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33% achieving complete remission (CR) [9]. The CRR 
for patients with B-cell acute lymphoblastic leukemia 
(B-ALL) can reach 81% [10]. Manageable adverse effects 
underscore the remarkable success of CAR-T products in 
treating hematologic malignancies, offering patients new 
treatment options and renewed hope. Currently, the FDA 
has approved six CAR-T cell products for hematologic 
malignancies [11–14], all with excellent treatment out-
comes. CAR-T has become a reliable approach for treat-
ing various hematologic malignancies.

However, comprehensive comparative reports and 
studies evaluating the safety, tolerability, and efficacy of 
different combination therapies involving CAR-T cells 
for hematologic malignancies are lacking. Therefore, this 
review aims to investigate and analyze the progress in 
research concerning the combination of CAR-T cells with 
various treatments for hematologic malignancies. This 
encompasses an exploration of the fundamental princi-
ples and clinical applications of CAR-T cell therapy, along 
with detailed discussions on combinations involving 

Introduction
The principle of chimeric antigen receptor (CAR) T-cell 
therapy is to genetically modify T cells to recognize spe-
cific unique targets on tumor surfaces and exert cytotoxic 
effects [1–3]. CAR-T cell therapy has been highly suc-
cessful in treating various hematologic malignancies and 
solid tumors [4–7]. The complete remission rate (CRR) in 
diffuse large B-cell lymphoma (DLBCL) is 43%, while in 
follicular lymphoma, it stands at an impressive 71% with 
sustained remissions [8]. Studies on Idecabtagene vicleu-
cel for multiple myeloma (MM) involving 128 patients 
showed a 73% objective response rate(ORR), with 
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Abstract
Chimeric antigen receptor-T cell therapy, a groundbreaking cancer treatment, has achieved remarkable success 
against hematologic malignancies. However, CAR-T monotherapy faces challenges in certain cases, including 
treatment tolerance and relapse rates. To overcome these challenges, researchers are investigating combining 
CAR-T cells with other treatments to enhance therapeutic efficacy. Therefore, this review aims to investigate 
the progress of research in combining CAR-T cells for hematologic malignancies. It covers the basic principles 
and clinical applications of CAR-T cell therapy, detailing combinations with chemotherapy, immune checkpoint 
inhibitors, targeted drugs, radiotherapy, hematopoietic stem cell transplantation, and other treatments. These 
combinations synergistically enhance the antitumor effects of CAR-T cells and comprehensively target tumors 
through different mechanisms, improving patient response and survival rates.
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chemotherapy, immune checkpoint inhibitors, targeted 
drugs, radiotherapy, hematopoietic stem cell transplanta-
tion (HSCT), and other therapeutic modalities.

CAR-T resistance and relapse
Despite CAR-T therapy demonstrating significant effi-
cacy in some patients, it faces challenges such as tumor 
relapse and drug resistance in certain individuals [15–
17]. Relapse rates range from 10 to 30% in B-ALL [18] 
and can reach 50% in DLBCL [19]. Factors contributing 
to this include antigen escape, CAR-T cell exhaustion, 
and an immune-suppressive microenvironment (Fig. 1).

Antigen escape
During CAR-T cell therapy, tumor cells evade CAR-T cell 
attacks through mechanisms such as acquired mutations 
[20], selective splicing [21, 22], and lineage switching 
[23–25], resulting in mutated or reduced surface antigen 
targets. Common surface targets, such as CD19, CD20, 
CD22, and B-cell maturation antigen (BCMA), among 
others, are susceptible to evasion [26–28]. Clinical anal-
ysis of relapsed samples has revealed genetic mutations 
in CD19, found in most resistant tumor cells, potentially 
causing protein truncation and subsequent loss of surface 
antigen [29]. Several studies indicate that patients with 
relapsed MM treated with BCMA CAR-T therapy exhibit 
decreased surface expression of BCMA on tumor cells 
[30–32]. This antigen escape phenomenon can shorten 
treatment duration and patient survival while complicat-
ing therapy. Consequently, novel treatment strategies are 
needed to address these challenges effectively.

CAR-T cell exhaustion
CAR-T cell exhaustion results in reduced CAR-T cell 
cytotoxicity, characterized by increased expression of 
inhibitory receptors, such as programmed cell death pro-
tein-1 (PD-1), lymphocyte activation gene-3 (LAG-3), T 
cell immunoglobulin and mucin domain-containing pro-
tein-3 (TIM-3), and cytotoxic T lymphocyte antigen-4 
(CTLA-4), on CAR-T cell surfaces [33–38]. In treating 
chronic lymphocytic leukemia (CLL) with CD19 CAR-T 
cells, while some patients exhibit favorable responses, 
most do not benefit significantly from CAR-T therapy. 
Transcriptomic sequencing reveals that T cells in non-
responsive patients upregulate programs associated with 
effector differentiation, glycolysis, exhaustion, and apop-
tosis [39]. This exhaustion significantly affects CAR-T cell 
functionality, suggesting that reducing exhaustion could 
enhance therapeutic efficacy. Research should aim to 
mitigate exhaustion to improve treatment outcomes.

