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Abstract

Background: TAR DNA binding protein 43 (TDP-43) has been shown to be associated with 

whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown 

which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal 

atrophy in PART.

Objective: To identify which specific hippocampal subfield regions are contributing to TDP-43-

associated whole hippocampal atrophy in PART.

Methods: A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research 

Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. 

All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the 

distribution of Aβ (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as 

well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. 

Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical 
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analyses using logistic regression were performed to assess for associations between TDP-43 and 

hippocampal subfield volumes, accounting for potential confounders.

Results: TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly 

smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus 

compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 

and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, 

and presubiculum regions. There was no association between TDP-43 stage and subfield volumes.

Conclusions: Whole hippocampal volume loss linked to TDP-43 in PART is mainly due 

to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the 

hippocampal body.
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INTRODUCTION

Primary age-related tauopathy (PART) describes a pathology that combines a limbic 

predominant distribution of neurofibrillary tangles (NFTs) in the absence or limited 

distribution of amyloid-β (Aβ) [1]. PART is diagnosed when the Braak NFT stage [2] is 

I-V and the Aβ Thal phase is 0 (Definite PART) or Aβ Thal phase is 1–2 (Possible PART) 

[3]. PART has been associated with variable cognition ranging from normal cognition 

to dementia, with the latter previously being referred to as ‘tangle-predominant senile 

dementia’ (TPSD), ‘tangle-only dementia’, ‘preferential development of NFT without senile 

plaques’, and ‘senile dementia of the neurofibrillary tangle type’ (SD-NFT) [1]. Studies 

show that patients with PART have atrophy of the hippocampus which was presumed to be 

due to accumulation of the protein tau in the form of NFTs [4–6].

The transactive response DNA-binding protein of 43 kDa (TDP-43) is present in different 

neurodegenerative diseases. It was first linked to frontotemporal lobar degeneration and 

amyotrophic lateral sclerosis [7], but later was shown to be present in a significant 

percentage of cases of with Alzheimer’s disease, as well as in other neurodegenerative 

diseases [8–10]; some researchers have advocated for the label limbic predominant age-

related TDP-43 encephalopathy neuropathologic changes or LATE-NC [11]. In recent 

studies, we reported finding an association between TDP-43 and whole hippocampal volume 

loss in cases of PART [12, 13].

Studies on Alzheimer’s disease have shown that TDP-43 is associated with volume loss of 

specific hippocampal subfields, which together contributes to whole hippocampal volume 

loss [2, 14, 15]. In addition, TDP-43 burden has been shown to be associated with 

inward deformation of the hippocampus in zones approximating CA1 and subiculum in 

AD [16]. In PART, similar to Alzheimer’s disease [9, 17], TDP-43 pathology starts in 

the medial temporal lobe and progresses to the hippocampus and neocortex [2]. Although 

there are studies that have investigated the distribution and burden of TDP-43 pathology in 
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hippocampal subfields, volume loss in specific subfields of the hippocampus associated with 

TDP-43 in PART have not been investigated.

Consequently, the lack of knowledge of this relationship prompted us to investigate the 

associations between hippocampal subfields and TDP-43 in PART, to ascertain the specific 

hippocampal subfields that contribute to the association between TDP-43 and the overall 

loss of hippocampal volume. Results from this study will increase our understanding 

of TDP-43 and PART pathophysiology and highlight specific hippocampal subfields as 

potential targeted imaging biomarkers of TDP-43 pathology. We hypothesized that patients 

with PART and TDP-43 will exhibit smaller volumes in the CA1, subiculum and dentate 

gyrus of the hippocampus since these are the areas primarily affected by TDP-43 deposition.

METHODS

Study population

We identified 115 cases that met the criteria for possible or definite PART from a cohort 

of 1,720 autopsy confirmed cases who had been enrolled and followed longitudinally in 

the Mayo Clinic Alzheimer Disease Research Center, the Mayo Clinic Study of Aging 

(ADRC/MCSA), or the Neurodegenerative Research Group (NRG), completed at least 

one antemortem GE volumetric head MRI scan, died and underwent a comprehensive 

brain autopsy between January 1, 1999 and December 31, 2022. All MRI scans had been 

completed between this time period.

