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Abstract
In the realm of medical diagnostics, the utilization of deep learning techniques, notably in the context of radiology images, 
has emerged as a transformative force. The significance of artificial intelligence (AI), specifically machine learning (ML) and 
deep learning (DL), lies in their capacity to rapidly and accurately diagnose diseases from radiology images. This capability 
has been particularly vital during the COVID-19 pandemic, where rapid and precise diagnosis played a pivotal role in manag-
ing the spread of the virus. DL models, trained on vast datasets of radiology images, have showcased remarkable proficiency 
in distinguishing between normal and COVID-19-affected cases, offering a ray of hope amidst the crisis. However, as with 
any technological advancement, vulnerabilities emerge. Deep learning-based diagnostic models, although proficient, are not 
immune to adversarial attacks. These attacks, characterized by carefully crafted perturbations to input data, can potentially 
disrupt the models’ decision-making processes. In the medical context, such vulnerabilities could have dire consequences, 
leading to misdiagnoses and compromised patient care. To address this, we propose a two-phase defense framework that 
combines advanced adversarial learning and adversarial image filtering techniques. We use a modified adversarial learning 
algorithm to enhance the model’s resilience against adversarial examples during the training phase. During the inference 
phase, we apply JPEG compression to mitigate perturbations that cause misclassification. We evaluate our approach on 
three models based on ResNet-50, VGG-16, and Inception-V3. These models perform exceptionally in classifying radiology 
images (X-ray and CT) of lung regions into normal, pneumonia, and COVID-19 pneumonia categories. We then assess the 
vulnerability of these models to three targeted adversarial attacks: fast gradient sign method (FGSM), projected gradient 
descent (PGD), and basic iterative method (BIM). The results show a significant drop in model performance after the attacks. 
However, our defense framework greatly improves the models’ resistance to adversarial attacks, maintaining high accuracy 
on adversarial examples. Importantly, our framework ensures the reliability of the models in diagnosing COVID-19 from 
clean images.
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Introduction

During the pandemic, the World Health Organization 
(WHO) considered RT-PCR the gold standard for diagnos-
ing the virus. However, in many cases, COVID-19 patients 
remained undiagnosed due to the low sensitivity of RT-PCR 
[1–4], i.e., the false-negative rate is high. Failure to diagnose 

the disease at an early stage results in the patient not receiv-
ing adequate treatment on time, and due to the virus’s highly 
infectious nature, the danger of the sickness spreading to 
a broader population increases. Sometimes, RT-PCR tests 
should be done numerous times for specific individuals to 
diagnose COVID-19 [5, 6]. The testing technique is costly 
and necessitates a complex manual process. The test find-
ings take a long time to get, and there is a significant risk 
of healthcare staff becoming infected with the disease dur-
ing the test. Moreover, sufficient training is essential for 
health professionals collecting samples for PCR. All of these 
limitations suggest that other rapid, accurate, and reliable 
diagnostic methods should be performed in addition to the 
RT-PCR test.
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Computer-aided diagnosis based on artificial intelligence 
technologies, including DL ML, has been rapidly expanding 
and active for the past ten years. Researchers have success-
fully employed DL techniques in disease diagnoses, such as 
cancer detection [7–9], Alzheimer’s detection[10–13], and 
heart disease [14]. AI has also proven useful during the pan-
demic [15–18]. DL is the most promising and extensively 
used ML technology for disease diagnosis from medical 
images, such as radiology images. Due to the success of 
deep learning in the medical field, researchers successfully 
adopted AI technologies such as DL techniques to enhance 
the diagnosis of COVID-19 by using radiology images such 
as X-rays and CT images of lung regions. Most research-
ers have based their diagnosis models on transfer learning 
[19–26], while some have developed novel architectures 
[27–33]. Researchers have employed DL models to fore-
cast the advancement and severity of COVID-19 in infected 
individuals [34–41].

Additionally, some studies have focused on analyzing 
past medical records to assess the likelihood of contracting 
COVID-19 [42–44]. Testing using deep models is straight-
forward, cost-effective, time-efficient, and accurate. Moreo-
ver, CT and X-ray images are easily accessible compared to 
RT-PCR test kits. Undoubtedly, COVID-19 detection mod-
els based on DL have performed exceptionally well in this 
domain, have a huge potential in medical science, and may 
one day be a standard method to diagnose COVID-19.

However, the deep learning-based model comes with cer-
tain inherent flaws. They are susceptible to various security 
attacks during their training and inferencing phase, forcing 
the model to make misclassifications [45]. During training, 
the model can be attacked by backdoor attacks or data poi-
soning attacks [46], in which the attacker either mislabels 

the training data or crafts a trigger and patches it to the train-
ing data sample. The attacker then trains the model on the 
malicious data samples, and the final model is contaminated. 
While as during inferencing, the model can be attacked by 
adding intelligently crafted perturbation to the simple image 
that causes the model to misclassify the simple image. This 
attack is called an adversarial attack [47]. In Fig. 1, we have 
demonstrated the possible security threats in the context of 
deep COVID-19 models.

This article highlights the issue of adversarial attacks 
on DL models used in deep COVID-19 diagnosis models. 
While several DL-based COVID-19 diagnosis systems 
have been proposed, very few have addressed the potential 
vulnerabilities of the system or how to mitigate them. We 
developed three deep learning models for COVID-19 diag-
nosis using radiology images (CT and X-ray images) by 
leveraging transfer learning with ResNet50 [48], VGG16 
[49], and InceptionV3 [50] architectures, which classify 
the radiology images into non-COVID-19 pneumonia, e.g., 
(bacterial and viral pneumonia), normal (no pneumonia) 
and COVID-19 viral pneumonia classes. Despite the high 
performance of these models, we discovered their suscepti-
bility to adversarial attacks, specifically FGSM [51], PGD 
[52], and BIM [53]. To fortify these models, we proposed 
a two-phase defense strategy. The first phase involved a 
modified adversarial training approach during the model 
training stage, where we trained the model on a random 
subset of the data and included multiple adversarial images 
of the same original image, each subjected to different 
image transformations such as rotation, brightness adjust-
ment, and contrast variation. This approach enhanced the 
model’s resilience by exposing it to a broader spectrum of 
potential adversarial examples. In the inference phase, we 

Fig. 1  Various attacks on deep 
COVID-19 diagnosis models, 
organized according to their 
respective phases
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applied JPEG compression [54] to eliminate adversarial 
noise from the input data to reinforce the model’s ability to 
withstand attacks. Through this two-phase defense strategy, 
our research aims to provide models that show promise in 
maintaining their performance and reliability throughout 
both training and real-world deployment stages, potentially 
serving as a valuable complement to biochemical tests.

Motivation

The motivations for conducting adversarial attacks on 
COVID-19 diagnosis systems are multifaceted. Adversarial 
attacks on COVID-19 diagnosis models are motivated by 
various factors. Malicious intent drives attackers to dis-
rupt the accuracy of models, leading to misclassification of 
COVID-19 cases and sowing confusion among healthcare 
professionals and patients. Economic gain is another driver, 
as manipulating model outputs can benefit certain entities, 
such as pharmaceutical companies, by influencing percep-
tions of treatment efficacy. Social engineering and misin-
formation play a role, with adversaries exploiting model 
vulnerabilities to spread false information and undermine 
public trust in the healthcare system. Attacks also occur for 
research purposes, aiming to expose weaknesses in existing 
models or showcase alternative methodologies. Addition-
ally, some attackers view manipulating COVID-19 diagnosis 
models as a technical challenge to test the robustness of AI 
systems. Addressing these motivations makes it possible to 
build more robust and resilient AI systems that can with-
stand adversarial attacks and maintain trust and accuracy in 
critical healthcare applications.

Contribution

The main contribution of the paper is listed below:

• Our study introduces and evaluates three deep COVID-
19 diagnosis models using transfer learning techniques. 
We achieved remarkable accuracy rates on unseen clean 
data samples by leveraging the VGG-16, ResNet-50, and 
Inception-V3 architectures as base models. Specifically, 
on the X-Ray dataset, our models attained accuracy rates 
of 93.34%, 91.45%, and 94.65% for ResNet-50, VGG-
16, and Inception-V3, respectively. Moreover, our models 
achieved 95.72%, 92.89%, and 95.03% accuracy on CT 
images for the corresponding architectures mentioned.

• We demonstrated that the deep COVID-19 diagnosis 
models based on conventional ML or DL approaches are 
susceptible to adversarial attacks by exposing them to the 
PGD, FGSM, and BIM attacks.

• A novel two-phase defense strategy was proposed to pro-
tect deep learning-based COVID-19 diagnosis models 

from adversarial attacks. The first phase (training) incor-
porates a sophisticated adversarial learning algorithm 
during the model training stage to enhance the model’s 
robustness against adversarial examples. In the infer-
ence phase, JPEG compression was employed to remove 
adversarial noise from the input data, thereby improving 
the model’s resilience against adversarial attacks.

• An extensive evaluation of the proposed defense mecha-
nism was conducted, demonstrating its effectiveness in 
mitigating the adverse effects of adversarial attacks, thus 
ensuring the models’ reliability in diagnosing COVID-19 
from radiology images.

The paper is structured as follows. It begins with an 
introduction, providing an overview of the topic. "Moti-
vation" presents a comprehensive literature review, dis-
cussing relevant prior research and studies. In "Contribu-
tion", the authors describe the dataset used in this study 
and explain the methodology employed. The methodology 
is divided into three parts: training COVID-19 diagnosis 
models, attacking the trained models, and implementing a 
secure two-phase defense approach. Moving on to "Related 
Work", the authors delve into the experimental results and 
outputs, providing a thorough analysis and interpretation 
of the findings. "COVID-19 Diagnosis Models" focuses 
on the conclusion, summarizing the main points discussed 
throughout the paper. Finally, the authors highlight the 
study’s limitations and propose potential areas for future 
research and exploration.

