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A hybrid quantum computing 
pipeline for real world drug 
discovery
Weitang Li 1,5, Zhi Yin 2,4,5*, Xiaoran Li 2,5, Dongqiang Ma 2,5, Shuang Yi 2,5, Zhenxing Zhang 2, 
Chenji Zou 1, Kunliang Bu 1, Maochun Dai 1, Jie Yue 1, Yuzong Chen 3, Xiaojin Zhang 3* & 
Shengyu Zhang 1*

Quantum computing, with its superior computational capabilities compared to classical approaches, 
holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. 
However, the application of quantum computing for drug discovery has primarily been limited to 
proof-of-concept studies, which often fail to capture the intricacies of real-world drug development 
challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum 
computing pipeline tailored to address genuine drug design problems. Our approach underscores the 
application of quantum computation in drug discovery and propels it towards more scalable system. 
We specifically construct our versatile quantum computing pipeline to address two critical tasks in 
drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving 
covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves 
as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered 
in drug design, especially the covalent bonding issue present in both of the case studies, thereby 
transitioning from theoretical models to tangible applications. Our results demonstrate the potential 
of a quantum computing pipeline for integration into real world drug design workflows.

Quantum computing is emerging as a powerful change that promises to significantly enhance scientific comput-
ing and simulations. Quantum computers, operating with quantum bits (qubits), have the potential to execute 
complex calculations at speed and levels of precision that traditional supercomputers cannot achieve1–3. The realm 
of drug discovery, characterized by its need for meticulous molecular modeling and predictive analytics4–7, stands 
as an ideal candidate to benefit from this quantum leap. Recent endeavors have commenced the integration of 
quantum computing into drug design research, marking a progressive stride in the application of advanced com-
putational technologies to drug discovery8–11. In drug design, existing classical computational chemistry methods 
are not able to compute exact solutions, and the required computational cost grows exponentially as the scale 
of the system grows. Quantum algorithms exemplified by the Variational Quantum Eigensolver (VQE)12, hold 
the potential to advance classical methods like Hartree-Fock (HF)13 towards more accurate solutions within the 
quantum computing paradigm. As the scale of quantum computers expands, quantum computing approaches are 
expected to significantly outperform existing solutions, such as Density Functional Theory (DFT)14, in terms of 
both accuracy and efficiency in scenarios involving quantum chemical calculations. In addition to the quantum 
chemistry approach, a variety of drug-design problems can be cast into optimization problems11,15. The quantum 
approximate optimization algorithm16 or quantum annealing algorithms17,18 can then be employed to solve these 
optimization algorithms.

However, in the current landscape, the involvement of quantum computing in drug discovery is primarily 
restricted to conceptual validation, with minimal integration into real world drug design19–24. Our hybrid quan-
tum computing pipeline (see Fig. 1) is real-world drug discovery problem oriented. Our approach addresses this 
gap by investigating two pertinent case studies rooted in actual clinical and pre-clinical contexts. The key step for 
quantum computation of molecular properties is to prepare the molecular wave function on a quantum device. 
To this end, the VQE framework is suitable for near-term quantum computers. As shown in Fig. 1b, the core of 
VQE is to employ parameterized quantum circuits to measure the energy of the target molecular system. Then, 
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a classical optimizer is employed to minimize the energy expectation until convergence. Due to the variational 
principle, the state of the quantum circuit becomes a good approximation for the wave function of the target 
molecule, and the measured energy is the variational ground state energy. After that, additional measurements 
can be performed on the optimized quantum circuit for other interested physical properties.

Our first case study focuses on a carbon-carbon bond cleavage prodrug strategy25, which investigates an inno-
vative prodrug activation approach applied to β-lapachone for cancer-specific targeting and has been validated 
through animal experiments. This prodrug design primarily aims to address the limitations of active drugs in 
pharmacokinetics and pharmacodynamics, offering a valuable supplement to the existing prodrug strategies26–32. 
The simulation of the prodrug activation process requires precise modeling of the solvation effect in human body. 
To achieve this, we implement a general pipeline that enables quantum computing of the solvation energy based 
on the polarizable continuum model (PCM). Our findings demonstrate the viability of quantum computations in 
simulating covalent bond cleavage for prodrug activation calculations, which are important steps in real-world 
drug design tasks.

We then turn to the covalent inhibition of KRAS (Kirsten rat sarcoma viral oncogene), a protein target preva-
lent in numerous types of cancers. KRAS plays a crucial role in the RAS/MAPK (Mitogen-Activated Protein 
Kinase) signaling pathway, significantly influencing cell growth, differentiation, and survival33. Mutations of this 
protein, particularly the G12C variant, are common in various cancers, including lung and pancreatic cancers, 
and are associated with uncontrolled cell proliferation and cancer progression34–37. Sotorasib (development code 
name AMG 510), a covalent inhibitor targeting this mutation, has demonstrated potential in providing a more 
prolonged and specific interaction with the KRAS protein, a crucial approach in cancer therapy38,39. Since the 
introduction of AMG 510, a flurry of new inhibitors targeting G12C has been developed, and even expanding 
to other KRAS mutations40–44, and several candidates for broad spectrum inhibition have also been proposed45. 
However, the other mutations usually don’t have a potential site for covalent binding, so their efficacy remained 
to be rigorously tested.

Quantum computing can enhance our understanding of such drug-target interactions through QM/MM 
(Quantum Mechanics/Molecular Mechanics) simulations, which are vital in the post-drug-design computational 
validation phase. To realize this, we implemented a hybrid quantum computing workflow for molecular forces 

Figure 1.   Schematic demonstration for the generalizable quantum computing pipeline for drug discovery. 
(a) The standard workflow of computer-aided drug design (CADD). (b) The module detailing the quantum 
computing process involved.



3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16942  | https://doi.org/10.1038/s41598-024-67897-8

www.nature.com/scientificreports/

during QM/MM simulation. This development not only facilitates a detailed examination of covalent inhibitors 
like Sotorasib, but also propels the field of computational drug development forward.

Through these two real-world drug design examples, we present a hybrid quantum computing pipeline for 
drug design. Our workflow has advantages in its flexibility and has been carefully constructed to accommodate 
various applications in the area of drug discovery. The universality of our pipeline highlights its potential as a 
foundational tool, empowering researchers with a ready-to-use computational resource.

En route of our computational investigations, we also established a number of benchmarks, which not only 
exemplify the robustness of our approach but also serve as a valuable reference for the field of quantum com-
puting-enhanced drug discovery. By democratizing access to this advanced pipeline, we lay the groundwork 
for expanded collaborative endeavors within the scientific community, thereby accelerating the translation of 
quantum computing power into tangible therapeutic outcomes.

Results
Gibbs free energy profiles in prodrug activation strategy
Carbon–carbon bond cleavage in prodrug activation strategy
In modern drug research, prodrug activation is a very important strategy46,47. It helps turn inactive ingredients 
into active drugs inside the body. This strategy helps make drugs work better by making sure they only activate 
at certain places in the body, which lowers the risk of side effects and leads to safer and more effective treatments.

Among various prodrug activation strategies25–32, that based on the cleavage of carbon–carbon (C–C) bonds 
is particularly innovative. It is a novel strategy with applicability to drugs without traditional modifiable groups. 
The C–C bond, a quintessential linkage in organic chemistry, imparts robustness to molecular frameworks, 
and its selective scission demands conditions of exquisite precision. Synthesizing prodrugs that are primed for 
C–C bond cleavage under pathophysiological conditions confronts us with the dual challenges of sophisticated 
synthetic chemistry and intricate mechanistic elucidation.

