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Abstract
Background Retained surgical items (RSI) are preventable events that pose a significant risk to patient safety. Current 
strategies for preventing RSIs rely heavily on manual instrument counting methods, which are prone to human error. 
This study evaluates the feasibility and performance of a deep learning-based computer vision model for automated 
surgical tool detection and counting.

Methods A novel dataset of 1,004 images containing 13,213 surgical tools across 11 categories was developed. 
The dataset was split into training, validation, and test sets at a 60:20:20 ratio. An artificial intelligence (AI) model 
was trained on the dataset, and the model’s performance was evaluated using standard object detection metrics, 
including precision and recall. To simulate a real-world surgical setting, model performance was also evaluated in a 
dynamic surgical video of instruments being moved in real-time.

Results The model demonstrated high precision (98.5%) and recall (99.9%) in distinguishing surgical tools from the 
background. It also exhibited excellent performance in differentiating between various surgical tools, with precision 
ranging from 94.0 to 100% and recall ranging from 97.1 to 100% across 11 tool categories. The model maintained 
strong performance on a subset of test images containing overlapping tools (precision range: 89.6–100%, and recall 
range 97.2–98.2%). In a real-time surgical video analysis, the model maintained a correct surgical tool count in all non-
transition frames, with a median inference speed of 40.4 frames per second (interquartile range: 4.9).

Conclusion This study demonstrates that using a deep learning-based computer vision model for automated 
surgical tool detection and counting is feasible. The model’s high precision and real-time inference capabilities 
highlight its potential to serve as an AI safeguard to potentially improve patient safety and reduce manual burden on 
surgical staff. Further validation in clinical settings is warranted.
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Background
Retained surgical items (RSIs) are surgical instruments 
or materials unintentionally left inside a patient’s body 
after surgery [1]. RSIs are considered “never events,” 
which are defined as serious, preventable incidents that 
should ideally never occur in healthcare settings [2]. 
Despite increased efforts to prevent RSIs, they remain a 
significant problem, with an estimated incidence of 1 in 
every 3800 surgeries [3]. The impact of RSIs on patients, 
healthcare providers, and the healthcare system is sub-
stantial, including physical and psychological harm to 
patients, emotional distress for surgeons, and increased 
healthcare costs [4]. 

Traditional programs for preventing RSIs center 
around manual counting of surgical items, commonly 
conducted by nursing staff [5, 6]. However, such pro-
grams often require specialized personnel training, and 
can increase surgical duration [7]. Furthermore, manual 
counting is subject to human error due to communica-
tion breakdowns, time pressure, competing demands, 
and environmental distractions [6, 8–10]. Current pro-
grams recognize the limitations of individual manual 
surgical counts and seek to use several layers of security 
to prevent RSIs [6]. Depending on institutional policies 
these can include the use of technologies such as radio-
frequency tags, [11] barcode labels, [12] and radiographic 
imaging [13]. 

Recent advancements in the artificial intelligence (AI) 
field of computer vision, which involves training comput-
ers to interpret and understand visual information, have 
shown promise in helping augment current RSI preven-
tion programs [14]. Prior works using AI techniques have 
largely focused on computer-aided detection of retained 
surgical items on medical imaging including the use of 
AI models to detect retained surgical needles, and other 
retained radiopaque tag labelled iatrogenic objects on 
X-ray [15–17]. Outside of AI in medical imaging, there is 
now an increasing focus on real-time object detection in 
surgical care. Deep-learning based object detection com-
puter vision algorithms have been applied to a wide range 
of domains in healthcare, such as the determination of 
whether individuals are wearing appropriate personal 
protective equipment [18] and the detection of surgical 
tools with modest accuracy in a proof-of-concept study 
[19]. 

Given recent improvements in performance and pro-
cessing efficiency of computer vision techniques, there 
may be potential to perform an automated surgical tool 
count in real-time from live-video. Accordingly, in this 
study, we sought to evaluate the feasibility and perfor-
mance of a computer vision model for automated surgi-
cal instrument detection and counting. By leveraging 
state-of-the-art object detection algorithms and train-
ing on a novel dataset of surgical instruments, we aim to 

develop a system that can accurately detect and track sur-
gical tools throughout a procedure, serving as a potential 
AI safeguard against RSIs.

Methods
Study Design and setting
We conducted an experimental proof-of-concept study to 
evaluate the feasibility and performance of a deep learn-
ing-based computer vision model for automated surgical 
tool detection and counting. The study was performed 
at the Department of Urology, Mayo Clinic, Rochester, 
Minnesota, USA, between January 2024 and May 2024.

Hypothesis
We hypothesized that a deep learning-based computer 
vision model could accurately detect and classify surgical 
instruments in real-time from a standard surgical table, 
potentially serving as an AI safeguard against RSIs.