Related Work

Initially, we comprehensively reviewed the current litera-
ture concerning COVID-19 diagnosis models that utilized 
deep learning and hybrid methodologies. Subsequently, we 
explored existing literature on adversarial attacks targeting 
deep COVID-19 models and strategies for defending against 
such attacks.

COVID‑19 Diagnosis Models

Amidst the ongoing epidemic, there has been a surge of 
interest in projects aiming to develop effective COVID-19 
diagnosis models. Many researchers have turned to convolu-
tional neural networks (CNNs) for their remarkable perfor-
mance in extracting valuable features from image data. Some 
studies have also explored hybrid approaches that combine 
ML methodologies with or without DL.

Recent advancements in COVID-19 diagnosis have 
been shaped by innovative ML and DL techniques. In one 
study [55], a Convolutional Neural Network (CNN) model 
demonstrated impressive capabilities by achieving a 98% 
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accuracy in distinguishing COVID-19 cases from healthy 
chest X-rays. Another significant development, COVID-AL 
[56], introduced a weakly-supervised deep active learning 
framework that efficiently diagnoses COVID-19 using CT 
scans, with over 95% accuracy even when trained on just 
30% of labeled data.

Furthermore, research in [57] introduced the UC-MIL 
and BA-GCN models, revolutionizing COVID-19 diagnosis 
from chest CT scans by enhancing reliability and accuracy. 
The dual-branch combination network (DCN) [58] also 
excelled in COVID-19 diagnosis using chest CT scans, sur-
passing other models, particularly in detecting subtle lesions. 
Another study [59] focused on a computer-aided detection 
system for COVID-19 using chest X-rays, achieving high 
scores and interpretability.

Additionally, a robust multi-feature CNN [60] demon-
strated remarkable accuracy in COVID-19 detection from 
chest X-rays, showcasing the potential of these techniques 
for fast and reliable diagnosis. Furthermore, an ensemble 
of CNNs [61] emphasized the power of combining models 
to enhance precision, recall, and accuracy when diagnosing 
COVID-19 from CT scans. Beyond imaging, [62] explored 
machine learning models based on routine blood exams as a 
viable alternative for screening COVID-19, achieving excep-
tional accuracy rates.

Moreover, [63] delved into artificial intelligence-based 
COVID-19 diagnosis from CT images, presenting prom-
ising results. In lung CT image-based diagnosis, an opti-
mized deep convolutional neural network (DCNN) model 
named DCNN-IPSCA [64] excelled, achieving remark-
able accuracy and speed. Finally, [65] employed CNN 
models to distinguish COVID-19 and other infections in 
lung X-ray scans, achieving high accuracy, and effectively 
used an LSTM model for forecasting COVID-19 cases in 
Italy with remarkable precision. Collectively, these diverse 
approaches represent significant progress in COVID-19 
diagnostic capabilities, contributing to improved pandemic 
management and healthcare.

Adversarial Attack and Deep COVID‑19 Systems

This section delves into the literature on adversarial attacks 
aimed explicitly at COVID-19 monitoring models. We 
examine the potential vulnerabilities of these models and 
their susceptibility to deliberate attacks through the manipu-
lation of input data.

The realm of artificial intelligence has faced growing con-
cerns over the vulnerability of neural networks to adversarial 
attacks, as underscored in [66]. This issue has prompted a 
surge in research endeavors dedicated to developing novel 
attack methods and mitigation strategies. Surprisingly, this 
line of inquiry has yet to be adequately explored concern-
ing computer-based technologies designed to combat the 

COVID-19 pandemic, creating an urgent need for further 
scholarly investigation in this critical domain. The study in 
[67] delved into the susceptibility of the COVID-Net archi-
tecture to universal adversarial perturbation (UAP) attacks, 
revealing vulnerabilities in a system designed for COVID-19 
patient classification using chest X-ray images. Meanwhile, 
[69] examined the susceptibility of DL algorithms utilized in 
medical Internet of Things (IoT) applications for COVID-19 
diagnostics to adversarial attacks, shedding light on security 
vulnerabilities. This research explored various adversarial 
attack methods, including MI-FGSM, FGSM, L-BFGS, 
Deepfool, BIM, Carlini and Wagner (C&W), PGD, Fool-
box, and Jacobian-based Saliency Map Attack (JSMA) [70].

Furthermore, the study outlined in [71] introduced a 
method to generate unrestricted adversarial examples tar-
geting face recognition systems, showcasing its effectiveness 
in both white-box and black-box settings. This approach had 
a success rate of approximately 90% in deceiving target face 
recognition models, underscoring the urgency of develop-
ing robust defenses against adversarial attacks. In [72], a 
COVID-19 diagnosis model based on transfer learning faced 
increased vulnerability to adversarial attacks as perturba-
tion levels escalated, impacting the accuracy of X-ray and 
CT imaging classification models. Another study [73] pro-
posed an image-based medical adversarial attack method 
that consistently generated perturbations on medical images, 
with a focus on maximizing the deviation loss term while 
minimizing loss stabilization. Additionally, [74] explored 
passive and active attack methods on deep neural networks 
(DNNs) applied to medical datasets, revealing vulnerabili-
ties in DNN inference engines used for COVID-19 detection 
from chest X-ray images. Lastly, [75] investigated the impact 
of adversarial attacks on widely employed neural network 
architectures, highlighting the varying vulnerabilities of dif-
ferent models to these attacks and emphasizing the need for 
robust defense mechanisms. These collective research efforts 
underscore the significance of addressing adversarial vul-
nerabilities in AI systems, particularly those used in critical 
healthcare applications during the ongoing pandemic.

Dataset Description

In this study, we used a publicly available X-ray reposi-
tory called COVID-Net, available at GitHub (github.com/
lindawangg/COVID-Net) [77], and a COVIDx-CT data-
set that is a publicly accessible collection of CT images 
designed for COVID-19 research. Both these datasets have 
images of different COVID-19 pneumonia, non-COVID 
pneumonia, and normal patients.

There are various versions of COVID-NET available.  
We downloaded the COVIDx V9A dataset, which was 
updated on 26 November 2021. The dataset consists of more 
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than 30,000 CXR images for training, of which 16,490 are 
COVID-19-positive images from over 2800 patients, 5555 are 
non-COVID-19 pneumonia from over 5500 patients, and 8085 
are normal images (no pneumonia) from over 8000 patients. 
Figure 2 shows the images from the dataset selected randomly 
from each class. There are 400 images for testing the model 
(100 normal, 100 pneumonia, and 200 COVID-19). The 
images in the training dataset are of a different dimension. 
However, we resized all the images to 224*224*3 during the 
preprocessing phase. During the attack, we randomly picked a 
bunch of images from the test data, computed the perturbation, 
and then evaluated the model’s performance on imperceptible 
modified images. Table 1 summarizes the data distribution of 
X-ray images among different classes, and Table 2 shows the 
distribution of the number of patients in each category.

Similarly, we used the COVIDx CT-1 dataset on Kaggle, 
released on December 3, 2020. The dataset encompasses 
104,009 CT slices derived from 1489 distinct patients. 
Derived from various open-source datasets, COVIDx-CT 
is continuously updated and enriched to enhance its utility 
and scope. COVIDx-CT dataset is released under a Crea-
tive Commons Attribution-NonCommercial-ShareAlike 
4.0 International (CC BY-NC-SA 4.0) license, in alignment 
with the licenses of its constituent datasets. It is important to 
note that certain subsets of the data may have less restrictive 
licenses, offering more flexibility in their usage. Figure 3 
shows the images from the COVIDx CT-1 dataset selected 
randomly from each class. Table 3 shows the data distribu-
tion of CT images in the dataset.

Methodology

The work proposed in this study is visually represented in 
Figs. 4 and 5. Figure 4 outlines the comprehensive pro-
cedure of the adversarial attacking methodology. It dis-
plays two distinct paths labeled Path 1 and Path 2. Path 
1 illustrates the standard training process of our special-
ized COVID-19 models, which are independently trained 
on X-ray and CT images. The COVIDx V9A dataset, a 
publicly available resource, was utilized for the X-ray 
images, while the CT images were sourced from COV-
IDx CT-1. This path involves a stage of data augmenta-
tion and preprocessing before the training of the models, 
while as Path 2, on the other hand, portrays the process 
of initiating an adversarial attack on the trained mod-
els. This phase includes preprocessing of the data and a 
dedicated adversarial attack module. We employed three 
separate adversarial example generators—FGSM, PGD, 
and BIM—to evaluate their performance thoroughly. We 
found that the models’ overall performance, represented 
by the average accuracy, dropped significantly when chal-
lenged with adversarial examples. Figure 5 illustrates the 
proposed two-phase framework for robust classification 
against adversarial attacks. It underscores our use of the 
proposed adversarial learning algorithm during the training 
phase and JPEG transformation during the inference phase. 
This approach ensures the model’s robustness and reliabil-
ity during the training and inferencing phases, enhancing 
its resilience against adversarial attacks.

Fig. 2  Various types of chest 
X-ray images randomly selected 
from the dataset: a first row, 
normal (no pneumonia); b sec-
ond row, non-COVID pneumo-
nia; and c third row, COVID-19 
pneumonia

Table 1  COVIDx V9A chest radiography image distribution

Type No pneumonia 
(normal)

Non- COVID 
pneumonia

COVID-19 
pneumonia

Total

Train 8085 5555 16,490 30,130
Test 100 100 200 400

Table 2  COVIDx V9A patient distribution

Type No. pneumonia 
(normal)

Non- COVID 
pneumonia

COVID-19 
Pneumonia

Total

Train 8085 5531 2808 16,224
Test 100 100 178 378
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Platform and Data Preprocessing

This section provides a comprehensive overview of the plat-
form details, including libraries and the data augmentation 
and preprocessing approach. We utilized the services of 
Google Colab to train, attack, and defend our deep COVID 
diagnosis model.