Immunosuppressive microenvironment
The tumor microenvironment is where CAR-T cells 
exert their effects. It contains numerous immunosup-
pressive cells (such as tumor-associated macrophages 
(TAMS), regulatory T cells (Tregs), and myeloid sup-
pressor cells), suppressor cytokines (such as TGF-β and 
IL-10), and an extracellular matrix [40]. These elements 
inhibit immune-activated cells through different mecha-
nisms, weakening CAR-T cell function and limiting their 
infiltration [41, 42]. Studying the influence of the immu-
nosuppressive microenvironment on CAR-T therapy and 
developing strategies to counter these effects are crucial 

Fig. 1 Mechanisms of CAR-T cell resistance and relapse. (A) Antigen Escape: Tumor cell surface antigens escape, preventing effective recognition and 
destruction. (B) CAR-T Cell Exhaustion: Increased expression of inhibitory receptors (PD-1, TIM-3, LAG-3, CTLA-4) on CAR-T cells leads to exhaustion and 
reduced anti-tumor function. (C) Immunosuppressive Microenvironment: The tumor microenvironment contains immunosuppressive cells (TAMS, Tregs, 
myeloid-derived suppressor cells), cytokines (TGF-β, IL-10), and the extracellular matrix. These components inhibit immune cells, weaken CAR-T cell func-
tion, and limit infiltration. Tumor cells also consume oxygen and glucose, causing nutrient deprivation and hypoxia, further reducing CAR-T cell activity
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for enhancing CAR-T treatment efficacy in hematologic 
malignancies.

Researchers are actively exploring new approaches 
to address these challenges [43]. One such approach 
involves combining CAR-T cell therapy with other drugs, 
leveraging the strengths of various treatment modalities. 
Through this combined approach, the efficacy of CAR-T 
cells can be preserved and compensate for the limitations 
of CAR-T monotherapy, extending the survival of the 
patients. This comprehensive therapeutic strategy offers 
more holistic and effective treatment options, enhanc-
ing hope and opportunities in cancer treatment. Tables 1 
and 2 present details on preclinical research and clinical 
studies.

Combined therapeutic approaches
Bruton tyrosine kinase inhibitors
Bruton’s tyrosine kinase (BTK) is a pivotal tyrosine kinase 
in the B-cell signaling pathway, regulating B-cell devel-
opment, maturation, and function. BTK inhibitors are 
categorized as covalent [62, 63] and noncovalent. Cova-
lent inhibitors, such as ibrutinib [64], zanubrutinib [65, 
66], and acalabrutinib, [67] irreversibly inhibit the BTK 
enzyme. Conversely, noncovalent inhibitors, such as 
pirtobrutinib, reversibly inhibit the BTK enzyme [68, 
69]. These inhibitors disrupt the B-cell signaling path-
way, suppressing B-cell activation, proliferation, and 
differentiation, thereby affecting disease progression 
therapeutically. When combined with CAR-T therapy, 
BTK inhibitors enhance the efficacy of CAR-T therapy 
against malignant tumors by modulating T cell function 
and remodeling the tumor immune microenvironment.

Preclinical studies show that BTK inhibitors can 
enhance CAR-T cell expansion [70], reduce CD19 CAR-T 

cell depletion, prolong in vivo persistence, increase 
CD4 + and CD8 + effector memory T cells [71], promote 
T cell differentiation toward Th1 cells [72], decrease 
immunosuppressive cell populations in patients [73], 
and enhance cytotoxicity [74]. This effect is primarily 
achieved by inhibiting CD3ζ phosphorylation of CAR 
and downregulating genes related to the T-cell activation 
pathway [75], demonstrating a synergistic effect when co-
administered. BTK inhibitors enhance CAR-T cell func-
tion, which is crucial for treating CLL. In in vivo animal 
models, combining CD19 CAR-T with ibrutinib achieves 
80 ~ 100% long-term disease control. Adding ibrutinib to 
CAR-T cell-target cell co-cultures significantly reduces 
exhaustion marker expression, such as PD-1, TIM-3, 
LAG-3, and CTLA-4 [76], indicating CAR-T cell exhaus-
tion reduction is key in enhancing anti-tumor efficacy in 
combination therapy.

Clinical studies demonstrate that administering BTK 
inhibitors before or concurrently with CAR-T infu-
sion enhances clinical efficacy. Pre-treatment with BTK 
inhibitors reduces tumor size, decreases burden, and 
maintains a healthy immune microenvironment. Using 
CAR-T and BTK inhibitors concurrently suppresses in 
vivo CAR-T cell exhaustion, alleviates dysfunction, and 
improves expansion capacity [77]. Single-cell sequenc-
ing of 15 patients with mantle cell lymphoma (MCL) 
receiving combined BTK inhibitor and CAR-T therapy 
revealed the importance of the HSP90-MYC-CDK9 axis 
in this treatment strategy [78]. Further research could 
investigate the functional characterization of this axis 
and its effect on treatment responses. In a single-center 
study, clinical efficacy was evaluated by combining BTK 
inhibitors with CAR-T cells. Nineteen patients who had 
received ibrutinib treatment for over 6 months without 

Table 1 Preclinical research on CAR-T combination therapy
Target Combination 

therapy
Type of 
disease

Time Mechanism Refs

CD19 PI3K inhibitors CLL 2022 i. Inhibit PI3K-mediated cell apoptosis by blocking Fas signal transduction.
ii. Suppress cellular exhaustion.
iii .Increasing the expression of mitochondrial fusion protein MFN2.