Primary and secondary outcomes
The primary outcome was the model’s performance in 
detecting and classifying surgical tools, as measured by 
precision, recall, and mean average precision, standard 
measures to benchmark the performance of computer 
vision models. The secondary outcome was the model’s 
inference speed (frames processed per second) when 
applied to real-time surgical video, to assess its suitability 
for real-world surgical applications.

Dataset
Following Mayo Clinic Institutional review board 
approval, we developed a de novo dataset consisting of 
photos of various combinations of commonly used sur-
gical tools, including scalpels, surgical scissors, forceps, 
hemostats, needle drivers, surgical retractors, surgi-
cal skin markers, beakers, syringes, surgical gauzes, and 
basins. Each image contained several different types of 
instruments to simulate a real-world surgical tray setup. 
Each individual tool appeared in several different photos. 
Each image contained up to four each of scalpels, needle 
drivers, handheld retractors, forceps, hemostats, and 
surgical scissors, up to three each of syringes and basins, 
and two each of beakers and surgical pens, with a maxi-
mum of 34 tools per image. We also included variation in 
tools within categories to recreate the variability seen in 
real-world surgical settings. Images were captured from 
various angles to simulate the different views a com-
puter vision system might encounter during a real-world 
surgical procedure. These included an overtop view (90 
degrees from horizontal), 70 degrees above horizontal 
from front and side views, and 30 degrees above horizon-
tal from the front of the surgical tables. All images were 
taken on a blue surgical cloth background, and all objects 
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were of surgical grade to ensure the dataset accurately 
reflected a true surgical environment.

The full dataset comprised 1004 images, and a total of 
13,213 surgical tool instances, including: 1234 scalpel, 
814 surgical skin pen, 1304 surgical scissor, 1263 forcep, 
2030 hemostat, 1,324 needle driver, 1319 retractor, 676 
beaker, 1,187 syringe, 1499 surgical gauze, and 1088 basin 
instances. In order to evaluate model performance in 
realistic situations, a subset of 218 images were taken in 
a cluttered overlapping configuration. Figure 1 highlights 
examples of non-overlapping and overlapping surgical 
tool setups. Images were labeled with bounding boxes 
using the open source Computer Vision Annotation tool 
[20]. The data was split into training, validation, and test 
datasets at a 60:20:20 ratio.

Additionally, in order to test the model’s suitabil-
ity for real-time applications with dynamic instru-
ment exchange, we recorded video footage of various 
instruments being exchanged in a simulated surgical 
environment.

Inclusion and exclusion criteria
Images were included if they contained at least one of 
the 11 predefined surgical tool categories and were of 
sufficient quality for annotation. Images were excluded 
if they were poor quality, did not contain any surgical 
tools, or contained tools not belonging to the predefined 
categories.

Model Architecture and training
For our surgical tool detection model, we utilized the 
open-source You Only Look Once (YOLO) v9 architec-
ture [21]. YOLOv9 is the latest iteration of the YOLO 
family of object detection network released in Febru-
ary 2024 [21]. The model employs a Cross Stage Partial 
Darknet 53 backbone for feature extraction, coupled with 

a Path Aggregation Network neck for feature aggrega-
tion and refinement. The detection head utilizes anchor 
boxes and a decoupled design to independently handle 
object scoring, bounding box regression, and class label 
prediction. We trained the YOLOv9 architecture with 
25.5 million parameters on our novel surgical tool data-
set. The images were resized to a standard 640 × 640 
resolution, and bounding box annotations were normal-
ized to the Common Objects in Context dataset format 
[22]. Data augmentations such as panning, cropping, 
brightness adjustment, noise introduction, rotation, 
horizontal flipping, and cutout were randomly applied 
to training images to reduce overfitting and improve the 
model’s robustness. The training was performed on a sin-
gle NVIDIA V100 graphics processing unit.

Data analysis
To evaluate the model’s performance, we utilized stan-
dard object detection metrics including precision, recall, 
and mean average precision. In the context of our study, 
precision indicates the percentage of instances where the 
model correctly identifies a surgical tool as being pres-
ent on the table amongst all the surgical tool predictions 
it makes. Conversely, recall signifies the percentage of 
surgical tools present in the image that the model suc-
cessfully identifies as being present on the table. Overall 
precision and recall were determined for all surgical tools 
collectively, as well as for each individual surgical tool 
type. Mean average precision was calculated using a sin-
gle intersection over union threshold of 0.5 and multiple 
intersection over union thresholds ranging from 0.50 to 
0.95 in intervals of 0.05. To assess the model’s speed and 
suitability for real-time use during surgery, the model’s 
frame-by-frame processing time was measured while 
analyzing a video of surgical instruments being moved in 
and out of the field of view. This test was used to gauge if 

Fig. 1 Examples of unlabeled images in surgical tool dataset: A – Non-overlapping tools. B – Overlapping tools
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the model could keep pace with the dynamic nature of a 
surgical procedure, correctly identifying tools as they are 
being used in real-time. All data analysis was conducted 
in Python using the PyTorch and Ultralytics packages 
[23]. 