Pathological analyses

All 115 cases underwent standardized neuropathological examinations, including tissue 

sampling and semi-quantitative assessment of Alzheimer’s disease pathology following the 

National Institute on Aging and Alzheimer’s Association (NIA-AA) criteria [12, 13]. Each 

case was assigned a Braak NFT stage and a Thal Aβ stage in accordance with NIA-AA 

recommendations. Braak stages I and II correspond to NFT involvement primarily in the 

transentorhinal and entorhinal regions of the brain; Braak NFT stages III–IV are indicative 

of spread to the limbic regions, including the hippocampus; and Braak stages V–VI are 

characterized by extensive NFT involvement of the neocortex [2]. The Thal stages were 

utilized to categorize the distribution of Aβ deposition: Phase 0 = absence of Aβ throughout 

the entire brain; Phase 1 = presence of Aβ in the neocortex; Phase 2 presence of Aβ in 

allocortex/limbic areas; Phase 3 presence of Aβ in the diencephalon/basal ganglia; Phase 4 

presence of Aβ in the brainstem/midbrain; and Phase 5 presence of Aβ in the cerebellum 

[18].

For this study we only included cases with Thal phases 0, 1, and 2, and Braak NFT stages 

I–IV which meets published inclusion criteria for PART [1, 3]. Hence, we excluded cases 

with Braak stage 0, V, and VI and Thal phase 3–5.

TDP-43 assessment

For all 115 cases, amygdala and hippocampal samples, from the left hemisphere, were 

sectioned and paraffin blocks created. The right hemisphere was frozen at the time of brain 
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harvesting. Blank slides were then immunostained to detect TDP-43 using a conformation 

specific antibody that recognizes the C-terminal fragment of TDP-43 (MC2085; gift from 

Leonard Petrucelli) [7]. Immunostaining was done using a DAKO-Autostainer machine 

with 3, 3′-diaminobenzidine as the color indicator following by the addition of a 

light Hematoxylin stain. Amygdala and hippocampal stained slides were examined by a 

neuropathologist (DWD) and neuroscientist (KAJ) to assess for the presence of TDP-43 

immunoreactive inclusions and for TDP-43 type [19]. We focused on these two regions 

because we and others have previous shown that these two regions are affected early by 

TDP-43 in PART [9, 10]. Cases were reviewed at a magnification of 200X and were 

considered positive if any TDP-43 immunoreactive inclusion including neuronal cytoplasmic 

inclusions, dystrophic neurites, neuronal intranuclear inclusions, fine neurites of the CA-1 

region of the hippocampus, NFT-associated TDP-43 (TATs) [20], perivascular and granular 

inclusions were observed [2, 9, 17]. If no TDP-43 was observed in either the amygdala or 

hippocampus, the case was designated TDP-negative. If TATs were the predominant lesion 

type or very prominent in the amygdala the case was labelled as TDP-43 type-beta [19]. 

However, if TATs were absent or relatively scant compared to the presence of neuronal 

cytoplasmic inclusions and/or dystrophic neurites, the case was labelled as TDP-43 type-

alpha[19]. TDP-43 stage was also determined as previously described on a scale from stage 

1 (amygdala only) – stage 6 (extending to frontal cortex or basal ganglia) [9, 17].

Brain MRI segmentation

In this study, we used the MRI scan nearest to the time of death in participants with multiple 

serial MRIs. All participants underwent a volumetric MRI using a standardized protocol 

[21], and all scans underwent correction for intensity inhomogeneity and were subjected 

to quality control for subsequent analysis. The segmentation of hippocampal subfields was 

performed using FreeSurfer version 7.4.1, which utilizes a probabilistic atlas constructed 

from ultra-high-resolution ex vivo MRI data (approximately 0.1 mm isotropic) to produce 

an automated segmentation of the hippocampal substructures [22, 23]. FreeSurfer subdivides 

hippocampal substructures into head, body, and tail, where applicable, and generates an 

additional set of segmentations of each hemisphere at different levels of hierarchy. This 

approach echoes historical methodologies, as delineated by an early foundational paper by 

Clifford et al., which pioneered the analysis of the hippocampus by its segmented region 

[24]. An example segmentation is shown in Figs. 1 and 2. Averaging the volumetric data 

of the left and right hippocampi has been utilized to reduce lateralization bias, to increase 

statistical power by reducing variability due to side-specific differences, and for a holistic 

representation of hippocampal volume changes. To adjust for differences in head size, total 

intracranial volume (TIV) was calculated using the standard FreeSurfer processing pipeline.