 [44]

CD19 venetoclax R/R NHL 2022 Enhance CAR-T cell cytotoxicity.  [45]
BCMA GSI MM 2019 Inhibit BCMA degradation.  [46]
CS1 lenalidomide MM 2018 i.Increase the proportion of CD8 + CAR-T cells and decrease the proportion of CD4 + CAR-T 

cells.
ii.Promote Th1 cytokine expression in CAR-T cells and inhibit Th2 cytokines.
iii.Lenalidomide improves the formation of immune synapses between CAR-T cells and 
tumor cells, enhancing cytotoxicity against tumor cells.

 [47]

CD19 lenalidomide DLBCL 2023 i.Polarize CD8 + CAR-T cells into CD8 + central memory cells and Th1 type.
ii.Delay CAR-T exhaustion.
iii.Promote CAR-T cell expansion.

 [48]

BCMA lenalidomide MM 2019 i.Alter Th1 cell response, T cell activation, cytokine production, cell cycle control, and cyto-
skeletal remodeling-associated pathways.
ii.In murine models, increased the number of circulating CAR-T cells in the bloodstream.

 [49]

PI3K: Phosphatidylinositol 3-Kinase; CLL: chronic lymphocytic leukemia; R/R NHL: Relapsed/Refractory non-Hodgkin lymphoma; BCMA: B-cell maturation antigen; 
GSI: γ-secretase inhibitors; MM: multiple myeloma; DLBCL: diffuse large B-cell lymphoma
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achieving CR underwent CD19 CAR-T therapy. The 
3-month CRR was 44%, with 15 patients showing no 
detectable minimal residual disease (MRD) at 6 months. 
The overall survival rate at 48 months reached 84%, and 
the progression-free survival rate (PFS) was 70%. Thir-
teen patients maintained CR at the follow-up endpoint. 
Regarding safety, grade ≥ 3 cytokine release syndrome 

(CRS) occurred in 20% of cases, while immune effec-
tor cell-associated neurotoxicity syndrome (ICANS) 
occurred in 26% [50]. These findings confirm the syner-
gistic effect between CAR-T and BTK inhibitors, offering 
a novel treatment option with high and sustained remis-
sion rates. When CAR-T is administered concurrently 
with ibrutinib, CRS severity decreases, while ICANS 

Table 2 Clinical research on CAR-T combination therapy
Target Combination 

therapy
Disea-se Authors Time Outcome Adverse events Clinical trials

CD19 ibrutinib CLL Saar Gill et 
al. [50]

2022 3monthsCR:44%;
48monthsOS:84%;
PFS:70%

≥ 3gradeCRS:20%;
ICANS:26%

NCT02640209

CD19 ibrutinib CLL Jordan 
Gauthier et 
al. [51]

2020 Con-ibr cohort vs. No-ibr 
cohort:1 year PFS :38% and 
50% (P = 0.91)

CRS: Con-ibr cohort 
< No-ibr cohort

NCT01865617

CD19 lenalidomide DLBCL Nana Ping 
at al [52]

2021 C + Len cohort vs. C + cohort: 1 
year OS: 100% vs. 33.3%; ORR 
85.7% vs. 77.8% CR 42.9% vs. 
33.3%

≥ 3gradeCRS: 43.8%; NA

CD19 nivolumab NHL Yaqing Cao 
et al. [53]

2019 ORR:81.81%;
CR:45.45%;
PFS:6 months

1grade CRS:25%;
2gradeCRS:50%;
ICANS:9%

NA

CD19/CD22 PD-1 inhibitor R/R NHL Xiangke Xin 
et al. [54]

2024 In CD19/CD22 CAR-Tcohort 
with PD-1 inhibitors vs. 
CAR-Talone:
ORR :82.9% vs. 60% ;
2 year PFS:59.8% vs. 21.3%

≥ 3 grade CRS:13.8%, 
ICANS:6.2%

ChiCTR-OPN 
− 16,008,526 
ChiCTR-
OPN-16,009,847

CD19 Radiation 
therapy

R/R NHL TagedPOm-
ran Saifi et 
al [55]

2022 LC: bRT vs. sRT:84%vs.62% NA NA

CD19 Radiation 
therapy

DLBCL Austin J. 
Sim et al.
 [56]

2019 ORR:81.8%;
CR:45%

≥ 3 grade CRS and 
ICANS:27%

NA

BCMA Radiation 
therapy

R/R MM Shwetha H. 
Manjunath 
et al. [57]

2021 Group A(receive no RT < 1 
year)vs. Group B(receive RT < 1 
year)vs .Group C(receive 
bridging-RT):
PR or better:
54%vs.38%vs.50%

GroupA vs. Group B 
vs. GroupC:
G4 hematologic toxi
cities:61.5%vs.62.5%
vs.25%;
G3–4 neurotoxicity:
7.7%vs.25%vs.25%;
G3-4CRS:
38.5%vs.25%vs.25%

NCT02546167

CD19/CD22 ASCT BCL Yang Cao et 
al. [58]

