing of the 16S rRNA gene from 141 skin microbiota samples 
yielded a substantial data set of 1,345,711 raw reads, with individual sample reads 
varying significantly, from a minimum of 4,314 to a maximum of 14,658 reads. Following 
the implementation of a rigorous denoising process, integral to the quality control 
measures, the data set was refined to 1,015,343 clean tags. These clean tags exhibited 
a broad range in quantity per sample, spanning from 984 to 14,064, reflecting the 
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effectiveness of the denoising process which varied widely across samples, from as 
low as 13.04% to as high as 99.28%, with an overall average effectiveness of 71.61%. 
This wide range in data quality and quantity underscores the heterogeneity inherent in 
biological sampling and the subsequent necessity for stringent quality control to ensure 
the reliability of downstream analyses.

The diversity within these samples was further evidenced by the number of ASVs 
detected, ranging from a minimal count of 10 to a substantial count of 808 ASVs per 
sample. Collectively, a total of 69,616 ASVs were identified across all samples and were 
retained for further analytical scrutiny. This data set of ASVs serves as a testament to the 
microbial diversity present across the sampled skin sites and provides a foundation for 
the subsequent analyses aimed at elucidating the complex microbial ecosystems of the 
human skin.

Taxonomic classification

Our microbial community analysis employed two distinct clustering methodologies: 
OTUs and ASVs. Implementing different clustering thresholds (97%, 98%, and 99%) 
led to variations in OTU numbers, which were influenced by different variable regions 
within the five sample types examined, as depicted in Fig. 1b. Notably, analyses using 
full-length 16S rRNA sequences identified the most OTUs. Conversely, the V3-V4 and 
V4 regions yielded fewer OTUs, whereas the V1-V3 and V1-V9 regions demonstrated 
comparable OTU counts. The distribution of ASVs among the sample types was ranked 
as follows: PaS >CiraS > OrE >InaS > NaS, as shown in Fig. 1c. Within the same sample 
category, the regions V1-V9, V1-V3, and V5-V9 revealed a higher abundance of ASVs, in 
contrast to the reduced ASV counts found in the V3-V4 and V4 regions, as shown in the 
CiraS, InaS, and OrE samples. Of note, the V4 region contained the smallest number of 
ASVs in OrE samples. However, the PaS samples exhibited a significantly different trend. A 
notably higher number of ASVs detected in the V1-V2 and V1-V3 regions of PaS samples 
compared with the V1-V9 region. NaS samples manifested the least variability in ASV 
numbers across different sub-regions.

Subsequently, we employed ASV sequence information to achieve taxonomic 
resolution of bacterial communities. Here, we take ASV sequences annotated at the 
species level in the V1-V9 region as the standard data set to compare the discrimination 
ability at the species level of different 16S rRNA hypervariable regions. This process is 
visualized in Fig. 2a, where phylogenetic trees have been constructed for unique bacteria 
at the species level. Here, we need to emphasize that for the annotation at the species 
level of different hypervariable region sequences extracted from the V1-V9 sequences, 
they must be completely consistent with the corresponding V1-V9 sequence annotation 
information. Otherwise, they will not be included, even if they are also annotated at the 
species level. Our findings reveal a notable trend: the V1-V9 region contains a higher 
number of annotated species, resulting in a markedly more dense circular branching 
pattern deeper red in the phylogenetic tree. Following that, the V1-V3 and V5-V9 regions, 
with the V4 region being the least dense, result in branches being displayed in a deeper 
blue. However, this pattern of annotation was consistent across the other 16S rRNA 
hypervariable regions for the same type of samples, with no significant differences in 
phylogenetic tree complexity. The outer donut pie charts, highlighted in green, further 
illustrate this difference. They show a progressive decrease in the number of species 
from the V1-V9 region to the V4 region, with intermediate counts in the V1-V3, V5-V9, 
V1-V2, and V3-V4 regions. Moreover, when examining the comprehensive 16S sequences, 
the phylogenetic trees for PaS and CiraS samples reveal a higher density of branches. 
This suggests a greater diversity of bacteria within these samples at the species level, 
indicating a further research on bacterial taxa needs to be fully explored or documented. 
However, reviewing the ASVs generated from the entirety of the sequencing efforts, even 
based on the full-length 16S sequence information, there is still a certain proportion of 
sequences (14%-23%) that cannot be annotated at the species level. It is worth noting 
that this proportion varies with the type of sample (Fig. 2b).
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Comparisons of microbial community structure and diversity analysis

