Skip to main content
. 2024 Feb 14;25:69. doi: 10.1186/s12859-024-05679-9

Table 2.

Simulation with variable–variable connections: randomly select combinations of hyper-parameters to search over

Method Error (%) TPR-1 TPR-2 FPR-1 FPR-2 F-1 F-2
Scale-free
Setting 1
(p1=500,p2=500,n1=200,n2=150)
iDeepViewLearn 6.84 (1.96) 95.71 96.19 0.19 0.17 95.71 96.19
iDeepViewLearn-Laplacian 7.10 (1.65) 97.86 98.57 0.09 0.06 97.86 98.57
Sparse CCA + SVM 21.80 (10.14) 100.00 100.00 14.12 15.13 42.97 43.26
Fused CCA + SVM 41.33 (7.52) 19.29 23.10 17.90 33.29 6.56 4.08
Deep CCA + TS + SVM 40.43 (1.61) 5.00 3.33 4.16 4.24 5.00 3.33
MOMA 45.55 (1.84) 17.14 25.95 3.63 3.25 17.14 25.95
MOMA + SVM 36.76 (5.41) 17.14 25.95 3.63 3.25 17.14 25.95
Random Forest on stacked data 11.99 (2.22) 52.38 85.23 2.09 0.65 52.38 85.23
SVM on stacked data 35.46 (1.23)
Setting 2
(p1=500,p2=500,n1=6000,n2=4500)
iDeepViewLearn 2.77 (0.62) 99.76 100.00 0.01 0.00 99.76 100.00
iDeepViewLearn-Laplacian 2.71 (0.14) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 9.25 (2.39) 100.00 100.00 9.35 9.22 56.74 52.59
Fused CCA + SVM 33.24 (4.83) 99.75 100.00 13.69 48.83 48.74 19.90
Deep CCA + TS + SVM 2.44 (0.31) 17.62 17.38 3.61 3.62 17.62 17.38
MOMA 41.88 (4.11) 63.81 72.62 1.59 1.20 63.81 72.62
MOMA + SVM 3.56 (4.37) 63.81 72.62 1.59 1.20 63.81 72.62
Random Forest on stacked data 1.86 (0.10) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 27.61 (0.23)
Lattice
Setting 1
(p1=500,p2=500,n1=200,n2=150)
iDeepViewLearn 4.90 (1.76) 100.00 98.88 0.00 0.12 100.00 98.88
iDeepViewLearn-Laplacian 3.90 (0.82) 99.80 99.59 0.02 0.04 99.80 99.59
Sparse CCA + SVM 16.03 (0.86) 100.00 100.00 1.29 1.45 94.96 94.77
Fused CCA + SVM 38.26 (11.58) 22.04 24.69 24.59 30.99 11.13 9.30
Deep CCA + TS + SVM 36.53 (2.05) 10.61 10.71 9.71 9.70 10.61 10.71
MOMA 44.76 (2.12) 23.98 26.53 8.26 7.98 23.98 26.53
MOMA + SVM 32.20 (4.27) 23.98 26.53 8.26 7.98 23.98 26.53
Random Forest on stacked data 3.41 (0.71) 66.84 92.86 3.60 0.78 66.84 92.86
SVM on stacked data 28.51 (0.56)
Setting 2
(p1=500,p2=500,n1=6000,n2=4500)
iDeepViewLearn 1.64 (0.17) 100.00 100.00 0.00 0.00 100.00 100.00
iDeepViewLearn-Laplacian 1.56 (0.12) 100.00 100.00 0.00 0.00 100.00 100.00
Sparse CCA + SVM 7.14 (2.92) 100.00 100.00 1.14 1.72 95.52 93.52
Fused CCA + SVM 5.26 (2.27) 100.00 100.00 3.44 6.84 88.89 78.95
Deep CCA + TS + SVM 0.98 (0.19) 39.49 32.04 6.57 7.38 39.49 32.04
MOMA 21.22 (13.01) 73.98 79.08 2.83 2.27 73.98 79.08
MOMA + SVM 1.27 (1.53) 73.98 79.08 2.83 2.27 73.98 79.08
Random Forest on stacked data 1.02 (0.07) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 8.57 (0.24)
Cluster
Setting 1
(p1=500,p2=500,n1=200,n2=150)
iDeepViewLearn 22.50 (1.73) 96.21 100.00 0.27 0.00 96.21 100.00
iDeepViewLearn-Laplacian 22.40 (2.14) 95.15 100.00 0.34 0.00 95.15 100.00
Sparse CCA + SVM 16.70 (1.22) 100.00 100.00 4.24 3.91 77.50 78.54
Fused CCA + SVM 43.27 (1.65) 16.97 16.06 18.96 22.76 5.52 5.56
Deep CCA + TS + SVM 37.96 (1.81) 7.12 6.97 6.56 6.57 7.12 6.97
MOMA 45.28 (2.02) 21.52 23.18 5.55 5.43 21.52 23.18
MOMA + SVM 36.61 (3.77) 21.52 23.18 5.55 5.43 21.52 23.18
Random Forest on stacked data 29.23 (1.19) 27.42 65.76 5.13 2.42 27.42 65.76
SVM on stacked data 31.60 (1.02)
Setting 2
(p1=500,p2=500,n1=6000,n2=4500)
iDeepViewLearn 15.78 (0.65) 100.00 99.39 0.00 0.04 100.00 99.39
iDeepViewLearn-Laplacian 15.70 (0.35) 96.21 100.00 0.27 0.00 96.21 100.00
Sparse CCA + SVM 14.59 (0.53) 100.00 100.00 12.07 7.54 57.31 66.46
Fused CCA + SVM 29.17 (9.55) 72.73 92.42 26.12 30.40 31.17 41.73
Deep CCA + TS + SVM 28.48 (1.52) 10.45 8.64 6.33 6.46 10.45 8.64
MOMA 39.22 (4.95) 73.18 91.82 1.90 0.58 73.18 91.82
MOMA + SVM 12.77 (0.72) 73.18 91.82 1.90 0.58 73.18 91.82
Random Forest on stacked data 13.83 (0.21) 100.00 100.00 0.00 0.00 100.00 100.00
SVM on stacked data 29.68 (0.22)

TPR-1; true positive rate for X(1). Similar for TPR-2. FPR; false positive rate for X(2). Similar for FPR-2; F-1 is the F measure for X(1). Similar for F-2. The highest F-1/2 is in red. (The mean error of two views is reported for MOMA; MOMA + SVM means combining the feature selection part of MOMA and SVM)