In this cleavage of carbon–carbon bonds based prodrug activation strategy, the calculation of the energy 
barrier is crucial because it determines whether the chemical reaction can proceed spontaneously under physi-
ological conditions. It also plays a significant role in determining stable molecular structures, guiding molecular 
design, and evaluating molecular dynamic properties. To simplify the computations, in the subsystem where 
quantum computing is employed, we have selected five key molecules involved in the cleavage of the C–C bond as 
simulation subjects, performing the single-point energy calculation and the essential solvent model calculations 
after conformational optimization process (see Fig. 2 for details). Considering the practical value and significance 
of prodrug activation strategies in current drug design, especially for drug delivery, our calculations are suitable 
for extension to more similar scenarios.

Gibbs free energy profiles of covalent bond cleavage for prodrug activation
Gibbs free energy profiling of covalent bond cleavage is a critical task for drug design, especially prodrug activa-
tion. It is of great importance for the selectivity and efficacy of therapeutic agents, guiding synthetic routes, and 
even achieving accurate molecular models for complex chemical reactions.

In this work, we study the prodrug design for β-lapachone, a natural product with extensive anticancer activ-
ity. In the original study25, the authors use DFT and select M06-2X functional to calculate the energy barrier. The 
results show that the energy barrier for C–C bond cleavage is small enough for the chemical reaction to proceed 
spontaneously under physiological temperature conditions. It’s worth mentioning that in the original study, this 
novel prodrug design strategy is validated through wet laboratory experiments. In this study, we employed two 
classical computational methods, namely HF and Complete Active Space Configuration Interaction (CASCI), 
to compute reference values for quantum computation. While DFT is typically the preferred method in conven-
tional pharmacochemical reaction calculations due to its efficiency and accuracy, the choice of HF and CASCI 
methods in this study yields reaction barrier that is consistent with wet lab results.

Despite that quantum devices with more than 100 qubits are becoming available, simulating large chemical 
systems would require very deep circuits, which will inevitably lead to inaccurate outcomes due to intrinsic 
quantum noise. Additionally, the N4 terms to measure to calculate molecular energy is another bottleneck for 
quantum computation due to the limited measurement shot budget. Thus, it is often desirable to reduce the 
effective problem size of chemical systems, so that they can be processed on available quantum devices. The 
quantum embedding methods and downfolding methods have gathered significant attention recently48,49. In 
this work, we employed the active space approximation due to its popularity and versatility, which simplifies the 
QM region into a more manageable two electron/two orbital system. The CASCI energy can be considered as the 
exact solution under the active space approximation and the results by quantum computers are expected to be 
consistent with the CASCI energy. The fermionic Hamiltonian is then converted into a qubit Hamiltonian using 
parity transformation. The wave function of the active space can then be represented by a 2-qubit superconduct-
ing quantum device. We utilized a hardware-efficient Ry ansatz with a single layer as the parameterized quantum 
circuit for VQE, as depicted in Fig. 3. We applied standard readout error mitigation to enhance the accuracy 
of the measurement results. For more detailed technical information, please refer to the Methods section. We 
implemented the entire workflow in the TenCirChem package50, allowing users to utilize these functions with 
just a few lines of code.

By calculating the energy barrier for C–C bond cleavage, we compare our quantum computing results with 
those from the original study. Our computation involves single-point energy calculations with the influence of 
water solvation effects. For both classical and quantum computations, we selected the 6-311G(d,p) basis set and 
chose the ddCOSMO model as the solvation model. The thermal Gibbs corrections were calculated at the HF 
level. Additionally, we included the results from HF and CASCI, which are based on classical computational 
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chemistry, for comparison. In Table 1 we list the reaction barrier �G‡ and the reaction Gibbs free energy change 
�G for the prodrug-activation reaction. The Gibbs free energy for relevant molecules is listed in Table 2 in the 
Methods section. The results of the reaction energy barrier �G‡ obtained from both classical quantum chemistry 
calculation methods and quantum computing methods are in good agreement. They also align closely with the 
calculation results of the original paper, which employed the M06-2X functional and Gaussian as the computa-
tional tool. From the activation barrier results from quantum computers in Table 1, we observe that the activation 
barrier is less than 20 kcal/mol. In the field of drug design, this indicates that the reaction could spontaneously 
occur within a biological organism. Therefore, the results from quantum computers in our pipeline can be used 
for the assessment of prodrug activation processes. On the other hand, we obtained significantly lower energy 
values �G compared to the DFT method in the original study. It is worth noting that without considering the 
solvation effect, both HF and CASCI calculations yield much lower reaction barriers �G‡ . In fact, the VQE 

Figure 2.   Schematic illustration of components(4, 5, 6 and TS) involved in the process of the C-C bond 
cleavage-based activated drug release. For ease of comparison, we have adopted the molecular numbering from 
the original work of carbon-carbon bond cleavage based prodrug activation strategy.

Figure 3.   The 2-qubit quantum circuit used in this study. The state of the quantum circuit is adjusted by 4 
parameterized Ry gates.
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method even produces a non-physical negative reaction barrier. This observation emphasizes the importance 
of considering the solvation effect in the drug-design pipeline.

The similarity between the results obtained from HF, CASCI, and VQE can be attributed to the relatively small 
active space considered in this study. There are studies indicating that quantum computational methods like VQE 
can achieve near-exact solutions for medium-sized chemical systems51,52. As the scale of quantum computing 
continues to grow, we may be able to alleviate the active space approximation employed in this work and make 
significant improvements to the HF method. Our results demonstrate the effectiveness of quantum computing 
in scenarios involving Gibbs free energy profile calculations of covalent bond cleavage, as well as the versatility 
and plug-and-play advantages of our pipeline.

Next, we discuss the computational wall time required for quantum computation. In the (2e, 2o) active space, 
the bottleneck for both classical and quantum computation is obtaining the HF solution with the solvation 
effect. Thus, the total wall times are comparable for all molecules computed in this study, ranging from several 
minutes to approximately one hour, depending on the size of the molecule. The time cost for solving (2e, 2o) 
active space does vary between CPU and QPU, as illustrated in Table 3. Taking molecule 5 as an example, clas-
sical computers require 3 s to complete the computation. On the other hand, quantum computers take 63 s to 
perform the computation, and the majority of the time is dedicated to measuring the active space energy and the 
one-body reduced density matrix for the solvation effect. Since active resetting is not implemented yet, for each 
measurement shot, the quantum computational bottleneck is to wait several times the decay (T1) time so that 
the energy stored in qubits is relaxed into the environment. This results in an approximate duration of 1 ms for 
each measurement shot. To determine the expectation value for each Pauli operator, 8192 measurement shots 
are performed, corresponding to a duration of 8 s. For energy evaluation, there are eight Pauli strings to be meas-
ured, which are grouped into five measurement groups based on commutation relations. As a result, calculating 
the energy expectation takes approximately 40 s. The calculation of one-body reduced density matrices in the 
active space involves measuring three additional expectation values. Thus, the total time cost for the quantum 
computing kernel is approximately 60 s, consistent with our experimental findings. Although the active space 
size remains the same for different molecules, the time cost for classical and quantum computation does vary. 
For example, calculating 4 and TS is significantly more time-costly than computing 5. This discrepancy arises 
from the differing time required for active space integral transformation across molecules. Nevertheless, for all 
molecules, quantum computation takes approximately one minute longer than classical computers.