We created stacked bar charts at both the genus and species levels for the top 30 
bacteria across different sub-regions of various sample types (Fig. 3a; Fig. S1). In these 
visual representations, distinct colors denote different bacterial taxa, and the height 
of each colored segment indicates the proportion of a given bacterium’s abundance 

FIG 2 Comparative analysis of phylogenetic trees and taxonomic annotation across hypervariable regions. ASVs are annotated at the species level in the V1-V9 

region as the standard data set. This figure features phylogenetic trees paired with donut pie charts, showcasing bacteria at the species level across various 

hypervariable regions of 16S rRNA genes from five types of skin samples studied. (a) In the phylogenetic trees constructed based on unique bacteria (V1-V9), the 

same tree is provided for each sub-region. The color of each branch indicates the proportion of bacteria within each clade that are identified to species level. In 

the donut pie charts, green segments denote the unique bacteria annotated at the species level, and blue segments represent those bacteria unannotated to the 

species level. (b) ASVs from the V1-V9 region that annotated or could not be annotated at the species level, across five types of samples studied.
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FIG 3 Overview of microbial community composition and alpha diversity metrics. (a) Depicts the distribution of the top 30 most abundant bacterial genera 

across different 16S rRNA gene regions within the five skin sample types. The “others” category represents all bacteria of lower abundance. (b) Features a box 

plot detailing the Shannon diversity index across each 16S region, with the x-axis displaying the average Shannon index values for the various sample types. 

Statistical significance is denoted as follows: **P < 0.01, ***P < 0.001, determined by t-tests.
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relative to the total bacterial abundance observed. The category labeled “others” 
represents the relative abundance of bacteria that did not rank among the top 30.

Upon meticulous examination and comparison of these charts, we observed that 
at the genus level (as shown in Fig. 3a), the microbial community structures within 
the same sample types appeared remarkably consistent across the various regions, 
including the V1-V9 region. These structures exhibited only subtle variations in their 
relative abundances. Furthermore, when we arranged the abundance values, it became 
apparent that the top three genera within the different hypervariable regions of the 
same sample types were exactly the same, underscoring a high degree of consistency at 
the genus level.

Conversely, at the species level (as shown in Fig. S1), even a straightforward vis­
ual assessment reveals significant differences in microbial community compositions 
across the different 16S sub-regions within the same sample types. These differences 
were not only in terms of the relative abundances but also in their bacterial species 
present. Notably, when comparing the top 30 bacterial species by abundance across 
the hypervariable regions with the V1-V9 region, the V5-V9 region showed the highest 
similarity, with 28 species in common. This was followed by the V1-V3 region, which 
shared 25 species, whereas the V4 region demonstrated the least similarity, sharing only 
nine species.

To further our understanding of the diversity within microbial communities, we 
calculated the Shannon index, a metric that quantifies both species richness and 
evenness. The findings, illustrated in Fig. 3b through boxplots, showed a uniform trend 
across various sub-regions and sample types. Specifically, samples labeled PaS presen­
ted the highest Shannon index values, indicating the most diverse microbial commun­
ity, whereas InaS displayed the lowest values, suggesting a less diverse community 
composition.

Interestingly, when comparing samples of the same type across different 16S rRNA 
gene regions, the highest average Shannon index was not found in the V1-V9 region, 
but rather in the V1-V3 region. Conversely, the V4 region was associated with the lowest 
diversity index. This indicates that the V1-V3 region might be more reflective of microbial 
diversity in skin samples.

Through t-test analysis, significant differences in the Shannon index values among the 
different sample types were identified, with statistical significance denoted by asterisks 
(P < 0.05). This suggests that the diversity of microbial communities varies notably 
across different environmental or biological contexts. However, it is noteworthy that the 
differences in species richness indicated by the Shannon index were less marked in the 
V1-V9 region compared with other regions. This pattern was particularly evident among 
the PaS, CiraS, NaS, and OrE samples.