Statistical analysis

Statistical analysis was performed using STAT/BE 18, with significance set at a threshold 

of p ≤ 0.05. Demographics, clinical characteristics, and MRI volumes of the patients were 

analyzed using basic descriptive statistics, including frequency, percent-age, mean, and 

standard deviation (SD). Differences between TDP-43 positive (+) and negative (−) cases 

were assessed by comparing the means and SDs of the two groups. Logistic regression was 

utilized to calculate the odds ratio for the association between TDP-43 positivity (dependent) 
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and hippocampal subfield volumes (independent), adjusting for TIV (independent). The 

Pearson correlation coefficient and one-way analysis of variance (ANOVA) were used 

to assess for correlations between TDP-43 stages and volumes. The Benjamini-Hochberg 

procedure was employed to control for a false discovery rate from performing multiple 

comparisons in our logistic regression analyses.

RESULTS

Demographic characteristics are displayed in Table 1. Of the 115 participants, approximately 

43% were female. The average age at the time of their last MRI was 84 years, and the 

average age at death was 88 years. Thirty-seven participants were TDP-positive (32%). 

TDP-43 type was available for 15 participants in the TDP-43 positive group, and all 

were type-alpha. There was a significant difference observed between TDP-positive and 

negative groups in the frequency of hippocampal sclerosis (p = 0.001). Ten participants 

had hippocampal sclerosis (8.7%), with eight in the TDP-positive group (21.62%) and 

two in the TDP-negative group (2.56%). Both patients in the TDP-43 negative group had 

vascular lesions in the hippocampus. No significant differences were noted in the remaining 

demographic variables between TDP-positive and TDP-negative groups. There was a trend, 

however, for the TDP-43-positive group to be older at the time of death.

The findings for hippocampal volumes are shown in Table 2. Whole hippocampal volume 

was significantly smaller in the TDP-positive cases compared to the TDP-negative cases (p 
= 0.049). After stratification of the hippocampus into head, body, and tail, the TDP-positive 

cases showed smaller volumes of the hippocampal body (p = 0.031) and tail (p = 0.021), 

but not the hippocampal head (p = 0.129), compared to TDP-negative cases. When these 

regions were further subdivided into hippocampal subfields, the TDP-positive cases showed 

smaller volumes of molecular layer of hippocampal body (p = 0.046), CA1 body (p = 

0.031), subiculum body (p = 0.023), as well as presubiculum body (p = 0.046) compared to 

TDP-negative cases. After separating definite from possible PART, no association was found 

between TDP-43 and volume in those with definite PART. TDP-43 staging was available for 

32 participants of the TDP-43 positive group and there was no correlation found between 

staging and volumes of the whole hippocampi or subfields.

Results from the logistic regression analysis, are presented in Table 3. After adjusting for 

TIV, we found that reduced volumes of the whole hippocampus, hippocampal body, and its 

constituents including the molecular layer, CA1, subiculum and presubiculum had higher 

odds of being TDP-43 positive. After adjusting for hippocampal sclerosis, the results were 

essentially unchanged. TDP-43 remained associated with hippocampal body (p = 0.046), 

hippocampal tail (p = 0.025), CA1 body (p = 0.041), and subiculum body (p = 0.036), and 

approached significance with whole hippocampus (p = 0.055).

DISCUSSION

In this cohort of 115 cases of PART, we assessed the association of TDP-43 status with 

hippocampal subfield atrophy. We found that TDP-positive cases exhibited smaller whole 

hippocampal volumes compared to TDP-negative cases, validating our previous results [12, 
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13]. Further stratification revealed that the body and tail of the hippocampus showed smaller 

volumes in those with TDP-43. By further dissecting the hippocampus into subfields, we 

were able to attribute volume loss to the molecular layer of hippocampal body, CA1 body, 

subiculum body, and presubiculum body.