Platform Details

The development and experimentation of our deep learn-
ing models were conducted within a Python-based envi-
ronment, leveraging a range of libraries and frameworks. 
We conducted our experiments within a Python 3.7 envi-
ronment, utilizing TensorFlow and Keras for developing, 
attacking, and defending our deep learning models. We also 
employed sci-kit-learn for evaluation metrics calculation, 
ensuring a comprehensive assessment of our models' per-
formance. Matplotlib was used for data visualization, while 
NumPy played a vital role in efficiently handling multidi-
mensional arrays, especially during image preprocessing. 

This environment gave us the tools to effectively construct, 
evaluate, and analyze our deep learning models.

Data Augmentation and Preprocessing

Data augmentation and preprocessing are pivotal for preparing 
our dataset and addressing class imbalance issues. To enhance 
the representation of minority classes, specifically “no pneu-
monia (normal)” and “non-COVID Pneumonia,” we employed 
data augmentation techniques. These involved generating aug-
mented images by applying random transformations like rota-
tion, flips, zoom, and brightness adjustments. This augmented 
the minority class data, mitigating imbalance and improving 
the model's overall performance. We harnessed TensorFlow’s 
ImageDataGenerator for these augmentations, diversifying our 
training data effectively. Subsequently, we resized images to 
a uniform 224 × 224 pixel dimension using the same tool and 
normalized pixel values to a range between 0 and 1 with sci-
kit-learn’s MinMaxScaler. Label encoding was achieved seam-
lessly with TensorFlow’s ImageDataGenerator class. These 
preprocessing steps primed our dataset for robust COVID-19 
diagnosis model development.

Transfer Learning of Deep COVID‑19 Diagnosis Model

We used the pre-trained state-of-the-art ResNet-50, 
VGG16, and inception-V3 as a base model and built our 

Fig. 3  Sample CT images from 
the COVIDx CT-1 benchmark 
datasets, representing differ-
ent types of infections. A CT 
images of normal controls. B 
Features CT images of common 
pneumonia (CP). C CT images 
of novel coronavirus pneumonia 
(NCP) caused by SARS-CoV-2 
infection. These images provide 
visual examples of the distinct 
characteristics associated with 
each infection type within the 
dataset

Table 3  CT Chest radiography image distribution

Type No. pneumonia 
(normal)

Non- COVID 
pneumonia

COVID-19 
pneumonia

Total

Train 3000 3000 3000 9000
Test 300 300 400 1000
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COVID models by employing a transfer learning approach. 
We chose all these models because they are openly avail-
able and easy to modify. In particular, we selected them 
based on their performance in several image recognition 

projects. During the training of our models, we kept the 
layers of the base models frozen to preserve the learning 
of the weights that have already been learned. We removed 
the last layer in each of these base models and added 4 new 

Fig. 4  The overall process of training a deep COVID-19 diagnosis model and attacking it with adversarial attacks. The blue dotted line indicates 
that the model details, such as gradients, are required to generate adversarial examples since the FGSM, PGD, and BIM are white-box attacks

Fig. 5  Proposed two-phase framework for robust classification against adversarial attacks
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trainable layers. Few dropouts and non-trainable pooling 
layers were added between these newly added layers to take 
care of overfitting and dimension reduction, respectively.

ResNet‑50 Transfer Learning Model

The model is built on the ResNet-50 architecture, which 
contains 50 layers and utilizes skip connections or shortcuts 
to jump over some layers. This helps to solve the vanish-
ing gradient problem and allows the model to learn deeper 
representations. By freezing the original layers and add-
ing custom layers (Dense 64, Dense 32, and Dense 3), the 
model is tailored for COVID-19 detection, improving its 
efficiency and accuracy. The new layers are trained to adapt 
to the task, while the pre-trained layers provide a wealth of 
pre-existing features.

VGG‑16 Transfer Learning Model

Built upon the VGG-16 architecture, this model consists of 
16 layers, including 13 convolutional layers, successfully 
capturing spatial information and textual content in images. 
The remaining layers of the architecture are fully connected 
layers. By freezing the VGG-16 layers, the model retains 
its already learned weights. Custom layers (Dense 32 and 
Dense 3) are added to tune the model for the specific task of 
COVID-19 detection.

Inception‑V3 Transfer Learning Model

This model is based on the Inception-V3 architecture, 
renowned for its computational efficiency. The architecture 
incorporates multilevel feature extraction through parallel 
convolutions, enabling the model to learn richer features. 
The original layers are frozen during training, preserving 
the learned weights. Custom layers (Dense 128, Dense 64, 
and Dense 3) are then appended to fine-tune the model for 
COVID-19 detection.

Adversarial Attack Preliminaries and Methodology

This section will first discuss several fundamental terminol-
ogies pertaining to attacks on deep learning-based models 
used for COVID-19 diagnosis.

• White-box attack: In a white-box attack scenario, the 
attacker possesses complete access to the targeted deep 
COVID-19 diagnosis model. This includes knowledge 

of the model’s assets, such as gradients, training data, 
parameters, and architecture.

• Black-box attack: In a black-box attack scenario, the 
attacker does not have access to the internal workings of 
the deep COVID-19 diagnosis model. Instead, the model 
is publicly accessible through an application program-
ming interface (API) that only allows input queries.

• Targeted attack: A targeted attack aims to manipulate 
the deep COVID-19 diagnosis model into producing 
a specific output label. For instance, the attacker may 
endeavor to force the model to classify any given chest 
X-ray image as COVID-19 positive.

• Untargeted attack approach: Unlike targeted attacks, untar-
geted attacks focus on misclassifying the deep COVID-19 
diagnosis model without specifying a particular output label.

• Perturbation: Perturbation refers to introducing distur-
bance or noise into the original input to generate a per-
turbed input. This disturbance should be small enough to 
remain imperceptible to humans, yet significant enough 
to cause misclassification by the classifier.

The following symbols are as follows:
M = The deep COVID-19 diagnosis model.
x = The input image from the dataset.
y = The truth label of the input image.
Θ = Represents the parameters of the model.
J (θ, x, y) = The cost function used to train the neural network.
Α = The step size.
δ = The adversarial perturbation added to the input image.
X_adv = The resulting adversarial example.
ε = The maximum perturbation allowed.
∇x J (θ, x, y) = computes the gradient of the loss function 

with respect to the input image.
Let us denote the deep COVID-19 diagnosis model as M . 

The model takes an input image x and outputs a probability 
distribution over different classes, including COVID-19, 
normal, and non-COVID pneumonia conditions. The objec-
tive function for the adversarial attack is defined as follows:

Subject to

In the objective function, M(x) correctly classifies the 
input, while M(x') misclassifies the input as a different 
class. The objective function emphasizes that the mag-
nitude of the perturbations introduced in the adversarial 
example should be small, but still significant enough to 
cause the model to misclassify the input..

(1)Min‖Xadv − x‖X

M(x) = y

M
(
x
�)
! = y
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The FGSM adds a small perturbation to the input image, 
enough to change the model’s prediction. The perturbation 
is generated by calculating the gradient of the loss func-
tion with respect to the input image. The gradient points 
in the direction of the steepest ascent. Then, a small step 
in this direction is taken in the input space. Equation (1) 
is for FGSM:

Here, ∇x J(θ, x, y) computes the gradient of the loss 
function with respect to the input image. The sign func-
tion creates a new perturbed image in the direction that will 
maximize the loss. ε (epsilon) is the magnitude of the per-
turbation, i.e., it bounds the total number of pixels in Xadv 
that can be modified with respect to x . The adversarial image 
Xadv is generated by adding the perturbation to the original 
image. This process aims to maximize the loss, leading to the 
model’s misclassification of the adversarial image.

In contrast to FGSM, a one-step attack, PGD, is an itera-
tive method, meaning that it applies FGSM multiple times 
with a small step size. A projection operation follows this to 
ensure that the adversarial example stays within the ε-ball 
of the original example in the pixel space. This iterative 
approach enables PGD to create more potent adversarial 
examples compared to FGSM. The following steps define 
the PGD adversarial attack:

1. Initialize x_adv = x
2. For each iteration, update x_adv by:

 where P represents the projection operation ensuring that 
x' lies within the ε-ball around x and the P[x, ε] function 
ensures that x' stays within the ε-ball of x in the pixel space. 
This method tries to maximize the loss and thus aims to 
cause a misclassification, while the adversarial example 
remains visually indistinguishable from the original image.

BIM is an iterative variant of PGD where the step size 
is smaller. Like PGD, it uses multiple steps of size α to 
update the image, but it does not include the projection step. 
Instead, it clips the pixel values of the adversarial example 
after each update to ensure they stay in the ε-ball around the 
original image. The clipping operation is a simpler form of 
projection used in PGD. BIM applies the FGSM attack itera-
tively, and the adversarial example generation is given by: 
The BIM adversarial attack is defined by the following steps:

1. 1. Initialize x_adv = x.
2. For each iteration, update x' by:

(2)� = � ∗ sign(∇x(∅, x, y))

Xadv = X + �

(3)xadv = P[x, �]
(
x
�

+ a ∗ sign
(
�, x

�

, y
))

The Clip[x, ε] operation ensures that x' stays within the 
ε-ball of x in the pixel space by limiting (or clipping) the 
pixel values of x' to be within the range [x—ε, x + ε]. Like 
other adversarial attacks, BIM aims to maximize the loss, 
leading to a misclassification while ensuring the adversarial 
image remains visually similar to the original image.

In Fig. 6, we comprehensively illustrate the entire process 
involved in generating adversarial perturbations and exam-
ples. Notably, the adversarial image appears visually indis-
tinguishable from the original image, making it challenging 
for human observers to discern any differences. However, 
what is particularly striking is that, despite this visual simi-
larity, the model fails to classify the adversarial input cor-
rectly. This phenomenon underscores the insidious nature of 
adversarial attacks, where imperceptible alterations to input 
data can lead to significant misclassifications by even highly 
accurate models.