Comparative analyses among five distinct skin sample types

PCoA and NMDS were meticulously conducted to explore the microbial community 
structures within five different skin sample types, with findings presented in both 
two-dimensional and three-dimensional scatter plots (refer to Fig. 4; Fig. S2). The 
analyses aimed to discern patterns of similarity and dissimilarity based on variations 
within the 16S rRNA regions across the sample types. Notably, the OrE samples, 
represented in red within the scatter plots, demonstrated a pronounced clustering effect, 
distinctly segregating from the other sample types. This clear demarcation underscores 
the unique microbial signature of the OrE samples. The InaS samples, marked in green, 
also showed a coherent clustering but to a lesser extent, suggesting a distinguishable yet 
closely related microbial community composition in comparison to other sample types. 
Conversely, the samples associated with CiraS, PaS, and NaS exhibited considerable 
overlap in their clustering patterns. This convergence indicates a significant challenge 
in differentiating among these sample types based solely on their microbial 16S rRNA 
profiles. The intermingling of the CiraS, PaS, and NaS samples highlights the complex 
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interplay and potential similarities in the microbial communities present in these diverse 
environmental contexts.

The construction of a phylogenetic tree, utilizing the UPGMA algorithm, corroborated 
the insights gained from the earlier PCoA, as illustrated in Fig. S3. This phylogenetic 
analysis further substantiates the lack of significant differences in the clustering of 
microbial communities among the varied 16S regions, aligning with the PCoA findings. 
Specifically, the OrE samples, highlighted in red, exhibited the most coherent and 
distinct clustering within the phylogenetic tree. In stark contrast, the CiraS, represented 
in purple, displayed the least effective clustering. This alignment between the UPGMA-
based phylogenetic tree and the PCoA results highlights the complexities of microbial 
community compositions that transcend simple classification based on 16S rRNA gene 
regions. The detailed analysis reveals both the distinctiveness and the subtleties of 
microbial associations across diverse skin samples, underscoring the intricate relation­
ships within microbial ecosystems.

Identification of bacterial biomarkers across diverse skin types and construc­
tion of random forest prediction model

We employed the LEfSe method to identify microbial biomarkers among the five types 
of samples, with a stringent threshold for significance (LDA score >4, P < 0.05) (Table S2). 
Overall, the number of potential biomarkers selected based on the V1-V9 sequence is 
less than that from other 16S sub-regions (Fig. 5). The majority of biomarkers identi­
fied from V1-V9 region were included within the set of bacterial biomarkers within 
the sub-regions. Additionally, the extra biomarkers identified in other 16S sub-regions 
compared with the V1-V9 region tend to exhibit lower LDA scores, such as Enterococcus 
and Enterococcaceae in InaS sample; Chryseobacterium, Enhydrobacter, and Moraxella in 
CiraS sample; Micrococcales in PaS sample; Roseimarinus and Klebsiella in NaS sample; 
and Rothia and Micrococcaceae in OrE sample. It is noteworthy that the biomarker 
Clostridia at the class level, identified in the V1-V2, V1-V3, V3-V4, and V4 regions in the 
OrE sample, was not detected in the V1-V9 region, and it has the highest LDA value.

FIG 4 Three-dimensional principal coordinate analysis (PCoA) plot for different types of skin samples using the Bray-Curtis distance matrix.
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To infer the origin of the samples, we constructed a random forest model. The 
performance of the model was evaluated using four parameters: overall accuracy, 
precision, recall, and F1 score (Table 1). The overall accuracy of random forest models 
built using various 16S regions exhibited slight variation, ranging from 70% to 85%. 
Unexpectedly, the model in the V1-V9 region showed the worst prediction accuracy, 
whereas the V4 region achieved the highest accuracy. Among these, the prediction 
accuracy for OrE samples was the highest, reaching 100%, followed by NaS samples 
based on the F1 score. For other sample types, the prediction accuracy of each variable 
region followed this order: PaS >InaS > CiraS, while for the V1-V9 region, it was InaS > PaS 
> CiraS.

Additionally, we calculated the mean decrease Gini (MDG) values and selected 30 
important species at the genus level, as shown in Table S3. The results showed that 
the important species in various sub-regions were not much different from those in the 
V1-V9 region, and there were only no more than two species differences. It is worth 
noting that the important species in the V5-V9 region were completely identical to those 
in the V1-V9 region.