Our finding of smaller whole hippocampal volume in TDP-positive cases with PART 

concurs with our previous studies demonstrating the influence of TDP-43 on brain volumes 

in PART [12, 13]. In this study, we further investigate the specific regions and subfields 

of the hippocampus and discovered that differences in volume loss are more prominent in 

the body and tail of the hippocampus in the TDP-positive cases. Moreover, with further 

stratification and analysis, volume loss was observed in the molecular layer of hippocampal 

body, CA1 body, subiculum body, as well as presubiculum body. To our knowledge, 

this is the first study to investigate the effects of TDP-43 in patients with PART on 

hippocampal subfields. Based on the FreeSurfer anatomical atlas [22], we note that the 

hippocampal tail has no subfield components. However, the body is comprised of various 

components, including the molecular layer, CA1, subiculum, and presubiculum, which are 

all significantly smaller in volume in TDP-positive cases. Notably, the same effect was not 

observed in absence of beta-amyloid which is consistent with our previous study that also 

found no association between TDP-43 and whole hippocampal volumes in patients with 

definite PART [5]. This is likely because the vast majority of patients with definite PART are 

cognitively normal with absent to minimal volume loss, and no range of data for volumes. 

We did observe a trend for the volume of the head of the hippocampus to be smaller in the 

TDP-positive cases compared to the TDP-43 negative cases.

In neuropathological studies where TDP-43 pathology has been observed, there is significant 

deposition of TDP-43 in regions and subregions of medial temporal lobe structures including 

the CA1 and subiculum regions of the hippocampus [25]. TDP-43 has been previously found 

to have an effect on the hippocampal subfields CA1 and subiculum in Alzheimer’s disease 

and has been associated with inward deformation of the hippocampus, which correlates 

with cognition scores [14]. It is not surprising that these two regions show volume loss 

associated with TDP-43 in Alzheimer’s disease and now in PART, because these two regions 

are directly affected by TDP-43 deposition [17]. In PART, however, it is vulnerability of the 

CA2 subregion due to NFT degeneration that is greatest [4, 26]. Our findings therefore are 

more keeping with volume loss due to TDP-43 than volume loss due to NFTs and tau.

We discovered that TDP-43 in PART predominantly impacts the hippocampal body, 

specifically affecting four main areas: the molecular layer, CA1, subiculum, and 

presubiculum. Given the observed volume loss in these areas, it may be worth exploring 

their potential as imaging biomarkers for TDP-43 associated atrophy in future longitudinal 

studies. However, the long-term performance and reliability of these biomarkers remain to 

be established through comprehensive research. Differential atrophy of the CA1 versus CA2 

regions of the hippocampus could be utilized to assess treatment response to a tau versus 

TDP-43 targeted pharmacological molecule.

The CA1 and subiculum are also involved in hippocampal atrophy in Alzheimer’s disease 

where both Aβ and tau are present [27–29]. In individuals with Alzheimer’s disease, 
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reduced volumes of both CA1 and subiculum have been observed, consistent with atrophy in 

these two subfields [30]. Given that we have demonstrated a similar pattern of involvement 

in PART that is related to TDP-43, one could hypothesize that it is TDP-43 that is possibly 

driving atrophy in these two subfields in Alzheimer’s disease. It is unclear however, whether 

there are differences between TDP-43 related subfield volume loss in Alzheimer’s disease 

and TDP-43 related subfield volume loss in PART. For example, our analysis suggests more 

specific involvement of these regions in the body of the hippocampus as opposed to the 

head. It is possible that the hippocampal head is more affected than the body in Alzheimer’s 

disease.

Unlike the CA1 and subiculum which have been discussed in previous studies, less is known 

about the molecular layer. In one study comparing the volume of the molecular layer in 

cognitively intact versus mild cognitively impaired patients, no significant difference was 

observed [31]. Similarly, little has been reported on the presubiculum in the body of the 

hippocampus.