2021 ORR:90.5%;
2yearPFS:83.3%

≥ 3 grade CRS: 
3.8%;ICANS:21%;
≥ 3 grade ICANS:5%

NA

CD19/CD22 ASCT DHL Jia Wei et al. 
[59]

2020 A cohort(CAR-T alone)
ORR:75%;
B cohort (CAR-T and ASCT)
ORR:100%

NA ChiCTR-
OPN-16,008,526 
ChiCTR-OPN- 
16,009,847

CD19/CD20/CD22 ASCT R/R CNSL Fei Xue et 
al. [60]

2022 CAR-T alone ORR:44.4%;CAR-T 
and ASCT ORR:100%

≥ 3 grade CRS: 41%;
≥ 3 grade ICANS: 29%

NA

CD19/CD20 ASCT R/R 
NHL(TP53 
gene 
alteration)

Jia Wei et al. 
[61]

2022 CAR-Talone vs. CAR-T and 
ASCT: ORR:87.1% vs. 92.9% ;
CRR: 45.2% vs. 82.1% ;
24-month OS : 56.3% vs. 89.3%

CRS:90.9%vs.94.7%
ICANS:9.1%vs.19.3%

ChiCTR-
OPN-16,008,526

CLL: chronic lymphocytic leukemia; CR: complete remission; OS: overall survival; PFS: progression-free survival rate; CRS: cytokine release syndrome; ICANS: 
immune effector cell-associated neurotoxicity syndrome; DLBCL: diffuse large B-cell lymphoma; ORR: overall response rate; NHL: non-Hodgkin lymphoma; PD-1: 
programmed cell death protein-1; bRT: bridging radiation therapy; sRT: salvage radiation therapy; R/R MM: Relapsed/Refractory multiple myeloma; RT: radiation 
therapy; ASCT: Autologous Stem Cell Transplantation; DHL: double-hit lymphoma; R/R CNSL: relapsed/refractory central nervous system lymphoma
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occurrence remains comparable. Data indicate reduced 
cytokine release, including MCP-1 and IL-2a, among 
others, with IL-6 levels showing no significant differ-
ence from the CAR-T alone group. The 1-year PFS prob-
abilities after CD19 CAR T-cell therapy, with or without 
concurrent ibrutinib, were 38% and 50%, respectively, but 
this difference was not statistically significant [51]. This 
study discovered that combining CD19 CAR T-cell ther-
apy and ibrutinib is well-tolerated and yields lasting ther-
apeutic effects in patients with relapsed/refractory CLL. 
Patients undergoing concurrent ibrutinib treatment have 
milder CRS severity and reduced serum cytokine con-
centrations during treatment. Moreover, no significant 
difference in PFS is observed compared to those solely on 
CD19 CAR T-cell therapy.

Phosphatidylinositol 3-kinase inhibitors
The phosphatidylinositol 3-kinase (PI3K)-Akt-mTOR-
c-myc signaling pathway is crucial in cancer and meta-
bolic diseases due to its involvement in numerous 
protein-protein interactions and molecular crosstalk in B 
and T cells [79]. Studies show that adding PI3K inhibi-
tors (PI3Ki), such as idelalisib (selective for PI3Kδ) [80] 
or duvelisib (a dual inhibitor of PI3Kδ and PI3Kγ), to in 
vitro cell experiments increases T cell numbers with-
out hindering proliferation. Speculation suggests that 
PI3K inhibitors prevent PI3K-mediated cell apoptosis 
by blocking Fas signaling, thus inhibiting cell exhaustion 
[44]. During subsequent CAR-T cell manufacturing pro-
cesses, incorporating duvelisib to create Duv-CART cells 
(CAR-T cells manufactured with duvelisib) resulted in a 
significant increase in CD8 + CAR-T cell number, accom-
panied by enhanced cytotoxicity. Bioinformatics analysis 
indicates that Duv-CART cells undergo epigenetic repro-
gramming toward stem cell-like properties. This includes 
upregulation of the mitochondrial fusion protein MFN2, 
along with increased expression of SIRT1 and TCF1/7. 
These changes enhance the efficacy of CAR-T cells 
against CLL both in vitro and in vivo [44]. Additionally, 
inhibiting PI3K increases stem cell central memory T 
cells (Tscm) and central memory T lymphocytes (Tcm) 
cell numbers, promoting cytotoxicity [44]. These findings 
underscore the crucial role of the PI3K signaling path-
way in immune cell function and tumor immunity, pro-
viding valuable insights for new cancer immunotherapy 
strategies.

B cell lymphoma-2 antagonists
B cell lymphoma-2 (BCL-2), a key regulator of apopto-
sis, belongs to the BCL-2 protein family [81], compris-
ing two subtypes: BCL-2α and BCL-2β. The difference 
lies in BCL-2β lacking the transmembrane domain. 
This protein exerts strong antiapoptotic effects and is 
often overexpressed in various tumor cells, contributing 

significantly to cancer resistance and insensitivity [82]. 
Elevated BCL-2 levels promote cancer cell survival and 
growth, correlating with disease progression, metastasis, 
and adverse clinical outcomes across several malignan-
cies [83–86], including acute myeloid leukemia (AML) 
and B-cell non-Hodgkin lymphoma (B-NHL). Studies 
indicate that BCL-2 overexpression can induce resistance 
to tyrosine kinase inhibitors in chronic myeloid leukemia 
(CML) [84]. Inhibiting BCL-2 activity or reducing BCL-2 
protein levels can effectively promote apoptosis in malig-
nant tumor cells and increase sensitivity to radiotherapy 
and chemotherapy [87]. Venetoclax, a BCL-2 antagonist, 
induces apoptosis in cancer cells overexpressing BCL-2 
and is approved for patients contraindicated for front-
line treatment with kinase inhibitors [88, 89]. Com-
bining BCL-2 inhibitors with CAR-T cells is crucial for 
enhancing therapeutic efficacy against malignant tumors, 
warranting further exploration of their mechanisms of 
action.