In this study, we have limited the utilization of quantum computers to a few qubits employing the active space 
approximation, due to the limited size and gate noise of currently available quantum computers. Herein, we esti-
mate what kind of quantum computers are required for a fully correlated computation of the systems studied in 
this work without incurring the active space approximation. Taking molecule 4 as an example, with 6-311G(d,p) 
basis set, the system corresponds to N = 630 orbitals and Nelec = 196 electrons. To reduce the qubit requirement, 
the paired unitary coupled-cluster ansatz can be employed, which requires only 1 qubits for each orbital due to 
the restriction of electron pairing53,54. Other advantages of the ansatz include that evaluating the energy requires 
only constant measurement and linear circuit depth due to the efficient Givens-SWAP network. Additionally, 
since there are Nelec = 196 electrons, the number of all possible double excitations is Nelec

2 × (N − Nelec
2 ) = 52136 . 

Thus, a fully correlated computation at PUCC level with double excitations (PUCCD) involves a quantum circuit 
with approximately 103 qubits and 105 Givens-SWAP gates. The PUCCD ansatz has been successfully imple-
mented on both superconducting and trapped-ion quantum computers53,54. The number of qubits employed in 
these studies is around 10, sufficient to describe 1 to 2 heavy atoms if active space or embedding techniques are 
not used55. While digital quantum computers with over 100 qubits are accessible3, their application in quantum 
chemistry has been limited, primarily due to the restricted fidelity of two-qubit gates. However, with improved 
two-qubit gate fidelity, these quantum computers can handle complex molecules comprising dozens of atoms, 
such as molecule 4.

Empirically, there are 0.7× N2 Pauli strings in the PUCC Hamiltonian, which leads to approximately 
M = 3× 105 terms when N = 630 . These terms can be divided into three measurement groups. Assuming 
for each group K repeated circuits are executed for measurement, the expectation variance ǫ2 is approximately 
1
K

∑M
j |αj|

2 . Thus, if we wish to achieve the measurement precision to ǫ = 0.01 Hartree and |αj| is assumed to 
be 0.1 Hartree, the number of measurement shots K is 107 and the total number of shots for three measurement 
groups is approximately 108 . On superconducting quantum computing platforms, the reset time is the bottleneck 
for circuit execution, which can be estimated as 10−3 s. Thus, it takes 105 s to measure the molecular energy, the 
key step for VQE. Since computing the solvation energy requires only one-body reduced density matrix, the addi-
tional measurement cost can be neglected. The multiplicative factor for parameter optimization is not considered. 
If a set of accurate circuit initial parameters can be computed through classical preprocessing, such as quantum 
chemistry computation or machine learning56,57, we may conclude that using a single quantum processor it takes 
105 s to compute the solvation energy. The 3K repeated circuits can be easily paralleled. In the optimal situation 
where 3K quantum processors are available for usage, the time cost for QM calculation can be reduced to 10−3 s.

Covalent bond simulation
KRAS is a prominent target in cancer therapy due to its significant role in various cancers, and the G12C muta-
tion has been its most frequent and consequential mutation. The Sotorasib, an innovative covalent inhibitor 
targeting this mutation, represents a paradigm shift to KRAS-related cancer treatment. We set up a QM/MM 
simulation framework for the target-inhibitor interaction, and chose the QM region carefully to cover the key 
atoms involved in the covalent bond formation (see Fig. 4 for a schematic exposition). We first run the QM/
MM simulation on classical computers to get the baseline statistics, then move the QM energy computation to 
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quantum computers and make sure that we can get comparable results. The same with the case study for prodrug 
activation, a (2e, 2o) active space approximation is employed to reduce the measurement cost, and the active 
space wavefunction is processed using 2 qubits.

KRAS and covalent inhibition
To establish a robust baseline for the later quantum computer adaptation, close supervision of the energy evolu-
tion of the QM region was conducted throughout the simulation, as shown in Fig. 5b. Complementarily, the MM 
region encompassed the larger protein environment, including water molecules and other cellular components, 
offering a realistic context for the interaction. The energy transitions, including the potential energy, the kinetic 
energy, and the system total energy, had been recorded, as shown in Fig. 5a.

Figure 4.   Left: the KRAS-Sotorasib bonded structure. The cystein-Sotorasib part is shown as sticks while the 
rest of the system as ribbons. Right: choosing the QM region. The atoms labeled SG, C18, C17, O16, and C15 are 
chosen.

Figure 5.   (a) Energy evolution during the MD simulation. The energy stabilized after an initial equilibrating 
phase. (b) Monitoring the QM region energy evolution. (c) The covalent bond is remarkably stable during the 
whole simulation process. The bond length fluctuates around 1.86 Angstrom with a standard deviation less than 
0.1 Angstrom. The bond length is aligned with previous literature discoveries, and the small deviation is a good 
indication of the bonding stability.(d) Visualising the bond angle variations during the simulation (CB-SG-C18 
and SG-C18-C17).
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A critical reason that inhibiting KRAS had been so difficult, and the inhibition of the KRAS G12C mutation 
had been so significant, is the possibility of designing small molecular inhibitors that specifically target the G12C 
mutation by forming a covalent bond between the target and the inhibitor. For this reason, it’s imperative that 
Sotorasib can form a stable bonded complex with the target, through covalent bonding. The bond length, bond 
angles, and dihedral angles around the covalent bond had also been closely monitored during the simulation, 
as shown in Fig. 5c, d.

We observed a specific and strong bond between Sotorasib and the target mutation, offering critical insights 
into the drug’s potential efficacy. This understanding is pivotal for the rational design of future inhibitors target-
ing similar mutations.

QM energy update using quantum computers
After establishing the QM/MM baseline, we then moved the QM computation first to a quantum emulator using 
TenCirChem, and then to a quantum computer. The kernel of our calculation is again the VQE algorithm. The 
MM region, represented as point charges, contributes a background potential to the Hamiltonian. The calculation 
of molecular forces is a common routine in classical computational chemistry. Recent attempts have been made 
to transfer the algorithm to quantum computing platforms58–62. In our work, the calculation is more complicated 
compared with previous studies, due to the active space approximation employed. In addition, our work is the 
first example of integrating quantum computed forces into a full-scale QM/MM simulation workflow. The details 
of the procedure are shown in the Methods section.

Considering the computational load, to check the soundness of the computation, we run the first 1600 steps 
of the simulation on a quantum computer as a sanity check, and the results closely follow the baseline QM/
MM simulation, as can be observed in Fig. 6. We then moved some key steps of the QM/MM simulation to the 
quantum computer, to establish a QM/MM-QC hybrid simulation system. In Fig. 7a, the simulation is started 
on the quantum computer and continued on a classic computer; in Fig. 7b, the simulation is started on a classical 
computer, continued on a quantum machine, and subsequently moved back to the classic computer. Compared 
with the previous QM/MM simulation, we can see that the hybrid simulations have been able to closely follow 
the baseline trajectory, which gives us confidence that such hybrid simulations are a feasible use of the limited 
quantum computer computation powers.