The Rationale for Using FGSM, PGD, and BIM

The incorporation of the fast gradient sign method (FGSM), 
projected gradient descent (PGD), and basic iterative method 
(BIM) in our study is underpinned by a host of advantages 
and a well-defined rationale. These advantages and ration-
ales elucidate the methodological choices made in our 
research and underscore the significance of these adver-
sarial attack techniques in the context of deep COVID-19 
diagnosis models.

• Methodological Diversity
  One of the paramount advantages of employing 

FGSM, PGD, and BIM lies in their methodological 
diversity. FGSM represents a straightforward one-step 
adversarial attack, while PGD and BIM introduce itera-
tive complexities. This diversity allows for a compre-
hensive evaluation of deep learning models across a 
spectrum of adversarial scenarios, mirroring real-world 
threat landscapes.

• Realism and Clinical Relevance
  FGSM, PGD, and BIM align with the realism and 

clinical relevance sought in our study. These methods 
emulate practical adversarial situations that medical 
diagnosis models may encounter in real-world health-
care settings. We gain insights into their robustness and 
vulnerabilities in scenarios that closely mimic clinical 
practice by subjecting the models to such attacks.

• Comparative Analysis
  Utilizing multiple adversarial attack techniques facil-

itates a comparative analysis of their effectiveness and 
impact. This comparative approach helps delineate the 

(4)xadv = Clip[x, �]
(
x
�

+ a ∗ sign
(
∇x�j

(
�, x

�

, y
)))
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strengths and weaknesses of FGSM, PGD, and BIM, 
enabling us to understand their nuances. Such insights 
are invaluable for devising effective mitigation strate-
gies and the development of robust countermeasures.

• Comprehensive Robustness Assessment
  FGSM, PGD, and BIM encompass a broad spectrum of 

adversarial complexities, ranging from simple, one-step 
attacks to more intricate iterative strategies. This compre-
hensive approach empowers us to assess the robustness 
of deep COVID-19 diagnosis models under varying lev-
els of adversarial intensity and duration. Consequently, 
we obtain a holistic view of model performance across 
diverse adversarial conditions.

• Catalyst for Defense Strategies
  The deployment of FGSM, PGD, and BIM extends 

beyond mere vulnerability assessment. These adversarial 
attacks serve as catalysts for the development of robust 
defense mechanisms. Insights derived from these analy-
ses inform the creation of effective defense strategies and 

adversarial training techniques, reinforcing the security 
of COVID-19 diagnosis models in clinical applications.

• Research Advancement
  Finally, the rationale for using FGSM, PGD, and BIM 

stems from their role in advancing the frontiers of adver-
sarial research in medical deep learning. By exploring 
these techniques in the context of COVID-19 diagnosis, 
our study contributes to the broader field of adversarial 
machine learning, fostering the development of more 
secure and reliable medical AI systems.

Proposed Two‑Phase Robust Framework

Our approach leverages modified adversarial learning dur-
ing training and applies JPEG compression as a preproc-
essing step during inference. By training on diverse adver-
sarial examples and employing compression to remove 
adversarial noise, we improved the model's resilience to 
adversarial attacks.

Fig. 6  Generation process of adversarial example from clean image: a process using FGSM technique by setting epsilon value to 0.009, b adver-
sarial example generation via PGD attack, and c adversarial example using BIM approach
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Modified Adversarial Learning During Training

Our proposed framework presents a robust approach based 
on the conventional adversarial learning paradigm. In this 
framework, we introduce an adversarial generator module 
that generates adversarial examples for a given image at dif-
ferent epsilon values, surpassing the limitations of the single 
epsilon value approach. Additionally, we incorporate data 
augmentation techniques, including rotation, scaling, and 
contrast adjustments, to enhance the diversity of the gener-
ated adversarial images.

The primary objective of this framework is to improve 
the model’s resilience against a broad range of adversarial 
perturbations, rather than focusing solely on a single pertur-
bation. By considering multiple epsilon values and applying 
data augmentation, we aim to create a robust model capable 
of accurately classifying instances, even in the presence of 
sophisticated adversarial attacks. To illustrate the implemen-
tation of our approach, Algorithm 1 provides a step-by-step 
outline of the modified adversarial learning process.

Step 1 of the algorithm is to generate adversarial exam-
ples. The algorithm generates adversarial examples for each 
image in the regular dataset for each epsilon value in set 
E. Hence, the time complexity of this step is O(N * |E|), 
where N is the number of images in the regular dataset. The 
algorithm computes the loss between the predicted label and 
the true label for the clean image to generate the adversarial 
example. Then, it computes the gradient of the loss with 
respect to the input image and generates the adversarial 
example by adding the perturbation to the clean image. The 
algorithm applies data augmentation to the generated adver-
sarial examples to increase the diversity of the adversarial 
examples. Finally, the adversarial example is added to the 
modified training dataset. In STEP 2, during the training 
process, the model is optimized using a weighted combina-
tion of the original loss and adversarial loss, which encour-
ages the model to correctly classify the clean images and 
the adversarial examples generated in Step 1. This process 
is repeated for T iterations, which allows the model to learn 
from the modified dataset and improve its robustness con-
tinuously. The gradient of the total loss with respect to the 
model parameters is computed, and the model parameters 
are updated using stochastic gradient descent with a learning 
rate α. Therefore, the time complexity of this step is O (T 
* B), where T is the number of iterations and B is the batch 
size. In Step 3, the algorithm evaluates the robust model by 
computing its accuracy on a test set of images. The time 
complexity of this step depends on the size of the test set, 
which we will denote as M. Hence, the time complexity is 
O(M). In Step 4, it is required to improve the robustness 
of the model and avoid overfitting. Repeating steps 1–3 
with a different random seed can generate a different set 
of adversarial examples and further diversify the training 

data. This helps the model to learn a more generalized deci-
sion boundary that can better distinguish between clean and 
adversarial examples, thereby improving its robustness. The 
number of repetitions will be denoted as R. Therefore, the 
time complexity of this step is O(R * (N * |E|+ T * B + M)). 
Overall, this algorithm improves the robustness of a non-
robust model to adversarial attacks by generating a diverse 
set of adversarial examples and using them to modify the 
training dataset.

The overall time complexity of algorithm 3 is approxi-
mately O(R * (N * |E|+ T * B + M)), where R is the number 
of repetitions, N is the number of images in the regular data-
set, |E| is the number of epsilon values, T is the number of 
iterations, B is the batch size, and M is the size of the test 
set. This complexity analysis accounts for the time required 
to generate adversarial examples, train the robust model, 
evaluate its accuracy, and repeat the process with differ-
ent random seeds to enhance dataset diversity. Additional 
factors such as model architecture, optimization algorithm 
efficiency, and hardware specifications may influence the 
actual runtime.

JPEG Compression Preprocessing During Inferencing

In the inference phase, we introduce a preprocessing mod-
ule that applies JPEG compression to the test data samples. 
JPEG compression is a widely used lossy image compres-
sion technique that reduces file size by removing unnec-
essary details. However, it also has the effect of removing 
high-frequency noise, including adversarial perturbations. 
By applying JPEG compression to the test images before 
passing them to the model, we effectively remove adversarial 
noise, enabling the model to make accurate classifications.

Here are the steps to use JPEG compression for adver-
sarial noise removal:

1. Generate adversarial images: First, an adversarial 
attack is performed on the original images to create 
adversarial examples.

2. Apply JPEG compression: Next, apply JPEG compres-
sion on the adversarial images. This step involves trans-
forming the image to a different space (discrete cosine 
transform (DCT)), quantization, and encoding. During 
the quantization step, high-frequency components that 
contain adversarial perturbations are discarded, resulting 
in an image with reduced adversarial noise.

3. Decompress images: After compression, the images are 
decompressed back to their original size. During this 
process, the adversarial noise originally added to the 
image is reduced or even eliminated.

To illustrate this, let us represent the adversarial image 
as A, the JPEG compression function as C(·), and the 
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Input: regular dataset, label, non-

adversarial image (x_adv), Adversarial example set (x_adv_set) 

Output: Robust model

STEP 1:   Generate adversarial examples

STEP 1.1: x_adv_set = [ ]

For , do: 

For , do: 

STEP1.2: Compute the loss between the predicted label and the true label: 

loss = CategoricalCrossEntropy(label, non-robust model.predict(clean image)).

STEP1.3: Compute the gradient of the loss with respect to the input image: 

gradient = gradient(loss, clean image).

STEP1.4: Generate the adversarial example by adding the perturbation to the clean     image:

STEP 1.5: Apply data augmentation to the adversarial example to increase diversity:

x_adv= apply_random_augmentation(x_adv)

STEP1.7: Add the adversarial example to the modified training dataset: 

x_adv_set.append (x_adv)

STEP 2: Train the robust model

For T iterations, do : 
STEP2.1:  Sample a batch of images from the modified training dataset

STEP2.1:  Compute the loss between the predicted label and the true label: 

loss =  CategoricalCrossEntropy(label, robust model.predict(batch))

STEP2.1: Compute the adversarial loss between the predicted label and the true label for the 

adversarial examples in the batch: 

adversarial_loss = CategoricalCrossEntropy(label, robust model.predict(adversarial batch))

STEP2.1: Compute the total loss as a weighted sum of the original loss and the adversarial loss:  

STEP2.1:  Compute the gradient of the total loss with respect to the model parameters: 

gradient = gradient(total_loss, model parameters)

STEP2.1: 

model parameters = model parameters - * gradient

Step 3: Evaluate the robust model

compute the accuracy of the robust model on a test set of images

Step 4: Repeat steps 1-3 with a different random seed

To increase the diversity of the modified training dataset and avoid overfitting, repeat

steps 1-3 with a different random seed.