Researchers investigated the effect of BCL-2 inhibitors 
on CAR-T cell immunotherapy in leukemia and lym-
phoma mouse models. They revealed, through targeted 
proapoptotic small molecule screening, that CAR-T cells 
alone achieved a killing rate of 47~63%, which increased 
to 75 ~ 88% when combined with BCL-2 inhibitors. This 
study showed that BCL-2 inhibitors enhance CAR-T cell 
cytotoxicity by enhancing Caspase-3/7 cleavage. How-
ever, higher doses and longer exposure times of vene-
toclax showed toxicity to CAR-T cells, reducing CD19 
CAR-T cell numbers and inducing CAR-T cell apopto-
sis in the combination therapy compared to the CAR-T 
alone group. To address this, a venetoclax-resistant 
CAR-T cell was designed, targeting a specific point muta-
tion at amino acid residue (Phe104Leu or F104L). In the 
MINO xenograft model, combining venetoclax with 
CART19-BCL-2 (F104L) achieved a 100% [45] survival 
rate with a cut-off of approximately 90 days. These find-
ings underscore the potential of pairing BCL-2 inhibi-
tors with CAR-T cell therapy and suggest strategies to 
mitigate venetoclax toxicity, offering valuable insights for 
optimizing CAR-T cell therapy further.

γ-secretase inhibitors
The BCMA on MM cell surfaces is activated by ligands 
BAFF and APRIL [90–92]. BCMA expression is regulated 
by γ-secretase (GS), which cleaves BCMA to release sol-
uble BCMA (sBCMA), neutralizes APRIL, and inhibits 
BCMA-mediated NF-κB pathway activation. This pro-
cess reduces target antigen density, affecting the targeted 
killing ability of CAR-T cells [93, 94]. Studies using in 
vitro cell experiments and MM NOD/SCID mouse mod-
els showed that γ-secretase inhibitors (GSI, LY3039478) 
dose-dependently prevent BCMA cleavage, increas-
ing BCMA surface expression levels on MM cells. This 
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enhancement improves the ability of CAR-T cells to rec-
ognize tumors [46].

Based on preclinical data, a clinical study was con-
ducted by combining BCMA CAR-T with the γ-secretase 
inhibitor crenigacestat (LY3039478) for treating relapsed/
refractory MM. The results showed that crenigacestat 
increased target antigen density and was well-tolerated 
[95]. γ-Secretase inhibitors enhance anti-BCMA CAR-T 
efficacy by preventing BCMA shedding from multiple 
myeloma cells.

Immunomodulatory drugs
The immunomodulator lenalidomide effectively combats 
hematological malignancies. Studies show that lenalido-
mide enhances the efficacy of CS1 CAR T cells [47] or 
BCMA CAR-T cells [49] in killing MM cells in vivo and 
in vitro when combined with CAR T cells. This effect is 
specifically illustrated as follows: (i) CD8 + CAR T cell 
subsets increased dose-dependently, while CD4 + CAR T 
cell subsets decreased [47]; (ii) After lenalidomide treat-
ment on CAR T cells, autocrine cytokine IL-2 levels, 
which mainly determines CAR T cell efficacy and persis-
tence, increased, and immunosuppressive Th2 cytokine 
levels (IL-4, IL-5, and IL-10) decreased [47]; (iii) Increas-
ing CAR-T cell numbers [49]; (iv) Lenalidomide enhances 
immune synapse formation between CAR-T cells and 
tumors, increasing CAR-T cell lytic activity against 
tumors [47]. From these findings, the combination of 
lenalidomide and CAR-T cell therapy directly inhibits 
tumor-initiating cells and enhances the anti-tumor activ-
ity of CAR-T cells. Another study demonstrated that 
lenalidomide enhances the anti-tumor capacity of CAR-T 
cells by promoting CD8 + CAR-T cell differentiation into 
CD8 + central memory T cells and helper T cells [48], 
modulating the tumor microenvironment for enhanced 
CAR-T cell infiltration and delaying CAR-T cell deple-
tion. Preclinical studies demonstrated that lenalidomide 
enhances the targeted-killing ability of CAR-T cells 
through various mechanisms, providing a solid founda-
tion for further clinical trials.