The computational time cost comparison can be seen in Table 4. For classic QM/MM simulation, we utilized 
a high-performance system with dual Intel(R) Xeon(R) Gold 5220 CPUs (72 cores, 144 threads total, 2.20 GHz 
base frequency), augmented by six NVIDIA A100-PCIe GPUs with 40,960 MiB memory each. The system is 
supported by 385 GB of RAM, facilitating the handling of extensive computational workloads. Similar to the case 
study of prodrug activation, the time cost for quantum computers is larger than that for classical computers. To 
compute molecular forces, the two-body reduced density matrices need to be measured, so at each step, the time 
cost is approximately two times the time cost for single-point energy calculation in Table 3.

Figure 6.   Energy transition of the classical simulation(in blue), the noiseless quantum emulation (in orange), 
and the quantum computer simulation(in green). The fluctuation falls neatly in the permissible deviations of the 
molecular dynamics simulation.
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Figure 7.   Moving key computation to the quantum computer. Left: the simulation is started on a quantum 
computer, and then moved to a classical machine. Right: the simulation is started on a classical machine, moved 
to a quantum computer halfway, and then moved back to a classical computer.

Table 1.   Comparison of the energy barrier �G
‡ and Gibbs free energy change �G , measured in kcal/mol, 

for the C–C bond cleavage reaction using classical and quantum computational methods. HF and CASCI are 
calculated on classical computers, while VQE energies are obtained on a superconducting quantum computer. 
Both CASCI and VQE calculations are based on a (2e, 2o) active space. For the VQE energy, the mean and 
standard deviation from 4 independent experiments is reported. The DFT energies are obtained from previous 
work using M06-2X functional.

HF CASCI VQE DFT

�G
‡ with solvent 13.1 11.8 7± 5 8.3

�G with solvent −41.1 −49.5 −51± 11 −10.8

�G
‡ w/o solvent 2.6 1.4 −4± 7 –

�G w/o solvent −59.3 −68.0 −65± 9 –

Table 2.   Gibbs free energy for the molecules studies in this work by classical and quantum computational 
methods. HF and CASCI are calculated on classical computers, while VQE energies are obtained on a 
superconducting quantum computer. Both CASCI and VQE calculations are based on a (2e, 2o) active space. 
For the VQE energy, energy data from 4 independent experiments are reported.

Molecule Solvent HF CASCI VQE

4 With solvent −1221.2446 −1221.2447 −1221.240,−1221.243,−1221.227,−1221.242

w/o solvent −1221.1821 −1221.1821 −1221.177,−1221.180,−1221.18,−1221.186

5 With solvent −343.3933 −343.4038 −343.395,−343.426,−343.403,−343.407

w/o solvent −343.3805 −343.3912 −343.390,−343.390,−343.391,−343.390

6 With solvent −801.8703 −801.8732 −801.866,−801.878,−801.859,−801.866

w/o solvent −801.8576 −801.8607 −801.856,−801.839,−801.857,−801.852

TS With solvent −1221.2238 −1221.2259 −1221.224,−1221.232,−1221.223,−1221.230

w/o solvent −1221.178 −1221.180 −1221.181,−1221.187,−1221.179,−1221.207

H2O With solvent −76.0465 −76.0466 −76.043,−76.059,−76.036,−76.041

w/o solvent −76.0385 −76.0386 −76.029,−76.035,−76.059,−76.053

Table 3.   Comparison of computational wall times for classical computing (CASCI) and quantum computing 
(VQE) on solving the active space of molecule 4, 5, 6, and TS.

Computational 
wall time (s)

Molecule CASCI VQE

4 358 424

5 3 63

6 97 161

TS 360 424
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The insights gained from these QM/MM simulations are not just confined to the molecular interaction 
between Sotorasib and the KRAS(G12C) protein. They lay the groundwork for future computations on a quan-
tum computer, promising to enhance the accuracy and speed of our drug discovery processes. This step towards 
quantum computing implementation represents a transformative progression in our research methodology, 
aligning with our ongoing efforts to integrate advanced computational techniques in drug discovery.

Similar to the prodrug activation case, here for the covalent bond simulation case, we provide an estimation 
of the quantum resource required for a fully correlated treatment of the QM region using the pUCCD circuit. 
The QM region is composed of 5 heavy atoms, which are translated to N = 49 orbitals with 6-31G basis set. Thus 
a correlated computation without active space approximation requires a quantum circuit with approximately 50 
qubits and 588 Givens-SWAP gates. The total number of measurement shots is 106 and 103 seconds are required 
for an energy evaluation. Since all elements of one and two-body reduced density matrices are also available 
from the three groups of measurement, the wall time cost for the additional computation of molecular forces 
can be neglected.

Discussions
In this study, we have established a model pipeline that enables quantum computers to tackle real-world drug 
discovery problems. Specifically, we have addressed two crucial challenges of computer-aided drug design, com-
puting reaction barriers and molecular dynamics simulation. Our pipeline combines quantum-classical hybrid 
computing platforms, leveraging the VQE framework on the quantum computing side to efficiently store and 
manipulate molecular wave functions. On the classical computing side, we employ the ddCOSMO solvation 
model to compute solvation energy and analytical CASCI force formula to compute molecular forces for QM/
MM simulation, respectively. The interface between the quantum and classical computing sides relies on the one 
and two-body reduced density matrices.

To demonstrate the potential of our pipeline, we conducted two case studies using a superconducting quan-
tum device. In the first case, we studied the Gibbs free energy profile for prodrug activation involving carbon-
carbon bond cleavage under solvent conditions. The obtained reaction barrier and Gibbs energy change align 
well with previous experimental and theoretical studies. In the second case, we investigated a covalent inhibitor 
for KRAS(G12C) using QM/MM simulation. We closely monitored the evolution of energy and compared the 
time cost based on classical computers and quantum computers.

Based on the two cases, we provide evidence that our hybrid quantum computing pipeline has the potential 
to solve real-world drug design problems. However, it is important to note that the accuracy of VQE calculations 
and the resources consumed require further improvement. On the quantum hardware side, continuous efforts 
should be made to enhance gate fidelity and strive toward achieving error correction. In terms of quantum 
algorithms, advanced VQE additions such as neural networks or Clifford circuits63,64 can be explored to enhance 
the accuracy of the VQE circuit. While our study employed classical pre-optimization instead of parameter 
optimization on quantum computers due to associated overhead, the next step in the development of the VQE 
pipeline should involve better circuit parameter initialization and more efficient parameter optimization algo-
rithms. This will enable the complete transfer of the pipeline onto quantum computers, further leveraging their 
computational power.

While there are plenty of works in leveraging quantum computing for drug discovery19–24, the focus of our 
pipeline is for tackling specific real-world drug design problems. We emphasize the use of a convenient, modular, 
and hybrid quantum pipeline for drug discovery, which will make it more accessible for drug design experts 
without a quantum computing background. Additionally, referencing established criteria in the drug design 
domain, our computational results indicate that they also fall within reasonable bounds. Furthermore, the quan-
tum computing methodologies developed in this study have the potential to extend beyond the presented case 
studies of Sotorasib and β-lapachone. The integration of quantum computing into QM/MM simulations offers 
a versatile platform that can be adapted and scaled to address a wide range of molecular targets and complex 
biological interactions.