Sequence variation of 16S rRNA gene primer-binding sites

In our study, we conducted an in-depth statistical analysis to assess sequence variability 
at the primer binding sites. Taking the NaS sample as an example, we combined the 
full-length 16S sequence data from all individuals, eliminated duplicate sequences, 
and curated a set of “unique” sequences. We then extracted subsets of sequences 
corresponding to each of the primer binding sites used in our analyses. Figure 6 
presents the prevalent sequence variations and identifies the predominant bacterial 
groups associated with these variations. To ensure statistical relevance, we excluded 
sequence variations with fewer than five reads, operating under the premise that 
variations constituting less than 0.1% of the total may lack authenticity or statistical 

FIG 5 Upset plot showing the shared microbial biomarkers between the individual 16S regions from five types of skin samples studied.
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significance. Our findings indicate that primer binding sites exhibited varying numbers 
of base variations, many of which did not fall within the range of degenerate primers.

A particularly noteworthy observation is that specific bacterial groups were 
associated with unique primer variants. Among the primers evaluated, the forward 
primer designed to target the V4 region displayed minimal variation. However, 
challenges were identified with other primer sets: notably, the commonly employed 
reverse degenerate primer for the V4 region was found to mismatch with sequen­
ces from the Propionibacteriaceae, Flavobacteriales, and Saccharimonas. This mismatch 
may hinder the amplification and subsequent detection of these groups. Similarly, 
the forward primer for the V5-V9 region demonstrated potential mismatches at two 
positions for taxa such as Erysipelotrichales, RF39, Cyanobacteriia, and Verrucomicro­
biae, potentially reducing the sensitivity of detection for these microbial groups. The 
forward primer for the V3-V4 region and reverse primer for the V1-V2 region demonstra­
ted potential mismatches at three positions such as Gemmataceae, Pirellulaceae, and 
Paracoccus.

DISCUSSION

The landscape of human skin microbiology research is rapidly evolving, with a 
pronounced shift toward extensive sample collection, cohort studies, and practical 
applications spanning various sectors including medicine, environmental science, and 
forensics, as highlighted in references (39–41). The full-length 16S rRNA gene sequencing 
marks a transformative advancement in microbial research, facilitating an unparalleled 
taxonomic resolution of microbial community compositions, as noted in references (21, 
39). Despite its advantages, the adoption of full-length 16S rRNA gene sequencing is 
hampered by several challenges including the selection of sequencing platforms, the 
technical complexity of the methodologies, stringent requirements for DNA integrity and 
content, and the associated high costs. In this context, opting for targeted sequencing 

TABLE 1 Overall accuracy, precision, recall (sensitivity), and F1 score of the random forest classifier for 
different 16S regions across the five types of skin samples

InaS (%) CiraS (%) PaS (%) NaS (%) OrE (%)

V1-V9 Random Forest (Overall accuracy 73.81%)
Precision 57.14 66.67 71.43 83.33 100.00
Recall 88.89 44.44 55.56 83.33 100.00
F-1 Score 69.56 53.33 62.50 83.33 100.00

V1-V2 Random Forest (Overall accuracy 78.57%)
Precision 57.14 66.67 100.00 100.00 100.00
Recall 88.89 66.67 66.67 66.67 100.00
F-1 Score 69.56 66.67 80.00 80.00 100.00

V1-V3 Random Forest (Overall accuracy 80.95%)
Precision 57.14 71.43 100.00 100.00 100.00
Recall 88.89 55.56 77.78 83.33 100.00
F-1 Score 69.56 62.50 87.50 90.91 100.00

V3-V4 Random Forest (Overall accuracy 80.95%)
Precision 66.67 62.50 100.00 85.71 100.00
Recall 88.89 55.56 66.67 100.00 100.00
F-1 Score 76.19 58.83 80.00 92.31 100.00

V4 Random Forest (Overall accuracy 83.33%)
Precision 66.67 75.00 100.00 85.71 100.00
Recall 88.89 66.67 66.67 100.00 100.00
F-1 Score 76.19 70.59 80.00 92.31 100.00

V5-V9 Random Forest (Overall accuracy 80.95%)
Precision 61.54 66.67 100.00 100.00 100.00
Recall 88.89 66.67 66.67 83.33 100.00
F-1 Score 72.73 66.67 80.00 90.91 100.00
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of specific 16S sub-regions using second-generation high-throughput sequencing 
technologies emerges as a pragmatic approach to satisfy the foundational requirements 
of both research and practical applications (42).