Results
The overall dataset consisted of 1004 images, of which 
603 (7891 tool instances) images were used for model 
training, 201 (2667 tool instances) for internal validation, 
and 200 (2655 tool instances) for testing model perfor-
mance. For detecting the presence or absence of surgical 
tools in the test dataset the model made 2,693 surgi-
cal tool predictions, of which there were 41 instances in 
which the model falsely identified the background as a 
surgical tool (false positive). Thus, the overall precision 
for distinguishing surgical tools from the background 
was 98.5%. Conversely, the model failed to identify a sur-
gical tool in only three instances, incorrectly labeling a 
tool as background in all three instances (false negative). 
This translates to an overall recall (sensitivity) of 99.9%. 
The model’s mean average precision 50–95 was 88.4%, 
and mean average precision 50 was 99.4%.

Model performance was also explored for differen-
tiating between the 11 types of surgical instruments. 
The basin class exhibited a precision and recall of 100%, 
indicating that the model perfectly predicted all basin 
instances without any false positives or false negatives. 
Syringes also achieved a precision of 99.6% and a recall 
of 100%, demonstrating nearly perfect performance in 
identifying all syringe instances. The surgical scissors 
class attained a precision of 99.2% and a recall of 99.6%. 
In contrast, the scalpel class had the lowest precision at 
94.0% and a recall of 97.1%. The precision and recall val-
ues for the remaining instrument classes can be found in 
Table 1, and a confusion matrix illustrating these results 
is presented in Fig. 2A.

Similar model performance was observed on the sub-
set of test images containing overlapping tools. For 

identifying surgical tools from the background, the 
model achieved a precision of 96.1% and a sensitivity of 
100%. Precision remained relatively high when differen-
tiating between surgical tools, ranging from 89.6% for 
scalpels to 100% for basins. Recall ranged from 97.2% for 
forceps to 98.2% for retractors. The confusion matrix for 
the overlapping tool subset is shown in Fig. 2B. Figure 3 
shows examples of predictions the model generated.

In a real-time surgical video analysis, the model main-
tained a correct surgical tool count in all non-transition 
frames, across tool switches over an hour in a simulated 
surgery. The model achieved a median inference speed 
of 24.7 ms (IQR: 3.1 ms) over the 108,128 frames (run-
time 1:00:07 h), corresponding to a frame rate of 40.4 FPS 
(IQR: 4.9) on a single NVIDIA V100. This demonstrates 
the model’s ability to maintain inference speeds suitable 
for practical applications in real-world surgery. See Sup-
plementary Table 1.

Discussion
This study demonstrates the feasibility and effectiveness 
of employing a deep learning-based computer vision 
model for the automated detection and enumeration of 
surgical instruments. The model achieved high preci-
sion and recall in distinguishing surgical tools from the 
background and in differentiating between various surgi-
cal instruments, even in challenging scenarios involving 
overlapping tools. In a real-time surgical video analysis, 
the model maintained a correct tool count during all 
non-transition times with an inference speed suitable for 
real-time use. These results highlight the potential for 
computer vision models to maintain an automated tool 
count during surgery which has the potential to reduce 
errors and thereby help improve surgical safety.

Our study’s high precision and recall in detecting a 
broad array of surgical tools, even in challenging condi-
tions with overlapping items, address some of the criti-
cal gaps in previous research, such as the need for robust 
detection across a diverse range of surgical objects and 
the demonstration of an inference speed suitable for 
practical real-world applications. Lavado et al. previously 
developed a computer vision model based on YOLOv3 
for detecting surgical tools in cluttered trays and per-
formed occlusion reasoning to determine which tool 
should be removed first following sterilization [24]. Their 
model was trained on only four different surgical tool 
classes and performed moderately well (mean average 
precision at 0.50 of 92.0%). In contrast, our model was 
trained on 11 different classes and achieved a mean aver-
age precision at 0.50 of 99.4%. Also, of note, Lavado et al. 
photographed surgical tools in a metallic background, 
whereas our models were trained on tools in a blue surgi-
cal cloth background, which is similar to most real-world 
surgical tray setups [24]. Jiang et al. examined automated 