A case report using piggyBac-generated CD19 CAR-T 
cells combined with lenalidomide to treat relapsed/
refractory triple-hit DLBCL showed CR just 2 months 
after CAR-T cell infusion. Subsequently, they received 
lenalidomide maintenance therapy in the 4th month, 
maintaining CR for over 2 years [96]. Combining 
lenalidomide significantly extends the CR time. A study 
compared CAR-T therapy alone in nine patients with 
relapsed/refractory DLBCL to seven patients treated 
with lenalidomide maintenance therapy post-CAR-T 
therapy. The lenalidomide maintenance therapy group 
showed significantly higher survival and overall remis-
sion rates than the CAR-T therapy alone group (1-year 
overall survival (OS) rate 100% vs. 33.3%, ORR 85.7% vs. 

77.8%, CR 42.9% vs. 33.3%). Additionally, a patient who 
initially responded briefly to CAR-T treatment but later 
relapsed achieved CR after lenalidomide therapy. PCR 
analysis was used to detect an increase in the CAR-T 
cell count [52], suggesting that lenalidomide can reverse 
CAR-T decline. Combining lenalidomide with CAR-T 
in therapy has demonstrated safe and effective clinical 
effects, benefiting several patients with tumors.

Immune checkpoint inhibitors
T cells primarily harbor immune checkpoint mole-
cules such as PD-1, CTLA-4, LAG-3, and TIM-3. These 
immune inhibitory molecules are crucial for prevent-
ing damage to normal tissues but can lead to T-cell dys-
function, allowing tumor cells to evade immune system 
attacks, a primary factor in immune tolerance [97, 98]. 
PD-1, expressed on various immune cells such as acti-
vated T cells, NK cells, B lymphocytes, macrophages, 
dendritic cells, and monocytes, is a widely studied 
checkpoint molecule [37]. Its ligands, PD-L1/PD-L2, are 
predominantly overexpressed on tumor cell surfaces. 
When bound, they inhibit pathways such as PI3K/pro-
tein kinase B (Akt) and RAS/MEK/ERK, block protein 
kinase C-theta) function and glycolysis, and impede 
ZAP70 phosphatidylinositol signaling [99]. This inhibi-
tion compromises T cell function, allowing tumor cells to 
evade T cell attacks and promoting tumor growth. There-
fore, immune checkpoint inhibitors are commonly used 
in clinical practice to block inhibitory receptor-ligand 
interactions, effectively treating hematological malig-
nancies. Combining CAR-T cell therapy with checkpoint 
inhibitors offers a strategy to enhance the survival rate of 
patients with cancer.

Combining CAR-T with PD-1/PD-L1 inhibitors
Cao et al. conducted a single-center study involving 11 
patients with relapsed/refractory B-NHL who underwent 
CD19 CAR-T therapy combined with the PD-1 anti-
body nivolumab. The results confirmed the efficacy and 
safety of this combination, showing an overall remission 
rate of 81.81%, CRR of 45.45%, median PFS of 6 months, 
75% incidence of grade 1–2 CRS, and 9% incidence of 
ICANS [53]. This combination demonstrates potent 
antitumor activity. Clinical data demonstrate that PD-1 
blockade significantly enhances the anti-tumor effect. 
Co-expression of PD-1 and Eomes decreases on CAR-T 
cells, enhancing CAR-T cell expansion. This approach 
proves effective for patients with malignant tumors with 
limited CAR-T therapy response [100]. Another study 
retrospectively analyzed 154 patients who underwent 
CD19/CD22 CAR-T cell therapy with or without Autolo-
gous Stem Cell Transplantation (ASCT). It assessed the 
PD-1 inhibitor used for subsequent maintenance therapy. 
The results showed that patients receiving CD19/CD22 
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CAR-T therapy followed by PD-1 inhibitor maintenance 
had a higher ORR of 82.9% and a 2-year PFS rate of 59.8% 
than those not receiving PD-1 inhibitors (with an ORR of 
60% and 2-year PFS rate of 21.3%). Among patients who 
underwent ASCT before CD19/CD22 CAR-T therapy, no 
significant statistical difference in ORR and 2-year PFS 
was observed between the two groups [54]. This suggests 
that PD-1 inhibitors post CD19/CD22 CAR-T therapy 
may benefit non-ACST patients. However, the efficacy 
of PD-1 inhibitors in patients with ASCT could be influ-
enced by other factors, such as the ACST efficacy.

The timing of PD-1/PD-L1 inhibitor therapy affects 
CD19 CAR-T cell immunotherapy efficacy. Patients 
receiving durvalumab before CAR-T cell infusion show 
worse outcomes despite delayed and shorter CRS. Con-
versely, durvalumab maintenance post-CAR-T infu-
sion enhances re-expansion, CAR-T cell numbers in the 
blood, and tumor cell killing [101]. Studies confirm the 
reliability of PD-L1 inhibitors combination therapy in 
terms of safety and efficacy. The combination therapy 
shows a 67% duration of response (DOR), exceeding the 

20% DOR observed in patients receiving CAR-T therapy 
alone. The reduced efficacy observed with durvalumab 
before CAR-T therapy may be due to the early increase in 
soluble PD-L1 (sPD-L1) levels, which dose-dependently 
inhibit CAR-T cell effector function [102–104]. Clini-
cally, careful timing of PD-1/PD-L1 inhibitor therapy is 
crucial for effective intratumoral lesion targeting.