Methods
Quantum computing for molecular systems
The VQE algorithm uses a parameterized quantum circuit (PQC) |ψ(θ)� to construct a quantum state that 
approximates the ground state of the system. The parameters of the quantum circuit θ are optimized to its optimal 
value θ∗ using a classical optimization algorithm, such as gradient descent or Newton’s method, to minimize 
the energy of the quantum state E(θ) = �ψ(θ)|Ĥ|ψ(θ)� . According to the Rayleigh-Ritz variational principle, 

Table 4.   Comparison of simulation times for three different experiments: a classic QM/MM simulation, a 
noiseless quantum emulation, and a quantum computer simulation. The total time is for 1600 steps, with the 
average time per step calculated accordingly.

Method Total time (min) Avg time per step (s)

Classic 124.0 4.65

Noiseless 126.0 4.725

Quantum 3820.0 143.25



10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16942  | https://doi.org/10.1038/s41598-024-67897-8

www.nature.com/scientificreports/

E(θ∗) ≥ Eground and the equity is reached when |ψ(θ∗)� is the ground state wave function. Thus, given an expres-
sive PQC, |ψ(θ∗)� is a good estimation of the ground state wave function.

For molecular systems, the ab initio Hamiltonian is written as

where hpq and hpqrs = [ps|qr] are one-electron and two-electron integrals, and â†p, âp are fermionic creation and 
annihilation operators, respectively. For chemical systems, the VQE algorithm is composed of several steps. The 
first step is to calculate the integrals in the Hamiltonian under the molecular orbital basis. Then, the second-
quantized fermion Hamiltonian is mapped to a spin Hamiltonian using fermion-qubit mapping, since quantum 
computers are built based on the spin model. In this work, we employ the parity transformation for saving two 
qubits

Here ĉ is the qubit annihilation operator 12 (X̂ + iŶ) , and X̂ , Ŷ  and Ẑ are Pauli operators. The transformation 
ensures the preservation of the commutation and anti-commutation properties of fermion operators. After the 
fermion-qubit mapping, the Hamiltonian in Eq. (1) is transformed to a summation of the products of Pauli 
operators. More formally, the Hamiltonian can be written as Ĥ =

∑M
j αjP̂j where αj is the coefficient and P̂j is 

the product of Pauli operators. M is the total number of terms. Each Pj can be measured on a quantum computer 
and subsequently, the overall energy is obtained by taking the weighted summation.

The active-space approximation is employed to reduce computational cost and enhance accuracy. The approxi-
mation adopts the Hartree-Fock state as the baseline state and chooses an “active space” that is treated with a 
high-accuracy computational method. In classical computation, the high-accuracy method is usually full configu-
ration interaction (FCI) or density matrix renormalization group (DMRG)65. In our case, quantum computers are 
employed to solve the problem with the VQE algorithm. The active space is usually constructed in the molecular 
orbital space. Most commonly, orbitals that have the closest energy with the HOMO and LUMO orbitals will 
be included in the active space. Meanwhile, the inner shell orbitals are treated at the mean-field level. Thus, this 
approximation is sometimes also called the frozen core approximation. Denote the set of frozen occupied spin-
orbitals by � . The frozen core provides an effective repulsion potential V eff  to the remaining electrons

The frozen core also bears the mean-field core energy

The ab initio Hamiltonian with the active space approximation is rewritten as

where the indices p, q, r and s refer to spin-orbitals in the active space.

Quantum computation of solvation effect
The solvation effect is an important topic in classical computational chemistry66. The PCM model is one of the 
most popular methods to treat the solvation effect67, and its combination with VQE has been demonstrated based 
on a classical emulator68. The PCM model treats the solvent molecules as a continuous homogeneous medium 
with relative permittivity εs > 1 . The solvent continuum is polarized by the solute molecule, and in turn, modi-
fies the charge distribution of the solute molecule. More specifically, the molecule is considered to reside in a 
van der Waals molecular cavity defined as a union of spheres centered at the atoms

The relative permittivity ε(r) = 1 for r ∈ � and ε(r) = εs for r /∈ � . The additional energy contribution of the 
electrostatic interaction is

where ρ is the charge distribution of the solute molecule and Vr is the reaction-field potential by the dielectric 
continuum. The reaction field Vr is modeled by a single layer of charges σ(s) on the cavity surface Ŵ = ∂�

(1)Ĥ =
∑

pq

hpqâ
†
pâq +

1

2

∑

pqrs

hpqrsâ
†
pâ

†
qâr âs ,

(2)âj = (ĉj ⊗ |0��0|j−1 − ĉ†j ⊗ |1��1|j−1)⊗
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⊗
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∑
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In this work, we use quantum computers to model the solute molecule and use classical computers to calculate 
the solvent potential Vr that is added to the Hamiltonian of the solute molecule.

In our work, we employ one of the variants of PCM, namely the conductor-like screening model (COSMO)69, 
to model the solvation effect on real quantum devices. COSMO has become very popular due to its ease of imple-
mentation, numerical stability, and insensitivity to outlying charge errors. The COSMO method treats the solvent 
continuum as a conductor, which simplifies the calculation of Vr , and scales Es by a constant factor f (εs) to take 
into account the non-conductor nature of the solvents. In the large εs limit f (εs) should converge to 1. Based on 
the conductor model, the surface charge σ(s) is obtained by solving the integro-differential equation numerically

Here �(r) =
∫

R3
ρ(s)
|r−s|ds is the potential generated by ρ in vacuo. The domain decomposition algorithm is one 

of the most popular methods to solve Eq. (9), which offers both high accuracy and high efficiency70,71. Thus the 
method is dubbed as ddCOSMO.

The input for solving Eq. (3) is the solute charge distribution ρ . ρ can be computed from the one-body reduced 
density matrix of the solute molecule. Similar to the case of computing molecular forces, one-body reduced 
density matrix can be measured on a quantum computer after the main VQE iteration. After σ(s) is determined, 
the generated potential Vr is added to the Hamiltonian of the solute molecule and effectively modifies hpq . Then, 
VQE is performed based on the updated Hamiltonian after active-space reduction and yields the updated one-
body reduced density matrix. In quantum computer simulation, we observed that the effect of the iteration is 
smaller than the measurement uncertainty. Therefore in our quantum computations, we forego iteration and 
perform only a single calculation.

Quantum computation of molecular forces
Most straightforwardly, the molecular forces can be calculated with numerical finite-difference over the nuclear 
coordinates. Analytical computation, if available, is preferred over such an approach, since analytical computa-
tion is both more efficient and accurate. In our approach, the HF molecular orbital coefficients C are determined 
before the VQE calculation. As a result, the energy is not stationary to the variation of orbital coefficients ∂E

∂C
 = 0 

and this term will contribute to the force expression72.
In the general form, the force expression can be obtained by chain-rule differentiation as73

Here, we have switched from molecular orbital basis to atomic orbital basis, and we use µ, ν, �, σ instead of 
p, q, r, s as orbital indices to indicate the different basis. In Eq. (10), −fnuc and (−felec) are the nuclear and elec-
tronic Hellmann-Feynman force by �ψ | ∂Ĥ

∂x |ψ� . Since electron repulsion is invariant to x, ∂Ĥ
∂x  is a single-body 

operator and �ψ | ∂Ĥ
∂x |ψ� can be computed from one-body reduced density matrix. 