Table 1 Precision and recall values for each of 11 surgical 
instrument classes
Instrument Class Precision (%) Recall (%)
Scalpel 94.02 97.12
Surgical skin pen 98.19 99.39
Surgical scissors 99.24 99.62
Forceps 95.21 98.93
Hemostat 98.60 99.65
Needle driver 97.97 99.66
Retractor 98.88 99.25
Beaker 97.39 100.00
Syringe 99.60 100.00
Surgical gauze 99.26 100.00
Basin 100.00 100.00
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Fig. 2 Confusion Matrices showing the model’s performance in classifying surgical instruments. Values represent the proportion of true labels assigned 
to each predicted class. Correct predictions align along the diagonal, while misclassifications are represented by non-zero values off the diagonal
 Model performance is shown on A. the whole test dataset and B. the subset of overlapping surgical tool images only
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surgical tool counting and showed modest model perfor-
mance (mean average precision 50–95: 88.7%), albeit in 
a somewhat limited dataset [19]. In contrast, our study 
builds upon prior literature by using a more diverse data-
set with a higher number of tool classes and a greater 
median number of tools per image, while maintaining 

similar performance. Further, we are the first to test our 
model on dynamic video footage in order to demonstrate 
suitability of our model for real-time inference during 
live surgery [19]. 

There are notable clinical implications of our findings. 
In spite of numerous efforts both locally and globally to 

Fig. 3 Examples of model generated labels
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decrease the incidence of surgical never events, recent 
data indicates that the frequency of these critical inci-
dents continues to be high [7]. From a systems safety 
perspective, it is generally believed that most medical 
errors result from poorly designed systems that allow 
predictable human mistakes [25]. Accordingly, in an 
effort to reduce surgical never events, institutions have 
adopted multi-faceted layered approaches of defense 
against surgical never events including implementation 
of standardized safety protocols, [26], regular auditing 
and monitoring, [27] continuous education and train-
ing of surgical staff [7], and a focus on implementational 
of novel technologies such as radiofrequency tags, [11] 
radio-labelled tags [12], magnetic surgical instrument 
location, [28] and a breadth of medical imaging based 
AI tools [17]. Automated surgical instrument tracking 
to maintain surgical tool counts throughout the duration 
of a procedure has the potential to serve as an additional 
safeguard against RSI. By augmenting or even replacing 
manual tool counting, an automated AI RSI prevention 
program could enhance surgical safety while simultane-
ously allowing surgical personnel to focus on more com-
plex aspects of patient care, thereby improving overall 
surgical efficiency.

In light of the existing strategies to combat the issue 
of RSIs, including manual counts and radiofrequency 
identification systems, our study introduces a computer 
vision model as an additional layer of verification that has 
a low threshold to implementation and is highly effec-
tive. Analogous to how the integration of additional safe-
guards such as radiofrequency identification systems can 
significantly enhance patient safety and reduce RSIs, [29] 
the incorporation of computer vision models too could 
further strengthen safety measures against RSIs. More-
over, the ease of integrating computer vision models 
with current protocols lies in their non-intrusiveness and 
the relatively low requirement for operational changes. 
Such computer vision based systems could run in paral-
lel to existing systems, offering real-time feedback with-
out imposing additional tasks on surgical staff, thereby 
enhancing the overall safety-net against RSIs.

While our study demonstrates the potential of deep 
learning-based computer vision for automated surgical 
tool detection and counting, there are several limitations 
to consider. First, our dataset, although comprehensive 
and representative of a real surgical environment, may 
not capture the full range of variability encountered in 
actual surgical procedures. Factors such as lighting con-
ditions, tool occlusion, and the presence of blood or 
other bodily fluids could impact model performance in 
real-world settings. Second, our study focused on a spe-
cific set of commonly used surgical tools; the model’s 
generalizability to less common or specialized instru-
ments remains to be evaluated. Third, while the model 

achieved strong performance on dynamic video foot-
age, further validation in a clinical setting is necessary 
to assess its performance under the demands and con-
straints of actual surgical workflows. Finally, the legal 
and ethical implications of relying on AI-based systems 
for patient safety must be carefully considered, includ-
ing issues of liability, transparency, and the potential for 
unintended consequences. Despite these limitations, our 
study provides a strong foundation for future research 
and development in this area, and the potential benefits 
of automated RSI prevention systems warrant continued 
investigation and refinement.

Conclusion
Our study demonstrates the potential of deep learning 
and computer vision for automating surgical instrument 
detection, classification, and occlusion reasoning. The 
high precision of the model and its occlusion reasoning 
ability highlight the feasibility of developing compre-
hensive systems to streamline surgical instrument man-
agement and potentially improve patient safety. With 
further research and validation, such systems could have 
a significant impact on clinical practice, and may reduce 
the incidence of RSIs while also reducing the need for 
surgical personnel to engage in laborious and repetitive 
manual tasks. To further validate the effectiveness of our 
algorithm, future research should focus on conducting 
studies in real-world clinical settings, utilizing larger and 
more diverse datasets. Finally, the development of stan-
dardized publicly available datasets for the development 
of surgical tool detection algorithms would facilitate 
more rigorous and comparative studies.
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