There is a strong association between TDP-43 pathology and hippocampal sclerosis, with 

hippocampal sclerosis conceptualized as a downstream consequence of the presence of 

TDP-43 [32]. Hence, it is not surprising that those with TDP-43 were more likely to have 

hippocampal sclerosis compared to those without TDP-43. Unlike hippocampal sclerosis, 

there was no difference in the Braak NFT stage or the Thal phase between those with and 

without TDP-43. This is most likely due to the fact that our inclusion criteria limited cases 

to specific Braak and Thal stages. It is well known that patients with TDP-43 have higher 

Braak NFT stages when the full spectrum of Braak stage cases (I–VI) are included in the 

study [33, 34].

Strengths and limitations

One of the strengths of our study is the large sample size. In fact, to the best of our 

knowledge, this is the largest cohort to investigate the association between TDP-43 and 

hippocampal subfields in patients with PART. Another strength is that our cases were 

well characterized pathologically. Our study has certain limitations that warrant discussion. 

First, although segmenting the hippocampus into head, body, and tail provides more 

precision than analyzing the whole hippocampus, some subfield volumes are too small 

for accurate measurement using T1-weighted MRI. Consequently, the accuracy of some of 

our segmentations is likely poorer compared to larger parcellations. We also recognize that 

the hippocampal subfields lack distinct internal contrast in these roughly 1 mm clinical 

resolution T1-weighted MRI scans, resulting in the subfield segmentations being largely 

dependent on external atlas priors. In future studies, this limitation could be addressed by 

incorporating T2-weighted MRI [22]. Thirdly, the low odds ratios observed in our logistic 

regression model suggest that the differences in brain volume identified are small and may 

be influenced by other external factors. Fourth, we only identified one unaffected control 

case that was without PART and TDP-43 and had an antemortem GE MRI scan; therefore, 

we were unable to compare PART participants who were TDP-43 negative with unaffected 

control cases. Lastly, we were unable to assess difference by TDP-43 type as all cases were 

Youssef et al. Page 7

J Alzheimers Dis. Author manuscript; available in PMC 2024 July 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



TDP-43 type-alpha. This is not surprising since TDP-43 type-beta is associated with high 

Braak NFT stages [19] and the cases in this study with PART were Braak NFT stages ≤ IV.

Conclusion

In conclusion, our study underscores the association between TDP-43 pathology and 

hippocampal subfields in PART. It highlights which subfields are contributing to whole 

hippocampal volume loss, and particularly implicate the body and tail regions and 

specifically volumetric loss to the subfields of the CA1 and subiculum in the body.
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Fig. 1. 
Hippocampal subfields’ sagittal view. GC-ML-DG, Granule Cell and Molecular Layers of 

the Dentate Gyrus; HATA, Hippocampal-Amygdala Transition Area.
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Fig. 2. 
Hippocampal subfields’ coronal view.
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Table 1.

Participant characteristics.

Characteristics Cohort (n=115) TDP-negative (n=78) TDP-positive (n=37) p-value

Female sex, N (%) 49 (42.61%) 31 (39.74%) 18 (48.65%) 0.367

APOE4 carrier 20 (17.39%) 15 (19.23%) 5 (13.51%) 0.450

Age at last scan, years 84 (±6.3) 83.4 (±6.8) 85.4 (±4.6) 0.097

TIV ×105 15.4 (±1.9) 15.5 (±1.9) 15.2 (±1.9) 0.401

Age at death, years 88.4 (±6.9) 87.6 (±7.4) 90.2 (±5.2) 0.052

Last scan to death, years 4.4 (±2.8) 4.2 (±2.7) 4.8 (±3) 0.296

MMSE 25 (±5) 25 (±6) 25 (±4) 0.562

CDR-SB 3.7 (±5.6) 3.3 (±5.5) 1.6 (±2.9) 0.081

WMS-R LM1 12.3 (± 12.2) 11.9 (±11.8) 14.2 (±12.9) 0.345

AVLT – half hour delay 0.22 (±1.8) 0.4 (±2.4) 0 (±0) 0.334

Hippocampal sclerosis, N (%) 10 (8.7%) 2 (2.56%) 8 (21.62) 0.001

Thal stage 0.114

0 44 (38.26%) 26 (33.33%) 18 (48.65%)