∑

µν(µ
′|ν)Rµν represents the 

“density force” contribution74 which stems from the variation over the orbital coefficients C . Rµν are the matrix 
elements of R = CǫC

† where ǫ are HF molecular orbital energies. The remainder of Eq. (10) represents the “inte-
gral force” contribution74 which stems from the variation over the basis sets. The primed atomic orbital index in 
the integrals denotes the derivative of the primed atomic orbital with respect to x. DI and DA are the one-body 
reduced density matrices for the inactive and active space respectively and PA is the two-body reduced density 
matrix for the active space. Thus, in order to compute the molecular forces on quantum computers, the key is to 
measure the one- and two-body reduced density matrices of the active space.

We note that it is possible to rewrite Eq. (10) as the expectation of a “force operator” that is formally simi-
lar to the ab initio Hamiltonian Eq. (1)60. As a result, measurement grouping methods developed for energy 
measurement can be employed directly to reduce the measurement cost75. In this study, we do not consider this 
optimization for ease of implementation.

Quantum computation details
We employ the hardware efficient Ry ansatz as the parameterized quantum circuit for both the covalent bond 
simulation and the prodrug activation optimization. The Ry ansatz is suitable for the simulation of chemical 
systems since it enforces real amplitudes76–79. Compared with the unitary coupled-cluster family of ansatz80, 
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hardware-efficient ansatz requires shorter circuit, which ensures that the effect of quantum gate noise does not 
significantly deteriorate our result. The Ry ansatz is composed of interleaved layers of single-qubit Ry rotation 
gates and two-qubit CNOT gates

where k is the total number of layers. In this study, we employ k = 1 to reduce the negative impact of the quantum 
gate noise. The layers are defined as

Here, CNOT[j, j + 1] represents CNOT gate acting on the jth and (j + 1) th qubit, and Ry[j] is Ry rotation gate 
acting on the jth qubit. N is the total number of qubits. In our superconducting platform, the Ry gates are com-
piled into native Rz gates.

The classical emulation of quantum computers is performed using the TenCirChem50 and TensorCircuit81 
package. The circuit parameters are pre-optimized on a classical simulator employing the L-BFGS-B optimizer in 
SciPy82 and the parameter-shift rule for gradients83,84. Due to its efficient architecture, in TenCirChem it takes 
only a few lines of code to transfer the calculation workflow from classical emulators to real quantum devices. 
The solvation energy and molecular forces are calculated classically, after obtaining reduced density matrices 
on quantum computers, via PySCF85.

Classical computation details
Methods for obtaining the optimal geometry configuration
In our C–C bond cleavage based prodrug activation strategy, we should first obtain the optimal geometric con-
figurations of the corresponding molecules to compute the Gibbs free energy profiles. DFT calculations were 
performed using Gaussian 16. Specifically, we employed the B3LYP functional within DFT, chose the 6-31+G(d) 
basis set for the molecular orbitals and used Solvation Model Based on Density (SMD) as the solvation model. 
Throughout the optimization process, we maintained constant connectivity between atoms and applied Grimme’s 
D3 dispersion correction.

System preparation for covalent bond simulation
Our simulation started with the intricate system preparation using Amber software suite86, especially packages 
including pdb4amber, antechamber, parmchk2, tleap, etc, defining the fundamental molecular and environmental 
parameters. This initial setup was crucial in modeling the drug-target complex accurately, since our simulation 
involves the modified non-standard Amino Acid, in which the Sotorasib molecule had been glued to the mutated 
cystein on KRAS. The general process includes the preprocessing of the protein structure, its split into different 
parts, its format conversion, force field parameters generation, and finally collecting the parts into a complete 
system ready for the simulation.

In our simulations, QM region was carefully chosen to include the critical reactive atoms of the KRAS(G12C) 
mutation. (See Fig. 4b) Five atoms that are key to the stability of the covalent bond (SG on the cysteine side, and 
C18, C17, O16 and C15 on the Sotorasib side), have been included in the QM region. A covalent bond is formed 
between the C18 atom on Sotorasib and the SG atom on Cysteine. Two other atoms, C17, which is covalent 
bonded to C18, and C15, which is in turn covalently bonded to C17, are also included. Another atom, O16, that is 
sterically positioned close to SG and might consequentially affect its atom position and bonding, is also included. 
This meticulous selection allowed for a detailed analysis of the electronic and structural changes occurring upon 
drug binding. We also took some inspiration from87 on how to set up the system for covalent bond simulation.

We employed OpenMM88 for conducting the molecular dynamics aspect of our study, while PySCF provided 
the quantum mechanical calculations essential for simulating the covalent interactions with high precision. This 
combination also guarantees a smooth transition to the later quantum computer implementation, since our 
quantum simulation and real machine adaption will be based on TenCirChem and PySCF.

A crucial aspect of our simulation was the calibration of parameters such as temperature and pressure to 
replicate physiological conditions accurately, and considerable care had been taken to formulate a customized 
Langevin integrator, to cater to the special energy communications between the QM region and the QC region of 
the system. This calibration, along with the integration of a custom force field, enabled us to capture the nuanced 
quantum mechanical energies and forces at play during the formation of the covalent bond between Sotorasib 
and the KRAS(G12C) mutation.

Data availibility
The dataset and results that support the findings of this study are available on GitHub (https://​github.​com/​AceMa​
pAI/​qc-​drug-​design). Source data are provided in this paper.
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Code availability
The code that supports the findings of this study is available at GitHub (https://​github.​com/​AceMa​pAI/​
qc-​drug-​design).

Received: 1 April 2024; Accepted: 17 July 2024

References
	 1.	 Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).
	 2.	 Zhong, H.-S. et al. Quantum computational advantage using photons. Science 370, 1460–1463 (2020).
	 3.	 Kim, Y. et al. Evidence for the utility of quantum computing before fault tolerance. Nature 618, 500–505 (2023).
	 4.	 Durrant, J. D. & McCammon, J. A. Molecular dynamics simulations and drug discovery. BMC Bio. 9, 1–9 (2011).
	 5.	 Sliwoski, G., Kothiwale, S., Meiler, J. & Lowe, E. W. Computational methods in drug discovery. Pharmacol. Rev. 66, 334–395 (2014).
	 6.	 Ou-Yang, S.-S. et al. Computational drug discovery. Acta Pharmacol. Sin. 33, 1131–1140 (2012).
	 7.	 Dara, S., Dhamercherla, S., Jadav, S. S., Babu, C. M. & Ahsan, M. J. Machine learning in drug discovery: A review. Artif. Intell. Rev. 

55, 1947–1999 (2022).
	 8.	 Wong, R. & Chang, W.-L. Fast quantum algorithm for protein structure prediction in hydrophobic-hydrophilic model. J. Parallel 

Distrib. Comput. 164, 178–190 (2022).
	 9.	 Robert, A., Barkoutsos, P. K., Woerner, S. & Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quantum 

Inf. 7, 38 (2021).
	10.	 Batra, K. et al. Quantum machine learning algorithms for drug discovery applications. J. Chem. Inf. Model. 61, 2641–2647 (2021).
	11.	 Outeiral, C. et al. The prospects of quantum computing in computational molecular biology. Wiley Interdiscip. Rev. Comput. Mol. 