Take the average accuracy over all runs as the final accuracy.

Algorithm 1  Modified adversarial learning
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decompression function as D(·). The following steps can 
represent the process:

After these steps, Adecompressed is the final image where 
adversarial noise has been significantly reduced. This image 
can then be input into the model for classification.

The proposed algorithm 2 requires several input param-
eters to be provided before its execution. The first param-
eter is the adversarial image (x_adv), representing the input 
image subjected to adversarial perturbations. The next 
parameter is the JPEG compression quality factor (q), which 
determines the JPEG compression quality applied to the 
adversarial image. The quality factor is typically specified 
as a numerical value ranging from 0 to 100. Higher values 
(e.g., 90) indicate higher image quality with less compres-
sion, while lower values (e.g., 10) indicate lower image qual-
ity with more compression. The choice of the quality factor 
depends on the desired trade-off between image compres-
sion and the preservation of important image details.

The threshold for adversarial detection (t) is another 
important parameter. This threshold determines whether an 
image is still considered adversarial after JPEG compres-
sion. It is usually set as a value between 0 and 1. A lower 

A = Original Image + Adversarial pertubation

Acompressed = C(A)

Adecompressed = D(Acompressed)

threshold value (e.g., 0.1) indicates a stricter criterion for 
considering an image as adversarial, while a higher thresh-
old value (e.g., 0.5) indicates a more lenient criterion. The 
selection of the threshold depends on the desired robustness 
level and the application’s specific requirements.

The maximum number of iterations (max_iter) is a 
parameter that sets the upper limit on the number of itera-
tions allowed in the optimization process to remove adver-
sarial noise. It is typically set as a positive integer value. A 
higher value allows for more iterations, which may result 
in better noise reduction but also increases the computa-
tional time. The choice of the maximum number of iterations 
depends on factors such as the complexity of the adversarial 
noise and the available computational resources. The conver-
gence threshold (epsilon) is the final parameter, determining 
the criterion for stopping the iteration loop. It is typically set 
as a small positive value, such as 0.01 or 0.001. A smaller 
epsilon value indicates a stricter convergence criterion, 
requiring more precise noise reduction before stopping the 
iterations. The choice of the convergence threshold depends 
on the desired level of noise reduction and the trade-off with 
computational resources.

The algorithm involves several steps to process the 
adversarial image and remove adversarial noise using 
JPEG compression. The pretrained deep learning model 
M is initially loaded into memory (Step 1), serving as the 
foundation for subsequent operations. The specific adver-
sarial image x_adv is then loaded as the input for the algo-
rithm (Step 2), acting as the starting point for the noise 

Input: Adversarial image (x_adv), Set JPEG compression quality factor (q), threshold for adversarial detection (t), 

number of iterations (max_iter), convergence threshold (epsilon)

Output: Clean Image (x_reconstructed)

Step 1: Load the pre-trained deep learning model M

Step 2: Load the adversarial image x_adv

Step 3: Set iteration counter iter = 0

Step 4: Set delta = x_adv

Step 5: Compress x_adv using JPEG compression with quality factor q to obtain x_compressed

Step 6: Decompress x_compressed to reconstruct x_reconstructed

Step 7: Repeat until iter reaches max_iter or convergence is achieved:

Step 7.1: Pass x_reconstructed through M to obtain predicted class probabilities y_pred

Step 7.2: Compute adversarial confidence as max(y_pred) - y_pred[target_class]

Step 7.3: If adversarial confidence < t, exit loop

Step 7.4: Compute gradient of loss function with respect to x_reconstructed: _x J (M(x_reconstructed), 

target_class)

Step 7.5: Update delta = delta - epsilon * sign ( _x J(M(x_reconstructed), target_class))

Step 7.6: Clip delta to ensure it remains within a valid range

Step 7.7:
Step 7.8: Increment iter by 1

Step 8: Output final reconstructed image x_reconstructed.

Algorithm 2  JPEG preprocessing to remove adversarial noise
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removal process. The iteration counter iter is initialized 
to zero (Step 3), allowing the algorithm to keep track of 
the number of iterations performed. The optimization pro-
cess begins by setting the variable delta to the adversarial 
image x_adv (Step 4), representing the adversarial noise 
that will be gradually reduced. JPEG compression is applied 
to the adversarial image using a specified quality factor q 
(Step 5), effectively reducing the file size while preserv-
ing important visual information. The compressed image 
is then decompressed to reconstruct the image (Step 6), 
aiming to restore the original image while mitigating adver-
sarial noise. The algorithm enters an iterative optimization 
loop (Step 7), continuing until convergence or reaching 
the maximum number of iterations. In each iteration, the 
reconstructed image is passed through the deep learning 
model M to obtain predicted class probabilities (Step 7.1), 
allowing evaluation of the model’s response. The algorithm 
computes the adversarial confidence by comparing the 
maximum predicted probability with the predicted prob-
ability of the target class (Step 7.2), quantifying the level 
of adversarial perturbation present. The algorithm exits the 
loop if the computed confidence falls below the specified 
threshold (Step 7.3). If the adversarial noise is still sig-
nificant, the gradient of the loss function with respect to 
the reconstructed image is computed (Step 7.4), providing 
information about the direction and magnitude of the loss 
change in response to variations in the image. The delta is 
updated by subtracting the product of a learning rate and 
the sign of the gradient (Step 7.5), modifying the adver-
sarial noise to reduce its impact. To ensure valid values, the 
updated delta is clipped to an appropriate range (Step 7.6). 
Finally, the reconstructed image is updated by adding the 
delta, effectively integrating the modifications made to the 
adversarial noise (Step 7.7).

The algorithm continues to iterate through the optimi-
zation loop, encompassing the steps of passing the recon-
structed image through the model, computing adversarial 
confidence, updating the delta, and clipping the delta until 
convergence is achieved or the maximum number of itera-
tions is reached. The time complexity primarily depends on 

the size of the image for JPEG compression and decompres-
sion, typically O(N log N), where N represents the image 
size. The time complexity of the iterative optimization loop 
depends on the model architecture and can be approximated 
as O(N) or O(N log N).

Experimental Results

We utilized the services of Google collaborator to train, attack, 
and defend our deep COVID diagnosis model. The model and 
the attack were implemented in a Python 3.7 environment using 
Tensorflow and Keras packages. We represent the Resnet-50-
based model as (M1), VGG-16 as (M2), and inceptionV3 as 
( M3). The models were validated on 400 test samples. We 
evaluated the performance of the models (performance on clean 
data, adversarial attacks and performance on proposed defense 
approach) separately on the X-ray and CT datasets.

Evaluation Metric

1. Accuracy (ACC)

• Accuracy is a fundamental metric that measures the 
overall correctness of predictions made by a model.

• It is defined as the ratio of correctly predicted 
instances to the total instances:

Where:

– TP (true positives) represents correctly predicted 
positive instances.

– TN (true negatives) represents correctly predicted 
negative instances.

– FP (false positives) represents instances predicted 
as positive but are negative.

– FN (false negatives) represents instances pre-
dicted as negative but are positive

ACC = (TP + TN)∕(TP + TN + FP + FN)

Table 4  Hyperparameter setting 
of a deep COVID-19 diagnosis 
model during training

Hyperparameter ResNet-50 (M1) VGG-16 (M2) Inception-V3 (M3)

Input layer_size 224 *224*3 224 *224*3 224 *224*3(modified)
Batch_size 32 32 32
Epochs 50 50 50
Learning_rate 1e-4 with

decay rate = learning rate/
epoch number;

1e-3 with
decay rate = learning rate/

epoch number;

1e-3 with
decay rate = learning 

rate/epoch number;
Dropout_rate 0.3, 0.5, 0.4 0.5, 0.5, 0.5 0.5, 0.4, 0.5
Optimization ADAM ADAM ADAM
Loss function CategoricalCrossentropy CategoricalCrossentropy CategoricalCrossentropy
Output layer_size 224*224*3 224*224*3 224*224*3 (modified)
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2. Precision (P)

• Precision quantifies the accuracy of positive predic-
tions made by a model.

• It is defined as the ratio of true positives to the total 
predicted positives:

3. Recall (sensitivity, true-positive rate)

• Recall measures the model's ability to identify all 
relevant instances, particularly the positive ones.

• It is defined as the ratio of true positives to the total 
actual positives:

4. F1-score
• The F1-score is the harmonic mean of precision and 

recall, providing a balance between the two metrics:

5. Specificity (true-negative rate or selectivity)
• It measures the ability of a model to correctly identify 

negative instances (the “true negatives”) out of all 
actual negative instances.

Experimental Setup

During the training of the models, the parameter setting 
that was used is shown in Table 4. The parameters used 
during the adversarial attack are shown in Table 5. The 
parameters used during the proposed defense approach are 
shown in Tables 6 and 7.

P = TP∕(TP + FP)

Recall = TP∕(TP + FN)

F1 − Score = (2 ⋅ P ⋅ Recall)∕(P + Recall)

Specif icity = TN∕(TN + FP)

Evaluation of X‑ray Dataset

We initially assessed the performance of our deep learning 
models (M1, M2, and M3) using clean X-ray data in the Pre-
Attack Evaluation subsection. Following that, we thoroughly 
examined these models’ resistance to adversarial attacks, 
including FGSM, PGD, and BIM, in the Post-Attack Evalu-
ation subsection. Finally, in the Post-Defense Evaluation 
subsection, we demonstrated the robustness of our frame-
work against these attacks, highlighting its effectiveness in 
enhancing model performance.