Interfering with the PD-1 gene in CAR-T cells
CRISPR/Cas9 gene-editing technology can precisely 
interfere with the PD-1 gene by designing specific 
gRNAs to target the Cas9 protein targeted to the PD-1 
gene. This induces mutations, insertions, or deletions in 
the genome, disrupting the function of PD-1 [105–107]. 
Alternative gene editing methods, such as Transcrip-
tion Activator-Like Effector Nucleases and Zinc Finger 
Nucleases [108], can also be used to cleave and edit the 
PD-1 gene. RNA molecules such as small interfering 
RNA [109] and short hairpin RNA [110, 111] are used 
to inhibit gene expression by targeting PD-1 mRNA, 

Fig. 2 Combination Therapies with CAR-T Cells. ①Combining CAR-T cells with BTK inhibitors inhibits BTK in the B-cell signaling pathway, reducing ma-
lignant B-cell proliferation. ②Combining CAR-T cells with PI3K inhibitors interferes with tumor cell growth and survival by inhibiting the PI3K signaling 
pathway. ③Combining CAR-T cells with BCL-2 inhibitors promotes tumor cell apoptosis by inhibiting the BCL-2 protein. ④Combining CAR-T cells with GSI 
prevents the shedding of BCMA from the surface of tumor cells by inhibiting γ-secretase. ⑤Combining CAR-T cells with Lenalidomide recruits the E3 ubiq-
uitin ligase CRL4CRBN, inducing the degradation of IKZF1 and IKZF3. ⑥Combining CAR-T cells with PD-1/PD-L1 inhibitors blocks the PD-1/PD-L1 signaling 
pathway to counteract the tumor cells’ immune evasion mechanism. ⑦Combining CAR-T cells with Radiotherapy directly kills tumor cells, enhancing the 
effectiveness of CAR-T therapy. ⑧Combining CAR-T cells with Hematopoietic Stem Cell Transplantation rebuilds the patient’s immune system to support 
the sustained anti-tumor activity of CAR-T cells.
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reducing PD-1 protein levels, and swiftly inhibiting PD-1 
function, although not directly editing genes.

Constructing CAR-T cells secreting PD-1-blocking scFv
CAR-T cells modified with PD-1-blocking scFv were used 
in xenograft mouse models featuring PD-L1+ expression 
in hematological malignancies or solid tumors [112]. This 
modification increases cytotoxicity, promotes cytokine 
secretion, and enhances in vivo antitumor effects com-
pared to unmodified CAR-expressing [113–115]. How-
ever, a significant limitation is that this PD-1 blockade 
targets only CAR-T cells, leaving PD-1 on T lymphocytes 
in patients still immunosuppressive.

Radiation therapy
Radiation therapy (RT) is effective for treating localized 
lesions in the hematologic system, including lymphoma 
and MM [116]. Combining CAR-T therapy with RT is a 
complex process but promises a treatment strategy [117, 
118]. Radiotherapy induces immunostimulatory genes in 
lymphoma cells, enhancing signals for CAR-T cell acti-
vation and proliferation (CD70, OX40L) [119]. Gupta et 
al. noted that low-dose radiation (0.5–2.0 Gy) increased 
CD20 expression on Burkitt’s lymphoma cell lines (Raji 
and Daudi) with low CD20 expression [120]. This ele-
vated CD20 expression potentially enhances CAR-T 
treatment efficacy by providing more targets for subse-
quent CAR-T cells.

Before CD19 CAR-T (Axicabtagene ciloleucel) therapy 
for DLBCL, using RT as a bridging treatment showed 
manageable toxicity. 83% of patients had reduced lym-
phocyte counts, leading to an ORR of 81.8%. The CRR 
was 45%, indicating the safety and efficacy of using RT 
as a bridging treatment [56]. In a retrospective analysis 
of 83 cases involving relapsed/refractory B-NHL patients 
who received RT and CAR-T therapy, researchers found 
that 35 patients underwent bridging RT (bRT) before 
CAR-T infusion, while 48 underwent salvage RT (sRT) 
post-CAR-T infusion. The bRT group demonstrated an 
84% local control rate, significantly higher than the 62% 
observed in the sRT group during efficacy assessment. 
Additionally, the bRT group had a significantly higher 
remission rate than the sRT group [55]. This suggests a 
relationship between bRT and the local control rate in 
patients, while sRT offers salvage options for patients 
who relapse post-CAR-T infusion. DeSelm et al. docu-
mented a case involving a relapsed/refractory DLBCL 
patient with tumor infiltration into the skin of the right 
lower leg who underwent CD19 CAR-T cell therapy 
after local radiotherapy as scheduled. The patient had 
positive PET-CT results 1 month post-treatment, no 
toxicity at the irradiated site, and grade 1 CRS without 
neurotoxicity. At the one-year follow-up, the irradiated 
area showed no disease progression, while other areas 

exhibited varying degrees of recurrence or progression 
[121]. In a clinical trial assessing bridging radiotherapy 
before BCMA CAR-T therapy, radiotherapy was deemed 
safe and viable as a bridging treatment, demonstrating 
lower hematological toxicity than the no-radiation group 
[57]. RT can enhance CAR-T cell recognition by damag-
ing the DNA structure of tumor cells, controlling local 
tumor growth, and reducing tumor burden. Furthermore, 
RT may reduce immune escape mechanisms in the tumor 
microenvironment, such as immune inhibitory factor 
expression, potentially inducing tumor cell apoptosis 
and releasing tumor-associated antigens to enhance the 
immune system response. This strengthens the antitumor 
efficacy of CAR-T cells. Therefore, selecting the appro-
priate timing for radiation therapy is crucial in clinical 
practice.

