Skip to main content
. 2024 Feb 14;25:69. doi: 10.1186/s12859-024-05679-9

Table 1.

Nonlinear settings: randomly select combinations of hyper-parameters to search over

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
Setting 1
(p1=500,p2=500,n1=200,n2=150)
iDeepViewLearn 1.89 (0.47) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn on stacked data 4.00 (0.47) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 6.10 (0.73) 100.00 90.00 0.11 0.01 99.51 94.69
Deep CCA + TS + SVM 35.61 (2.22) 11.10 11.30 9.88 9.86 11.10 11.30
MOMA 44.96 (1.70) 22.00 29.90 8.67 7.89 22.00 29.90
MOMA + SVM 30.47 (6.05) 22.00 29.90 8.67 7.89 22.00 29.90
Random Forest on stacked data 1.94 (0.60) 70.10 98.00 3.32 0.22 70.10 98.00
SVM on stacked data 28.07 (0.65)
Setting 2
(p1=500,p2=500,n1=6000,n2=4500)
iDeepViewLearn 1.26 (0.11) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn on stacked data 1.38 (0.08) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 4.25 (0.15) 100.00 90.00 0.00 0.00 100.00 94.74
Deep CCA + TS + SVM 0.66 (0.13) 30.40 21.60 7.73 8.71 30.40 21.60
MOMA 12.77 (8.63) 76.30 89.90 2.63 1.12 76.30 89.90
MOMA + SVM 0.63 (0.08) 76.30 89.90 2.63 1.12 76.30 89.90
Random Forest on stacked data 0.66 (0.05) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 2.31 (0.15)
Setting 3
(p1=2,000,p2=2,000,n1=200,n2=150)
iDeepViewLearn 2.56 (0.78) 99.98 99.88 0.00 0.00 99.98 99.88
iDeepViewLearn on stacked data 2.86 (0.73) 99.98 99.65 0.01 0.04 99.98 99.65
Sparse CCA + SVM 4.86 (0.88) 100.00 97.50 0.08 0.02 99.63 98.66
Deep CCA + TS + SVM 29.91 (1.27) 10.30 11.20 9.97 9.87 10.30 11.20
MOMA 46.14 (2.44) 16.40 13.68 9.29 9.59 16.40 13.68
MOMA + SVM 35.46 (5.91) 16.40 13.68 9.29 9.59 16.40 13.68
Random Forest on stacked data 5.40 (1.02) 58.67 89.88 4.59 1.13 58.67 89.88
SVM on stacked data 28.57 (0.53)

TPR-1; true positive rate for X(1). Similar for TPR-2. FPR-1; false positive rate for X(1). Similar for FPR-2; F-1 is the F measure for X(1). Similar for F-2. The highest F-1/2 is in. (The mean error of two views is reported for MOMA; MOMA + SVM means selecting features using MOMA and training an SVM on the selected features)