Pre‑attack Evaluation on X‑ray

The models were extensively trained for 50 epochs on the X-ray 
dataset, encompassing three distinct classes: “normal,” “pneu-
monia,” and “COVID-19.” Table 8 presents a comprehensive 
overview of the performance metrics for three distinct models, 
M1, M2, and M3, on an X-ray dataset. These metrics, includ-
ing average accuracy, precision, recall, F1-score, and specificity, 
provide a robust assessment of model performance over multiple 
iterations. For example, Model M1 consistently maintained an 
impressive average accuracy of 93.34%, affirming its capabil-
ity to distinguish between normal, pneumonia, and COVID-19 
cases. Model M2, closely following, demonstrated an average 
accuracy of 91.45%, signifying its proficiency in precisely iden-
tifying the three classes. Notably, Model M3 exhibited excep-
tional performance, achieving the highest average accuracy of 
94.65% among the models. This underlines its superiority in 
classifying X-ray images effectively. The average accuracy of the 
models on testing data over multiple epochs is shown in Fig. 7.

Furthermore, we have visually presented the model 
outputs for all three X-ray images, namely “normal,” 
“non-COVID pneumonia,” and “COVID-19,” in Fig. 8. A 
meticulous examination of the figure reveals the exemplary 
performance of the models. For instance, Model M1 exhib-
ited remarkable accuracy by correctly classifying a clean 
“normal” X-ray image as “normal” patient with an impres-
sive confidence level of 99.73%.

Post‑Attack Evaluation on X‑ray

In "COVID-19 Diagnosis Models", "Contribution", Intro-
duction, Table 8 revealed how well the models performed 

Table 5  Parameters used in the adversarial attacks

Attack Parameters

FGSM ε = 0.005
PGD ε = 0.2, α = 2/255, steps = 20
BIM ε = 0.04, α = 1/255, steps = 15

Table 6  Parameters used during the training phase in the proposed defense approach

Parameter Value Description

Epsilon (ε) 0.001, 0.005, 0.009 The reason for producing adversarial images with varying epsilon values is to 
ensure that the model is resilient to a variety of adversarial perturbations instead 
of a single perturbation

Data augmentation Rotation, contrast Increase the diversity of the adversarial examples
Epochs (T) 50 This means that the optimization process will run for a maximum of 100 iterations
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when analyzing X-ray images under normal conditions. 
They achieved high accuracy, f1-score, and specificity, 
indicating their ability to correctly classify these images 
into different categories. However, when we subjected 
these models to adversarial attacks, the situation changed 
significantly, as shown in Table 9. For instance, with the 
FGSM attack, M1’s accuracy dropped to 18.37%, M2’s to 
17.29%, and M3’s to 18.59%. The PGD attack was even 
more challenging, resulting in accuracy rates of just 9.17% 
for M1, 8.31% for M2, and 8.74% for M3. Finally, the BIM 
attack had a similar impact, with M1 achieving an accu-
racy of 8.68%, M2 at 7.15%, and M3 at 9.84%.

Figure  9 presents a comprehensive analysis of each 
model’s performance under adversarial attacks, highlight-
ing their vulnerability to such malicious inputs as evidenced 
by a substantial drop in accuracy. Furthermore, the impact 

of adversarial attacks on model outputs is depicted in 
Fig. 10. For example, an “adversarial-normal-image” gen-
erated using FGSM is alarmingly misclassified by M1 as a 
COVID-19-infected person with a staggering 99.33% con-
fidence level, whereas in Fig. 8, M1 correctly identifies the 
clean version of the same image as “normal’ with 99.73% 
confidence. The concern lies in M1’s high-confidence mis-
classification of the adversarial normal image, emphasizing 
the crucial need for robust defenses and countermeasures to 
bolster the models’ resilience against such attacks.

Post‑Defense Evaluation on X‑ray

The primary aim of our proposed defense framework 
is to enhance a model’s ability to classify adversarial 

Table 7  Parameters used during the inferencing phase in the proposed defense approach

Parameter Value Description

Quality factor (q) 80 This represents a moderate compression level, striking a balance between image quality and file 
size reduction

Threshold for adversarial detection (t) 0.2 Indicating that an adversarial image is successfully mitigated if the adversarial confidence falls 
below 0.2

Max_iter 100 This means that the optimization process will run for 100 iterations
Convergence epsilon (epsilon) 0.001 This indicates that the algorithm will stop iterating once the changes in the adversarial noise 

reduce below this threshold

Table 8  Accuracy, precision, 
recall, F1-score, and specificity 
of the models on clean X-ray 
test data

M1

Precision (%) Recall (%) F1-score (%) Specificity (%) Support

M1
No pneumonia (normal) 92.49 96.47 94.55 93.42 100
Non-COVID pneumonia 96.31 90.31 93.27 92.47 100
COVID_pneumonia 94.48 94.37 94.56 92.82 200
Average accuracy 93.34 400
Macro_average 93.12 92.56 92.41 92.56 400
Weighted_average 93.34 92.37 92.93 92.82 400

M2
No pneumonia (normal) 92.73 96.26 93.28 90.31 100
Non-COVID pneumonia 93.75 90.38 91.57 89.38 100
COVID _pneumonia 92.58 91.41 94.93 91.93 200
Average accuracy 91.45 400
Macro_average 91.41 90.49 90.49 90.89 400
Weighted_average 90.76 91.58 91.41 91.08 400

M3
No pneumonia (normal) 92.73 97.65 95.45 94.49 100
Non-COVID pneumonia 98.93 92.37 92.47 94.85 100
COVID _pneumonia 94.47 93.77 95.67 94.62 200
Average accuracy 94.65 400
Macro_average 95.57 94.28 94.52 94.51 400
Weighted_average 94.48 94.24 94.42 94.67 400
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images. Never theless,  we also comprehensively 
evaluated the framework’s performance on clean 
inputs. This assessment sought to gauge the effec-
tiveness of the defense mechanism in enhancing the 
model’s performance when faced with various input 
scenarios(adversarial and clean samples).

In Table 10, we provided the performance of the post-
defense models on the clean X-ray images. The accuracy, 
precision, recall, and specificity percentages for models M1, 
M2, and M3, trained on the X-Ray dataset, are reported. 
The models achieved a slight drop in average accuracies on 
the clean inputs, with M1 achieving 92.89%, M2 achieving 

Fig. 7  Testing accuracy of the 
models over 50 epochs

Fig. 8  Models performed exceptionally well on X-ray images, predicting correctly with a very high confidence score
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91.23%, and M3 achieving 94.28%. These values indicate 
the models’ ability to accurately classify the clean X-ray 
images after implementing the defense mechanism. Fig-
ure  11 compares pre-defense and post-defense models 
regarding accuracy on a clean X-ray dataset.

In Table 11, we showcase the post-defense models’ per-
formance on various adversarial attacks in terms of aver-
age accuracy, F1-score, and specificity. Despite the pres-
ence of adversarial inputs, the models maintain relatively 
high performance. For instance, under the FGSM attack, 
M1 achieves an average accuracy of 94.39%, M2 achieves 
92.82%, and M3 achieves 93.79%. Similarly, the PGD and 
BIM attacks yield accuracies that demonstrate the models’ 
resilience, with M2 exhibiting an accuracy of 93.04%, M3 
achieving 92.89% under the PGD attack, M1 achieving an 
accuracy of 92.85%, and M3 achieving 94.73% under the 
BIM attack. The performances of post-defense models on 
adversarial attacks in terms of average accuracies are shown 
in Fig. 12.

The results affirm the effectiveness of our proposed 
defense framework in enhancing the model’s performance on 
both clean and adversarial inputs. This defense mechanism 
enables the accurate classification of clean X-ray images and 
provides robustness against adversarial attacks. Figure 13 
illustrates the robust model’s performance on adversarial 
inputs, where it excels. For example, an “adversarial normal 
X-ray” image was correctly classified as normal with 98.52% 
confidence. In contrast, the non-robust model in Fig. 10 mis-
classified the same adversarial image as COVID-19 with 
99.3% confidence. These findings emphasize our defense 
mechanism’s practicality and real-world effectiveness, high-
lighting its potential to enhance the reliability and security of 
machine learning models in healthcare applications.

Evaluation of CT Dataset

Likewise, we assessed the models’ performance using 
high-resolution CT images. While CT images are relatively 

Table 9  Average accuracy, F1-score, and specificity of the models on adversarial X-ray images

Attacks M1 (%) M2 (%) M3 (%)

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

FGSM 18.37 18.05 18.56 17.29 17.15 16.06 18.59 17.31 16.48
PGD 9.17 9.56 9.03 8.31 7.79 7.20 8.74 7.92 6.89
BIM 8.68 8.23 8.97 7.15 7.17 7.97 9.84 8.73 8.16

Fig. 9  Pre-defense (non-robust) 
models’ average accuracy on 
each adversarial attack
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Fig. 10  Models’ output on adversarial examples along with their confidence scores. It is apparent from the figure that all the models consistently 
misclassified the adversarial images with remarkably high confidence levels

Table 10  Performance of 
post-defense models (after 
implementing the proposed 
defense approach) on the clean 
X-ray images

M1

Precision (%) Recall (%) F1-score (%) Specificity (%) support

M1
No pneumonia (normal) 92.29 96.37 94.25 93.03 100
Non-COVID pneumonia 96.24 89.89 93.14 92.25 100
COVID _pneumonia 93.23 94.23 94.43 92.23 200
Average accuracy 92.89 400
Macro_average 92.32 92.23 92.29 92.23 400
Weighted_average 92.79 92.89 92.34 92.76 400

M2
No pneumonia (normal) 92.32 97.31 93.03 90.21 100
Non-COVID pneumonia 96.43 90.29 91.27 89.67 100
COVID _pneumonia 92.87 92.25 95.78 91.89 200
Average accuracy 91.23 400
Macro_average 91.41 90.49 90.34 90.32 400
Weighted_average 90.76 91.58 91.52 90.83 400

M3
No pneumonia (normal) 92.65 97.28 95.24 94.35 100
Non-COVID pneumonia 98.78 92.14 92.39 94.26 100
COVID _pneumonia 94.39 93.48 95.52 94.49 200
Average accuracy 94.28 400
Macro_average 95.34 94.21 94.34 94.32 400
Weighted_average 94.21 94.09 94.19 94.09 400
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costly and less prevalent than X-ray images, this evaluation 
aimed to validate the applicability of our proposed defense 
approach across various image modalities.