Hematopoietic stem cell transplantation
Hematologic malignancies can achieve long-term remis-
sion or even potential cure through HSCT [122–127]. A 
recent study shows the efficacy of sequential CAR-T cell 
therapy post-HSCT. In a study of 42 patients undergoing 
sequential transplantation, the ORR reached 90.5%, with 
a 2-year PFS rate of 83.3%. Grade ≤ 3 CRS was observed 
in 4.8% of cases, while 21% experienced ICANS and 5% 
experienced severe grade 3 neurotoxicity [58]. Adverse 
reactions were reversible, indicating a high remission rate 
with a good safety profile. Additionally, researchers com-
pared CAR-T therapy alone (Group A, eight patients) to 
sequential CAR-T therapy following ASCT (Group B, six 
patients, including two patients transitioning from Group 
A). The overall ORR at 3 months was 83.3%, with Group 
A having an ORR of 75% and Group B at 100% [59]. This 
study focused on relapsed/refractory double-hit lym-
phoma, showing that combining CAR-T with ASCT sig-
nificantly increased survival, response rates, and duration 
of CAR-T persistence compared to CAR-T therapy alone 
while reducing adverse reactions and recurrence rates.

In patients with central nervous system lymphoma, 
combining ASCT with CAR-T cell therapy can enhance 
the prognosis of patients with relapsed/refractory cen-
tral nervous system lymphoma. Researchers analyzed 17 
such cases, with 9 receiving only CAR-T cell therapy and 
8 receiving ASCT combined with CAR-T cell therapy. 
The efficacy assessment revealed a CRR of 100% with 
CAR-T cell therapy combined with ASCT and 44.4% 
without ASCT. Compared to standalone CAR-T cell 
therapy, patients undergoing combined ASCT demon-
strated significantly extended PFS and OS. The incidence 
rates of grade ≥ 3 CRS and ICANS were 41% and 29%, 
respectively, with no treatment-related deaths reported 
[60], indicating manageable toxicity.

Patients with lymphoma that have TP53 mutations 
often have a worse prognosis, rendering enhancement of 
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the efficacy in this disease subtype a key focus of clinical 
research. Studies show that combining CD19/22 CAR-T 
cell therapy with ASCT is more effective for patients 
with TP53 gene mutations, enhancing CRR, PFS, and 
OS. Clinical data from 60 patients with TP53-mutations 
showed that the objective response rate (ORR) was 87.1% 
and 92.9%, while CRR was 45.2% and 82.1% in the CAR-T 
alone and CAR-T combined with ASCT groups, respec-
tively. The 24-month OS rates were 56.3% vs. 89.3% [61], 
indicating a significant improvement in patient outcomes 
with this combination therapy.

Combining CAR-T cell therapy with HSCT can be 
an effective and safe strategy for treating certain hema-
tologic malignancies, leading to enhanced treatment 
outcomes and prognosis for specific patient subgroups. 
While some patients may experience adverse reactions, 
they are typically manageable, indicating the good safety 
profile of the combination therapy. However, further 
clinical research is necessary to establish the optimal 
treatment approach for different types of tumors and 
individual patients.

With thorough research and continuous advancements 
in CAR-T technology, combining CAR-T with other 
treatments has expanded its applicability and increased 
treatment options for patients with cancer. Research on 
various combination therapy strategies in the evolving 
treatment landscape is bringing new hope for clinical 
practice and patient well-being (Fig. 2).

Conclusion
CAR-T cell therapy, an emerging cancer treatment 
modality, shows great promise in treating hematologic 
malignancies. However, some limitations, such as patient 
tolerance and post-treatment relapse, are associated with 
this strategy. To address these limitations, researchers are 
investigating combining CAR-T cell therapy with other 
treatment modalities to enhance therapeutic efficacy 
and reduce side effects. Several studies on combination 
therapies have significantly advanced clinical effective-
ness and reduced relapse rates in patients with relapsed/
refractory. Detailed insights into combining CAR-T cells 
with chemotherapy, immune checkpoint inhibitors, tar-
geted drugs, radiotherapy, HSCT, and other treatments 
are provided in this study. These combination thera-
pies enhance the anti-tumor effects of CAR-T cells and 
comprehensively target tumors through diverse mecha-
nisms, improving patient response and survival rates. 
This offers novel insights and strategies for enhancing 
the clinical application of CAR-T cell therapy. Compara-
tive reports on the safety and tolerability of different 
combination therapies are lacking, which is a potential 
starting point for future research to identify the most 
suitable combination therapy. Furthermore, optimizing 
protocols for CAR-T combination therapy is necessary 

to accommodate the diverse needs of patients, including 
timing, dosages, and post-treatment care. Further clinical 
studies are needed to validate the safety and efficacy of 
these combination treatment strategies. With continuous 
advancements in science, technology, and clinical experi-
ence, CAR-T cell combination therapy is expected to play 
an increasingly vital role in the future, improving treat-
ment outcomes and survival prospects for patients with 
hematologic malignancies.
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