Sci. 11, e1481 (2021).
	12.	 Tilly, J. et al. The variational quantum eigensolver: A review of methods and best practices. Phys. Rep. 986, 1–128 (2022).
	13.	 Levine, I. N., Busch, D. H. & Shull, H. Quantum chemistry Vol. 6 (Pearson Prentice Hall, 2009).
	14.	 Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
	15.	 Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042–1046 (2012).
	16.	 Robert, A., Barkoutsos, P. K., Woerner, S. & Tavernelli, I. Resource-efficient quantum algorithm for protein folding. npj Quantum 

Inf. 7, 38 (2021).
	17.	 Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G. & Aspuru-Guzik, A. Finding low-energy conformations of lattice 

protein models by quantum annealing. Sci. Rep. 2, 1–7 (2012).
	18.	 Marchand, D. et al. A variable neighbourhood descent heuristic for conformational search using a quantum annealer. Sci. Rep. 9, 

13708 (2019).
	19.	 Santagati, R. et al. Drug design on quantum computers. Nat. Phys. 20, 549–557 (2024).
	20.	 Otten, M. et al. Localized quantum chemistry on quantum computers. J. Chem. Theory Comput. 18, 7205–7217 (2022).
	21.	 Lau, B. et al. Insights from incorporating quantum computing into drug design workflows. Bioinformatics 39, btac789 (2023).
	22.	 Gircha, A., Boev, A., Avchaciov, K., Fedichev, P. & Fedorov, A. Hybrid quantum-classical machine learning for generative chemistry 

and drug design. Sci. Rep. 13, 8250 (2023).
	23.	 Blunt, N. S. et al. Perspective on the current state-of-the-art of quantum computing for drug discovery applications. J. Chem. 

Theory Comput. 18, 7001–7023 (2022).
	24.	 Lam, Y.-H. et al. Applications of quantum chemistry in pharmaceutical process development: Current state and opportunities. 

rgan. Process Res. Dev. 24, 1496–1507 (2020).
	25.	 Gong, Q. et al. A carbon-carbon bond cleavage-based prodrug activation strategy applied to β-lapachone for cancer-specific 

targeting. Angew. Chem. Int. Ed. 134, e202210001 (2022).
	26.	 Zhou, S. et al. A paclitaxel prodrug activatable by irradiation in a hypoxic microenvironment. Angew. Chem. Int. Ed. 59, 23198–

23205 (2020).
	27.	 Rautio, J., Meanwell, N. A., Di, L. & Hageman, M. J. The expanding role of prodrugs in contemporary drug design and develop-

ment. Nat. Rev. Drug Discov. 17, 559–587 (2018).
	28.	 Dong, Y. et al. A general strategy for macrotheranostic prodrug activation: Synergy between the acidic tumor microenvironment 

and bioorthogonal chemistry. Angew. Chem. Int. Ed. 59, 7168–7172 (2020).
	29.	 Liu, L. et al. A smart theranostic prodrug system activated by reactive oxygen species for regional chemotherapy of metastatic 

cancer. Angew. Chem. Int. Ed. 134, e202116807 (2022).
	30.	 Luo, X. et al. Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew. Chem. Int. Ed. 

60, 1403–1410 (2021).
	31.	 Weng, C., Shen, L. & Ang, W. H. Harnessing endogenous formate for antibacterial prodrug activation by in cellulo ruthenium-

mediated transfer hydrogenation reaction. Angew. Chem. Int. Ed. 59, 9314–9318 (2020).
	32.	 Chang, T.-C., Vong, K., Yamamoto, T. & Tanaka, K. Prodrug activation by gold artificial metalloenzyme-catalyzed synthesis of 

phenanthridinium derivatives via hydroamination. Angew. Chem. Int. Ed. 133, 12554–12562 (2021).
	33.	 Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: From undruggable to druggable in cancer. Signal Transduct. Target. Ther. 

6, 1–20 (2021).
	34.	 Zhang, Z. et al. GTP-state-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent. Sci. 6, 1753–

1761 (2020).
	35.	 Kim, D. et al. Pan-KRAS inhibitor disables oncogenic signalling and tumour growth. Nature 619, 160–166 (2023).
	36.	 Nikolaev, S. I. et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N. Engl. J. Med. 378, 250–261 

(2018).
	37.	 Pan, P. et al. Review of treatment and therapeutic targets in brain arteriovenous malformation. J. Cereb. Blood Flow Metab. 41, 

3141–3156 (2021).
	38.	 Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
	39.	 Lanman, B. A. et al. Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J. Med. Chem. 

63, 52–65 (2020).
	40.	 Nagasaka, M. et al. KRAS G12C game of thrones, which direct KRAS inhibitor will claim the iron throne?. Cancer Treat. Rev. 84, 

101974 (2020).
	41.	 Fell, J. B. et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of 

cancer. J. Med. Chem. 63, 6679–6693 (2020).
	42.	 Wang, X. et al. Identification of MRTX1133, a noncovalent, potent, and selective KRASG12D inhibitor. J. Med. Chem. 65, 3123–3133 

(2022).
	43.	 Nakayama, A. et al. Characterisation of a novel KRAS G12C inhibitor ASP2453 that shows potent anti-tumour activity in KRAS 

G12C-mutated preclinical models. Br. J. Cancer 126, 744–753 (2022).

https://github.com/AceMapAI/qc-drug-design
https://github.com/AceMapAI/qc-drug-design


14

Vol:.(1234567890)

Scientific Reports |        (2024) 14:16942  | https://doi.org/10.1038/s41598-024-67897-8

www.nature.com/scientificreports/

	44.	 Tanaka, N. et al. Clinical acquired resistance to KRASG12C inhibition through a novel KRAS switch-II pocket mutation and poly-
clonal alterations converging on RAS-MAPK reactivation. Cancer Discov. 11, 1913–1922 (2021).

	45.	 Cheng, R. et al. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers. Cell 
Res. 33, 30–45 (2023).

	46.	 Ferrara, S. J. & Scanlan, T. S. A CNS-targeting prodrug strategy for nuclear receptor modulators. J. Med. Chem. 63, 9742–9751 
(2020).

	47.	 Xia, X., Zhou, Y. & Gao, H. Prodrug strategy for enhanced therapy of central nervous system disease. Chem. Commun. 57, 
8842–8855 (2021).

	48.	 Li, W. et al. Toward practical quantum embedding simulation of realistic chemical systems on near-term quantum computers. 
Chem. Sci. 13, 8953–8962 (2022).

	49.	 Kowalski, K. & Bauman, N. P. Quantum flow algorithms for simulating many-body systems on quantum computers. Phys. Rev. 
Lett. 131, 200601 (2023).

	50.	 Li, W. et al. TenCirChem: An efficient quantum computational chemistry package for the NISQ era. J. Chem. Theory Comput. 19, 
3966–3981 (2023).

	51.	 Lee, J., Huggins, W. J., Head-Gordon, M. & Whaley, K. B. Generalized unitary coupled cluster wave functions for quantum com-
putation. J. Chem. Theory Comput. 15, 311–324 (2018).

	52.	 Grimsley, H. R., Economou, S. E., Barnes, E. & Mayhall, N. J. An adaptive variational algorithm for exact molecular simulations 
on a quantum computer. Nat. Commun. 10, 1–9 (2019).

	53.	 Zhao, L. et al. Orbital-optimized pair-correlated electron simulations on trapped-ion quantum computers. npj Quantum Inf. 9, 60 
(2023).

	54.	 O’Brien, T. E. et al. Purification-based quantum error mitigation of pair-correlated electron simulations. Nat. Phys. 19, 1787–1792 
(2023).