This study leverages full-length 16S sequencing data derived from microbial 
communities across various human skin sites to systematically assess the classification 
efficiency of different 16S sub-regions. It unequivocally demonstrates that full-length 
16S sequences offer a more comprehensive genetic insight into microbial communities 
and enable a higher resolution of microbial community profiling. Furthermore, our 

FIG 6 Sequence variation of 16S rRNA gene primer-binding sites. Nucleotide sites identical to the most common consensus sequence (the first listed) are 

represented as dots. The degenerate primer sequences are shaded gray, and the main variation sites are highlighted in red.
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findings affirm that the V1-V3 region is particularly well-suited for skin microbiome 
profiling, corroborating previous research findings (22). Notably, the resolution provided 
by the V1-V3 region more closely approximates that of full-length 16S sequencing 
compared with other hypervariable regions, underscoring its suitability and effectiveness 
for detailed microbial community analysis in skin microbiome studies (21).

Our study has elucidated that full-length 16S ribosomal RNA (rRNA) gene sequenc­
ing possesses a superior discriminatory capability compared with targeted sequencing 
of specific sub-regions. Despite this advantage, a significant number of ASVs within 
the V1-V9 region remain unannotated at the species level (14%-23%), highlighting a 
limitation in the resolution of skin microbial identification. Here, we propose several 
possibilities: (i) balance between conservation and variability: the 16S rRNA gene 
contains highly conserved and variable regions; even with full-length sequencing, the 
conservation of these regions may not provide sufficient resolution to distinguish 
genetically very close species (43). (ii) Intraspecies genetic variation: Even within the 
same species, different strains may have variations in the 16S rRNA gene sequence. 
This intraspecies variation can sometimes make species-level identification challenging 
(44). (iii) Technical and methodological limitations: sequencing errors and primer bias 
can affect the quality and accuracy of sequencing data. Additionally, the accuracy of 
the bioinformatics tools and databases used can impact the final species identification 
(16). (iv) Incompleteness of databases and reference sequences: many microbes have 
not yet been cultured and sequenced, meaning that even with full-length 16S rRNA 
sequencing, it might not be possible to accurately identify all species (45). (v) Ecological 
and evolutionary factors: gene horizontal transfer and recombination events among 
microbial species can cause differences in the 16S rRNA gene sequence, which may 
mislead species identification and analysis (46).

Furthermore, our comparative analysis between ASV and OTU clustering methodolo­
gies yielded not entirely consistent results, which align with expectations, given their 
fundamentally different algorithmic bases, as referenced in (47). OTU clustering groups 
sequences that exhibit less than a predetermined percentage of dissimilarity, commonly 
set at 3%, potentially leading to the amalgamation of similar yet taxonomically distinct 
bacteria within the same OTU, as discussed in references (48, 49). Conversely, ASVs, 
generated through the divisive amplicon denoising algorithm of DADA2 (50), offer a 
much finer resolution, distinguishing sequences based on single-nucleotide differences. 
This precision has contributed to the growing popularity of ASVs for microbial commun­
ity analysis (49). Given these distinctions, our research predominantly focused on the 
enumeration and analysis of ASVs.

Notably, PaS and CiraS samples harbored a substantial number of bacterial species 
that could not be definitively classified at the species level. We hypothesize that this 
phenomenon may be attributed to the direct and frequent interaction of PaS and CiraS 
samples with the external environment (51, 52). Such interactions facilitate transient 
colonization by a wide array of environmental microbes, thereby enriching the microbial 
diversity within these samples but also increasing the prevalence of taxa represented 
by lower abundance. This observation underscores the complex and dynamic nature 
of microbial communities, particularly in contexts with high environmental exposure, 
and highlights the challenges in achieving comprehensive microbial identification and 
classification (53).

Differences in the taxonomic resolution of various 16S variable regions in analyz­
ing bacterial community composition and diversity are minimal for the same type of 
samples. Although there are significant differences at the species level, we contend that 
this does not accurately reflect the actual situation, as our previous analyses have shown 
limited resolution even with full-length 16S sequencing. This seems to be supported in 
part by the high proportion of “others” at the species level. One possibility is that more 
bacteria were not annotated at the species level. Thus, caution is required when using 
16S sequences to study skin microbial communities at the species level, we recommend 
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that research should be conducted at the genus level or higher or more recommended 
metagenomic sequencing analysis (21, 42, 54).