Pre‑attack Evaluation on CT

Similarly, Table 12 illustrates the performance metrics of the 
models (M1, M2, and M3) on the clean CT dataset. The aver-
age accuracies for the models are as follows: M1 achieves an 
accuracy of 95.72%, M2 achieves 92.89%, and M3 achieves 
95.03% on the clean CT dataset. Model M1 achieved the 
highest accuracy of 98.21% on the CT dataset. In Fig. 14, 
we presented the testing accuracy curve to represent how 
the accuracy evolved across 50 epochs visually. Figure 15 
demonstrates how the model classifies the clean CT image.

Post‑Attack Evaluation on CT

The performance drastically reduced when the same mod-
els were exposed to multiple adversarial attacks, as shown 

in Table 13. It focuses on the accuracy of the models 
trained on the clean CT dataset when subjected to adver-
sarial attacks. The attacks considered are FGSM, PGD, 
and BIM. The results indicate a significant drop in accu-
racy compared to the clean dataset. For instance, under the 
FGSM attack, M1 achieves an accuracy of 21.82%, M2 
achieves 20.02%, and M3 achieves 20.97%. Similarly, the 
PGD and BIM attacks result in lower accuracy percentages 
for all models. Figure 16 shows the comparison of the 
performance of the models on adversarial examples. Fig-
ure 17 demonstrates the classification capabilities of the 
models on adversarial examples generated via the FGSM 
approach. For instance, M1 misclassified the adversarial 
normal image as a COVID-19 patient with 99.99% confi-
dence. The same version of the clean image was classified 
as normal with 99.73% confidence in Fig. 15.

Post‑Defense Evaluation on CT

After implementing the proposed framework, we evalu-
ated the model’s performance on both clean and adversarial 
inputs separately. The reason was to check the proposed 
defense work’s impact on both clean and adversarial inputs. 
Table 14 presents the performance of the post-defense mod-
els on the clean CT dataset. After implementing the pro-
posed defense mechanism, the models’ accuracies remain 

Fig. 11  Comparison of pre-defense models (before implementing the 
proposed defense approach) and post-defense models (after imple-
menting the proposed defense approach) on a clean X-ray dataset

Table 11  Performance of post-defense models (after implementing the proposed defense approach) on the adversarial examples generated by 
FGSM, PGD, and BIM

Attacks M1 (%) M2 (%) M3 (%)

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

FGSM 94.39 93.89 94.39 92.82 92.37 93.18 93.79 93.10 93.76
PGD 93.17 93.28 93.27 93.04 93.18 93.01 92.89 92.51 92.34
BIM 92.85 92.65 92.73 93.49 93.48 93.27 94.73 94.49 94.16

Fig. 12  Performance of the post-defense (robust) models on adver-
sarial examples
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relatively high. M1 achieves an accuracy of 94.29%, M2 
achieves 94.19%, and M3 achieves 95.33% on the clean CT 
dataset post-defense. In addition, we have compared the 
accuracy of the pre-defense and post-defense models on 
clean and CT datasets in Fig. 18.

Table  15 focuses on the performance of the post-
defense models when exposed to adversarial attacks using 
CT images. Notably, the accuracies of the models increase 
compared to Table 14, indicating the effectiveness of the 
defense mechanism. For instance, under the FGSM attack, 
M1 achieves an accuracy of 95.93%, M2 achieves 94.01%, 
and M3 achieves 94.95%. Similar trends are observed for 
the PGD and BIM attacks. Figure 19 shows the perfor-
mance of the post-defense models on CT image datasets. 
Figure 20 shows the output of the robust models on CT 
images when exposed to adversarial images.

Ablation Study and Discussion

We conducted an ablation study to ascertain the individual 
contributions of adversarial learning and adversarial image 
filtering to the overall robustness of our proposed two-
phase defense framework against adversarial attacks. This 

investigation allowed us to systematically evaluate the effi-
cacy of the individual elements of our methodology.

Effect of Adversarial Learning Alone

We scrutinized the impact of adversarial learning without 
implementing adversarial image filtering for the first phase 
of our ablation study. Our advanced adversarial learning 
algorithm trained the models, while the adversarial image 
filtering stage during inference was omitted. This approach 
provided insight into the extent of resilience contributed 
by adversarial learning against adversarial attacks. The 
model’s performance on modified adversarial learning is 
shown in Table 16. The findings from this analysis facili-
tated an understanding of the standalone strength of adver-
sarial learning in enhancing the model’s defense against 
these attacks.

Effect of Image Filtering Alone

The second phase of our ablation study sought to discern 
the independent influence of image filtering in the absence 

Fig. 13  Models’ performance after implementing our proposed 
defense approach. The process begins by subjecting adversarial 
images to a preprocessing step involving a JPEG-based adversarial 
noise removal filter. Subsequently, these preprocessed images are 

fed into the models trained using the modified adversarial learning 
approach. The results are striking as models exhibit remarkable pro-
ficiency in classifying adversarial images and correctly identifying 
them confidently
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of adversarial learning. The models were conventionally 
trained in this setup, foregoing the adversarial learning step. 
However, adversarial image filtering through JPEG com-
pression was applied during the inference phase. This exper-
iment allowed us to gauge the performance of the image 
filtering technique in safeguarding a model not specifically 

trained to withstand adversarial attacks. The results are 
shown in Table 17.

The findings from this ablation study are instrumental in 
unveiling the individual effectiveness of adversarial learn-
ing and image filtering in the face of adversarial attacks. 
This will aid us in enhancing the individual components 

Table 12  Performance of the 
models in terms of the precision 
recall, accuracy, F1-score, and 
specificity on clean CT test 
images

M1

Precision (%) Recall (%) F1-score (%) Specificity (%) Support

M1
No pneumonia (normal) 93.05 96.85 95.39 96.15 100
Non-COVID pneumonia 96.93 91.48 95.43 93.74 100
COVID _pneumonia 94.81 94.85 94.57 95.56 200
Average accuracy 95.72 400
Macro_average 94.62 94.83 95.06 94.29 400
Weighted_average 94.37 94.96 94.85 94.85 400

M2
No pneumonia (normal) 93.38 96.85 93.89 92.79 100
Non-COVID pneumonia 96.96 90.85 91.73 93.25 100
COVID_pneumonia 92.89 92.78 95.60 92.25 200
Average accuracy 92.89 400
Macro_average 92.73 92.52 92.04 92.89 400
Weighted_average 92.38 92.81 92.39 92.72 400

M3
No pneumonia (normal) 93.85 97.65 96.66 95.38 100
Non-COVID pneumonia 97.60 94.37 94.85 95.31 100
COVID_pneumonia 97.83 95.20 95.98 94.49 200
Average accuracy 95.03 400
Macro_average 95.40 94.37 94.94 94.35 400
Weighted_average 94.75 94.86 94.31 94.57 400

Fig. 14  Testing accuracy curve 
of all three models on unseen 
samples over 50 epochs



330 Journal of Imaging Informatics in Medicine (2024) 37:308–338

1 3

and the integrated system to ensure high reliability and 
accuracy in AI-based COVID-19 diagnosis. We hope to 
publish these results in forthcoming reports for further 
scrutiny and application.

Comparison of the Developed Models Against 
State‑of‑the‑Art Models

First, we compare the developed COVID-19 diagnosis mod-
els with state-of-the-art models in Table 18. It is evident that 
the proposed models outperform them in terms of average 
accuracy. Moreover, in Table 19, we compare the previ-
ous work of the COVID-19 battling tools regarding their 

vulnerabilities against adversarial attacks and the defense 
techniques to make them robust against attacks.

In terms of attack performance, the proposed method 
achieves an accuracy of over 92% under FGSM, PGD, and 
BIM adversarial attacks. This is notably higher compared to 
the other works, which report attack performances ranging 
from 60.82% to 91%. Regarding defense performance, the 
proposed method employs a two-phase security approach, 
resulting in a defense performance of over 95%. This defense 
performance exceeds that of other works, which report 
defense performances ranging from 80 to 90%. The higher 
defense performance indicates that the proposed method 
effectively mitigates the impact of adversarial attacks and 
provides robustness to the models.