	55.	 Liu, J., Fan, Y., Li, Z. & Yang, J. Quantum algorithms for electronic structures: basis sets and boundary conditions. Chem. Soc. Rev. 
3263–3279 (2022).

	56.	 Romero, J. et al. Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz. Quantum Sci. 
Technol. 4, 014008 (2018).

	57.	 Jain, N., Coyle, B., Kashefi, E. & Kumar, N. Graph neural network initialisation of quantum approximate optimisation. Quantum 
6, 861 (2022).

	58.	 O’Brien, T. E. et al. Calculating energy derivatives for quantum chemistry on a quantum computer. npj Quantum Inf. 5, 113 (2019).
	59.	 Delgado, A. et al. Variational quantum algorithm for molecular geometry optimization. Phys. Rev. A 104, 052402 (2021).
	60.	 O’Brien, T. E. et al. Efficient quantum computation of molecular forces and other energy gradients. Phys. Rev. Res. 4, 043210 (2022).
	61.	 Sugisaki, K. et al. Quantum algorithm for numerical energy gradient calculations at the full configuration interaction level of 

theory. J. Phys. Chem. Lett. 13, 11105–11111 (2022).
	62.	 Lai, J., Fan, Y., Fu, Q., Li, Z. & Yang, J. Accurate and efficient calculations of Hellmann-Feynman forces for quantum computation. 

J. Chem. Phys. 159, 114113 (2023).
	63.	 Zhang, S.-X. et al. Variational quantum-neural hybrid eigensolver. Phys. Rev. Lett. 128, 120502 (2022).
	64.	 Shang, Z.-X., Chen, M.-C., Yuan, X., Lu, C.-Y. & Pan, J.-W. Schrödinger-Heisenberg variational quantum algorithms. Phys. Rev. 

Lett. 131, 060406 (2023).
	65.	 Ma, H., Schollwöck, U. & Shuai, Z. Density Matrix Renormalization Group (DMRG)-Based Approaches in Computational Chem-

istry (Elsevier, 2022).
	66.	 Tomasi, J., Mennucci, B. & Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 105, 2999–3094 (2005).
	67.	 Miertuš, S., Scrocco, E. & Tomasi, J. Electrostatic interaction of a solute with a continuum. a direct utilizaion of ab initio molecular 

potentials for the prevision of solvent effects. Chem. Phys. 55, 117–129 (1981).
	68.	 Castaldo, D., Jahangiri, S., Delgado, A. & Corni, S. Quantum simulation of molecules in solution. J. Chem. Theory Comput. 18, 

7457–7469 (2022).
	69.	 Klamt, A. & Schüürmann, G. COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screen-

ing energy and its gradient. J. Chem. Soc. Perkin Trans. 2, 799–805 (1993).
	70.	 Cancès, E., Maday, Y. & Stamm, B. Domain decomposition for implicit solvation models. J. Chem. Phys. 139, 054111 (2013).
	71.	 Lipparini, F., Stamm, B., Cances, E., Maday, Y. & Mennucci, B. Fast domain decomposition algorithm for continuum solvation 

models: Energy and first derivatives. J. Chem. Theory Comput. 9, 3637–3648 (2013).
	72.	 Helgaker, T. & Jørgensen, P. Analytical calculation of geometrical derivatives in molecular electronic structure theory. Adv. Quan-

tum Chem. 19, 183–245 (1988).
	73.	 Taylor, P. R. Analytical MCSCF energy gradients: Treatment of symmetry and CASSCF applications to propadienone. J. Comput. 

Chem. 5, 589–597 (1984).
	74.	 Pulay, P. Direct use of the gradient for investigating molecular energy surfaces. In Applications of electronic structure theory, 

153–185 (Springer, 1977).
	75.	 Huggins, W. J. et al. Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers. npj 

Quantum Inf. 7, 23 (2021).
	76.	 Gao, Q. et al. Computational investigations of the lithium superoxide dimer rearrangement on noisy quantum devices. J. Phys. 

Chem. A 125, 1827–1836 (2021).
	77.	 Gao, Q. et al. Applications of quantum computing for investigations of electronic transitions in phenylsulfonyl-carbazole TADF 

emitters. npj Comput. Mater. 7, 70 (2021).
	78.	 Miháliková, I. et al. The cost of improving the precision of the variational quantum eigensolver for quantum chemistry. Nanomater. 

12, 243 (2022).
	79.	 Choy, B. & Wales, D. J. Molecular energy landscapes of hardware-efficient ansatz in quantum computing. J. Chem. Theory Comput. 

19, 1197–1206 (2023).
	80.	 Anand, A. et al. A quantum computing view on unitary coupled cluster theory. Chem. Soc. Rev. 51, 1659–1684 (2022).
	81.	 Zhang, S.-X. et al. TensorCircuit: A quantum software framework for the NISQ era. Quantum 7, 912 (2023).
	82.	 Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).
	83.	 Mitarai, K., Negoro, M., Kitagawa, M. & Fujii, K. Quantum circuit learning. Phys. Rev. A 98, 032309 (2018).
	84.	 Schuld, M., Bergholm, V., Gogolin, C., Izaac, J. & Killoran, N. Evaluating analytic gradients on quantum hardware. Phys. Rev. A 

99, 032331 (2019).
	85.	 Sun, Q. et al. PySCF: the Python-based simulations of chemistry framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1340 

(2018).
	86.	 Case, D. A. et al. AmberTools. J. Chem. Inf. Model. 63, 6183–6191 (2023).
	87.	 Grigorenko, B. L. et al. Multiscale simulations of the covalent inhibition of the SARS-CoV-2 main protease: Four compounds and 

three reaction mechanisms. J. Am. Chem. Soc. 145, 13204–13214 (2023).
	88.	 Eastman, P. & Pande, V. S. OpenMM: A hardware independent framework for molecular simulations. Comput. Sci. Eng. 12, 34–39 

(2015).



15

Vol.:(0123456789)

Scientific Reports |        (2024) 14:16942  | https://doi.org/10.1038/s41598-024-67897-8

www.nature.com/scientificreports/

Acknowledgements
The authors thank Xiaxiaoman Studio for drawing the illustrations. X. Z. thanks grants from the National Natural 
Science Foundation of China (Grant 82322062) and Jiangsu Provincial Funds for Distinguished Young Scientists 
(Grant BK20211527).

Author contributions
Z. Y., X. Z. and S. Z. conceived and supervised the project. W. L., Z. Y., X. L., D. M., S. Y., Z. Z., C. Z., K. B. and M. 
D. wrote the code and performed the experiments. W. L., Z. Y., X. L., D. M., S. Y. and Y. C. analyzed the results. 
W. L., Z. Y., X. L., D. M., S. Y., J. Y., S. Z. wrote the manuscript. All authors reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to Z.Y., X.Z. or S.Z.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2024

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	A hybrid quantum computing pipeline for real world drug discovery
	Results
	Gibbs free energy profiles in prodrug activation strategy
	Carbon–carbon bond cleavage in prodrug activation strategy
	Gibbs free energy profiles of covalent bond cleavage for prodrug activation

	Covalent bond simulation
	KRAS and covalent inhibition
	QM energy update using quantum computers


	Discussions
	Methods
	Quantum computing for molecular systems
	Quantum computation of solvation effect
	Quantum computation of molecular forces
	Quantum computation details
	Classical computation details
	Methods for obtaining the optimal geometry configuration
	System preparation for covalent bond simulation


	References
	Acknowledgements