The PCoA, NMDS, and UPGMA cluster analyses adopted in this study consistently 
demonstrated that clustering of the skin samples based on different 16S sub-regions did 
not show obvious differences. Judging from the clustering results of the OrE samples, 
we believe that the effectiveness of differentiation is more dependent on whether 
the microbial community composition characteristics of the samples themselves are 
significant. When collecting samples, it was inevitable that a certain amount of saliva 
was mixed into the OrE samples. The microbial community composition of saliva is 
significantly different from that of skin samples (55), leading to the significant difference 
between OrE and other sample types, manifested as pronounced self-clustering and 
clear separation from other samples.

The microbial biomarkers with high LDA values are generally consistent across the 
different 16S sub-regions including the V1-V9 region. However, the sub-region has more 
unique microbial biomarkers with lower LDA values, especially for PaS and CiraS samples 
with high environmental exposure, and microbial community diversity. We posit that the 
main reason for this phenomenon is that 16S hypervariable regions sequencing reads 
contain limited sequence variation, as well as inherent preferences in primer binding and 
microbial annotation, which introduce systematic errors during the analysis of different 
types of samples, resulting in varying outcomes for the same type of samples analyzed in 
different 16S hypervariable regions (14, 16).

Despite numerous analyses in this study revealing that the V4 region performed worst 
in classifying skin bacterial communities, it exhibited the highest accuracy in predicting 
the sample origin based on the random forest algorithm. This is indeed difficult to 
explain reasonably. We speculate that the excessively low genetic information content 
in the V4 region, leading to poor analytical ability and higher error rate of the V4 region 
may artificially increase the differences in microbial communities between different 
types of samples, thereby making successful predictions easier (30, 56). Moreover, when 
we selected the TOP 30 important bacteria based on the MDG values, there were no 
significant differences in the various variable regions. This implies that there may be 
other factors causing differences in the predictive ability of the random forest model, 
such as low MDG values or low abundance bacteria (57).

Building upon our findings and grounded speculations, our investigation extended 
to the sequence variation at the primer-binding sites of the 16S rRNA gene, which 
reaffirmed the variability inherent to these sites across different hypervariable regions. 
Importantly, our statistical analysis revealed that certain sequence variations displayed 
a predilection for specific bacterial taxa. This finding partially elucidates the differen-
ces observed among the various 16S hypervariable regions and their comparison 
to the V1-V9 regions, offering a tangible explanation for the differential outcomes 
noted in microbial community analyses. The occurrence of base sequence variations 
at primer-binding sites represents a facet of biological evolution, a phenomenon that 
necessitates a more nuanced understanding. Consequently, there is a pressing need 
for more exhaustive and detailed research efforts aimed at cataloging these variations. 
Such efforts should strive to identify patterns within the sequence variability of 16S 
rRNA, enabling the selection of the most appropriate hypervariable regions for specific 
research endeavors. These findings highlight the critical importance of primer selec­
tion and design in the accurate representation and analysis of microbial communities, 
underscoring the need for careful consideration of primer specificity and the potential 
for sequence variation to impact microbial diversity studies.

Conclusions

Our comprehensive analysis underscores that full-length 16S rRNA gene sequencing 
offers superior taxonomic resolution for delineating the composition of the skin 
microbiome over methods that target specific variable regions. This enhanced resolution 
facilitates a more accurate and detailed understanding of microbial communities present 
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on the skin. Interestingly, our findings also highlight the V1-V3 region’s comparably 
high discriminatory power, which rivals that of the entire 16S gene. This observation is 
particularly significant as it provides valuable insight for researchers when selecting the 
most appropriate 16S regions for their studies, especially in contexts where sequencing 
resources may be limited or when DNA quality is insufficient for full-length 16S rRNA 
gene sequencing.

The equivalence in the discriminatory potential between the V1-V3 region and the 
full 16S rRNA gene sequencing is a critical insight for fields such as forensic microbiol­
ogy, where precise taxonomic resolution is paramount for the accurate identification of 
microbial evidence. This knowledge allows for more informed decision-making regarding 
the selection of 16S rRNA gene regions for sequencing efforts, balancing the need for 
detailed taxonomic resolution with the practical considerations of sequencing costs and 
technical complexity.

Moreover, these findings serve as a vital reference for the broader research commun­
ity, guiding the selection of sequencing strategies that best align with the objectives and 
constraints of various studies. By informing the choice of targeted 16S regions based 
on their demonstrated taxonomic resolution capabilities, our study contributes to the 
optimization of microbial research methodologies across diverse fields, enhancing the 
accuracy and efficiency of different skin microbial community analyses.
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