1/2 73 (61.74%) 52 (66.67%) 19 (51.35%)

Braak stage 0.885

I 14 (12.17%) 9 (11.54%) 5 (13.51%)

II 35 (30.43%) 25 (32.05%) 10 (27.03%)

III 45 (39.13%) 29 (37.18%) 16 (43.24%)

IV 21 (18.26%) 15 (19.23%) 6 (16.22%)

Data is shown as mean (±standard deviation) or N (%). Abbreviations: AVLT, Auditory Verbal Learning Test; CDR-SB, Clinical Dementia Rating 
Scale - Sum of Boxes; TIV, Total Intracranial Volume; MMSE, Mini-Mental State Examination; WMS-R LM1, Wechsler Memory Scale-Revised 
Logical Memory I.
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Table 2.

Hippocampal volume findings across TDP-43 status groups

Hippocampal regions TDP-negative (n=78) TDP-positive (n=37) p-value

Whole hippocampus 188 ±27 176 ±31 0.049

Hippocampal subdivisions

Hippocampal head 93.0 ±14.5 88.4 ±16.8 0.129

Hippocampal body 63.1 ±9.6 58.8 ±10.2 0.031

Hippocampal tail 32.0 ±5.0 29.6 ±5.5 0.021

Hippocampal subfields

Molecular layer of hippocampal head 18.2 ±3.0 17.2 ±3.6 0.116

Molecular layer of hippocampal body 12.1 ±2.1 11.3 ±2.2 0.046

GC-ML-DG head 8.5 ±1.5 7.9 ±1.6 0.122

GC-ML-DG body 7.6 ±1.3 7.3 ±1.2 0.129

CA4 head 7.4 ±1.2 7.0 ±1.4 0.137

CA4 body 7.3 ±1 6.9 ±1.6 0.144

CA2/3 head 6.5 ±1.3 6.4 ±1.4 0.166

CA2/3 body 5.2 ±1.2 4.9 ±1.0 0.229

CA1 head 28.4 ±4.6 26.7 ±4.9 0.091

CA1 body 6.6 ±1.1 6.1 ±1.2 0.031

Subiculum head 10.1 ±1.7 9.5 ±2/3 0.169

Subiculum body 12.9 ±2.1 11.9 ±2.5 0.023

Presubiculum head 7.2 ±1.4 6.8 ±1.8 0.279

Presubiculum body 8.4 ±1.6 7.7 ±1.8 0.046

Parasubiculum 3.8 ±0.9 3.9 ±1.0 0.614

HATA 2.9 ±0.7 2.9 ±0.6 0.795

Data is shown as mean (±standard deviation). Statistical analysis performed after adjusting for total intracranial volume.

Abbreviations: GC-ML-DG, Granule Cell and Molecular Layers of the Dentate Gyrus; HATA, Hippocampal-Amygdala Transition Area. Unitless 
normalized volumes are calculated as the ratio of hippocampal volumes to total intracranial volume, multiplied by 100,000.

J Alzheimers Dis. Author manuscript; available in PMC 2024 July 23.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Youssef et al. Page 16

Table 3.

Odds ratio of being TDP-43 positive.

ROI odds ratio 95% conf. interval p-value

Whole hippocampus 0.99 0.99–1 0.027

Hippocampal head 0.99 0.99–1 0.081

Hippocampal body 0.99 0.99–1 0.043

Hippocampal tail 0.99 0.99–1 0.072

Molecular layer of hippocampal head 0.99 0.98–1 0.075

Molecular layer of hippocampal body 0.99 0.97–1 0.033

CA1 head 0.99 0.99–1 0.066

CA1 body 0.97 0.94–0.99 0.030

Subiculum head 0.99 0.97–1 0.099

Subiculum body 0.98 0.97–1 0.043

Presubiculum head 0.99 0.97–1 0.144

Presubiculum body 0.98 0.96–1 0.030

Statistical analysis performed with logistic regression adjusted for total intracranial volume. P-values were corrected for false discovery rates (FDR) 
by employing the Benjamini-Hochberg procedure.
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