Fig. 15  Remarkable performance of the models in accurately classifying clean CT images with high confidence scores

Table 13  Average accuracy, F1-score, and specificity of the models on the adversarial attack

Attacks M1 (%) M2 (%) M3 (%)

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

FGSM 21.82 20.55 21.39 20.02 20.15 19.47 20.97 20.43 19.87
PGD 12.34 12.08 11.38 9.56 8.95 7.78 10.23 10.74 9.99
BIM 8.59 8.37 7.86 7.52 7.45 7.02 9.02 8.91 8.44
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Fig. 16  Average accuracy of 
the pre-defense models after the 
adversarial attacks

Fig. 17  Misclassification of the models on adversarial images with very high confidence values
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Table 14  Performance of post-
defense models on clean CT 
images

Precision (%) Recall (%) F1-score (%) Specificity (%) Support

M1
No pneumonia (normal) 93.26 95.67 94.86 95.67 100
Non-COVID pneumonia 95.89 91.23 95.18 93.06 100
COVID _pneumonia 94.17 94.01 94.63 95.17 200
Average accuracy 94.29 400
Macro_average 94.10 93.95 94.06 94.18 400
Weighted_average 94.07 94.31 94.27 94.31 400

M2
No pneumonia (normal) 93.89 96.92 94.62 93.05 100
Non-COVID pneumonia 97.47 91.23 92.34 93.75 100
COVID_pneumonia 93.46 92.91 95.89 92.67 200
Average accuracy 94.19 400
Macro_average 94.20 94.12 94.08 94.31 400
Weighted_average 94.33 93.97 93.88 94.18 400

M3
No pneumonia (normal) 93.91 97.88 96.82 95.83 100
Non-COVID pneumonia 97.73 94.68 95.05 95.58 100
COVID_pneumonia 97.80 95.62 96.10 94.73 200
Average accuracy 95.33 400
Macro_average 95.14 95.11 95.41 95.35 400
Weighted_average 94.65 95.24 94.76 94.89 400

Fig. 18  Accuracy of the pre and post-defense models on clean CT dataset

Table 15  Performance of post-defense models on adversarial attacks generated by FGSm, PGD, and BIM

Attacks M1 (%) M2 (%) M3 (%)

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

AVG
ACC 

AVG_F1-score AVG_
Specificity

FGSM 95.93 94.22 95.16 94.01 94.87 94.14 94.95 93.53 93.26
PGD 93.77 93.37 93.48 92.92 93.18 93.06 92.09 92.34 92.53
BIM 93.02 93.21 93.33 92.49 92.20 92.41 94.82 93.84 94.48

Fig. 19  Average accuracy of post-defense models that are trained 
using CT images on the adversarial examples
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Fig. 20  Performance of the proposed robust framework on adversar-
ial images. Each image was correctly classified with very high con-
fidence. For instance, the robust model M1 successfully classifies a 

“normal adversarial image” as a “normal’ patient with a 98.45% con-
fidence score. However, the same image was misclassified by the M1 
in Fig. 17 as COVID-19 with a 99.99% confidence score

Table 16  Performance of models on X-ray with only modified adver-
sarial learning

Attacks M1 (ACC %) M2 (ACC %) M3 (ACC %)

FGSM 85.24 83.45 86.29
PGD 81.01 80.40 82.09
BIM 84.92 80.18 82.97

Table 17  Performance of models on X-ray with only JPEG compres-
sion on adversarial attacks

Attacks M1 (%) M2 (%) M3 (%)

FGSM 60.38 62.19 68.29
PGD 59.28 58.32 54.39
BIM 52.18 49.03 53.82

Table 18  Comparison of the accuracy of the diagnosis models on 
clean images against state-of-the-art models

Model Average accuracy (trained 
on X-ray)

Average accuracy 
(trained on CT)

M1 93.34 95.72
M2 91.45 92.89
M3 94.65 95.03
[78] 87.02
[79] 89.50
[80] 92.85
[81] 90.60
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Conclusion

This research delves into the critical issue of adversarial 
attacks against deep learning models utilized in COVID-
19 diagnosis. Our comprehensive exploration has led us to 
discover potential vulnerabilities of such models. Despite 
the inherent robustness and high performance of our devel-
oped deep learning-based COVID-19 diagnosis models 
using ResNet-50 (M1), VGG-16 (M2), and Inception-V3 
(M3), they proved susceptible to FGSM, PGD, and BIM 
adversarial attacks. This vulnerability poses a significant 
risk, especially in a sensitive field like healthcare, where 
reliability and accuracy are paramount.

To address these vulnerabilities, we proposed a novel 
two-phase defense strategy. The application of this tech-
nique solidified the model’s resilience against adversarial 
attacks, maintaining high accuracy even when exposed to 
adversarial examples.

Our experimental findings can be summarized as follows:

• Without adversarial attacks, the deep learning models 
demonstrated commendable accuracy, ranging from 
91.45% to 94.65% on the X-ray dataset and 92.89% to 
95.72% on the CT dataset.

• Upon exposure to adversarial attacks such as FGSM, 
PGD, and BIM, there was a significant deterioration 

in the performance of the models, with their accuracy 
plunging to as low as 7.15% to 18.59% on the X-ray data-
set and 7.52% to 21.82% on the CT dataset.

• Following deploying our proposed two-phase defense 
framework, the models exhibited remarkable resilience 
against adversarial attacks. Their performance improved 
drastically, achieving an accuracy of over 92% against all 
three types of attacks across both datasets.

• Through an ablation study, we discerned the individual 
impact of adversarial learning and image filtering on 
enhancing the resilience of the models.

• Implementing adversarial learning alone improved the 
models’ performance ranging from 80.18% to 86.29%, 
while applying image filtering alone increased perfor-
mance from 49.03% to 68.29%. This finding indicates 
the complementary role of both techniques in bolstering 
the defense against adversarial attacks.

The results of our study have been encouraging. Our 
defense mechanism successfully mitigated the adverse effects 
of adversarial attacks, and the models retained high perfor-
mance, making them more reliable for diagnosing COVID-19 
from radiology images. However, the journey towards a more 
secure and robust AI in healthcare is still ongoing. We believe 
that the defense mechanism proposed in this study is a step 
forward. However, further research is required to explore and 

Table 19  Comparison of adversarial attacks and defense strategies used in previous works

Article Models Dataset Attack method Attack performance Defense 
method

Defense 
performance

[67] COVID-Net [68] X-ray UAP  > 90% Adversarial 
training

 > 80%

[69] ResNet,YOLO, 
DarkNet, GRAD-
CAM

CT scan
X-ray

FGSM,MIFGSM, 
DF, LBFGS, C&W, 
BIM, FB, PGD, 
JSMA, BD, MS, 
poisoning

91% - -

[71] VGG, ResNet CelebA 90% in white box 
setting and 80% in 
black box setting

- -

[72] VGG 16
InceptionV3

X-ray, CT scan FGSM 83.3 - -

[73] U-Net CT scan Stabilized medical 
image attack (SMIA)

60.82% - -

[74] ResNet-18 X-ray FGSM
PGD

94.7% - -

[75] ResNet50, ResNet18, 
WRN-16–8, VGG-
19, InceptionV3

X-ray FGSM, PGD,
C&W, ST

 > 60%

[76] MobileNet-V2 Custom dataset FGSM  > 83% Adversarial 
learning

 ~ 90%

Proposed method ResNet50, VGG-16, 
Incepton-V3-based 
model

COVIDx V9A 
and COVIDx 
CT-1

FGSM, PGD, BIM  > 92% Two-phase 
security

 > 95%
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uncover more comprehensive and efficient defense mecha-
nisms, considering the rapidly evolving adversarial attack 
techniques. We believe that our findings will assist researchers 
in improving the security of their models and raise awareness 
of the need to establish deep COVID-19 diagnosis models 
with several protection strategies.

Limitations and Future Scope

The current study, despite its advancements and contribu-
tions, also has certain limitations:

• JPEG compression dependency: The defense framework 
relies heavily on using JPEG compression. While this 
has proven to be effective in the study, it might introduce 
some image degradation and information loss, which 
could impact diagnostic accuracy, especially when high-
resolution imaging details are critical.

• Dataset constraints: The models are trained and evaluated 
using a specific dataset. Variations in imaging protocols, 
patient demographics, disease stages, and the quality of 
radiology images across different datasets might affect 
the model’s performance and robustness against adver-
sarial attacks.

• Scalability and generalizability: While the study showed 
promising results, it was only tested on three specific deep 
learning models (ResNet-50, VGG-16, and Inception-V3). 
How well the defense framework would scale or generalize 
to other architectures or DL models is unclear.

• Single modality: This study focuses exclusively on radi-
ology images (X-ray and CT). Its effectiveness for other 
types of medical imaging modalities (e.g., MRI, PET) or 
multimodal diagnostic data has not been explored.

• Applicability beyond COVID-19: While the study has 
great relevance for COVID-19 diagnostics, its direct 
applicability to models designed for diagnosing other 
diseases or medical conditions remains untested.

• Computational requirements: Our two-phase defense 
framework, particularly the adversarial training phase, 
can be computationally intensive and time-consuming, 
which might limit its applicability in systems with con-
strained resources.

In the future, we would like to work on the following areas:

• Assessing other adversarial attacks: Future studies should 
assess the resilience of deep learning models against a 
wider array of adversarial attacks beyond FGSM, PGD, 
and BIM, such as the Carlini and Wagner attacks [82]. 
We also aim to test the robustness of the proposed model 
on other problem domains such as, robustness against 

adversarial attack in video surveillance and network 
intrusion detection systems [83–86].

• The proposed work explored the vulnerability in a white-
box environment. However, in the future, we aim to 
investigate the model’s performance in the black box, the 
environment in which the model’s details are not visible 
to the attacker [87].

• Future research could also look into integrating privacy-
preserving techniques, like differential privacy, into the 
models to provide robustness against adversarial attacks 
while also ensuring the confidentiality of the data.

• As discussed, there are other strategies to generate adversarial 
perturbation. We aim to design a universal framework that is 
robust to the adversarial examples generated by any strategies.

• As quantum computing advances, it may offer new pos-
sibilities for developing more efficient and powerful 
adversarial defense mechanisms. Future research in this 
area could be highly fruitful.

• As we delve further into the realm of medical applica-
tions for artificial intelligence, it becomes increasingly 
evident that ensuring confidentiality and maintaining 
privacy will be imperative. As part of the future scope, 
there is a pressing need to develop and implement robust 
mechanisms and technologies that safeguard sensitive 
medical data. This includes the exploration of advanced 
encryption techniques, secure data-sharing protocols, 
and stringent access control measures. Additionally, the 
development of AI models that can operate effectively 
while preserving patient confidentiality and privacy will 
be a critical avenue of research. As we continue to har-
ness the power of AI in healthcare, these endeavors will 
play a pivotal role in building trust and ensuring compli-
ance with privacy regulations and standards.

• Lastly, testing the proposed models and defense mecha-
nisms in real-world clinical settings would provide valu-
able insights into their practical applicability and perfor-
mance, informing further refinement and development.
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