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Integrating genomics and histology for cancer prognosis demonstrates pro-
mise. Here, we develop a multi-classifier system integrating a IncRNA-based
classifier, a deep learning whole-slide-image-based classifier, and a clin-
icopathological classifier to accurately predict post-surgery localized (stage
I-1II) papillary renal cell carcinoma (pRCC) recurrence. The multi-classifier
system demonstrates significantly higher predictive accuracy for recurrence-
free survival (RFS) compared to the three single classifiers alone in the training
set and in both validation sets (C-index 0.831-0.858 vs. 0.642-0.777, p < 0.05).
The RFS in our multi-classifier-defined high-risk stage I/1l and grade 1/2 groups
is significantly worse than in the low-risk stage Il and grade 3/4 groups

(p <0.05). Our multi-classifier system is a practical and reliable predictor for
recurrence of localized pRCC after surgery that can be used with the current
staging system to more accurately predict disease course and inform strate-
gies for individualized adjuvant therapy.

In 2022, kidney cancer represented 4.2% of all new cancer cases, and its
incidence has been increasing’. Over 90% of kidney cancer cases are
renal cell carcinoma (RCC), which includes various subtypes with dis-
tinct histologic features, clinical courses, and responses to therapy* ™.
Papillary renal cell carcinoma (pRCC) is the second most common
histological subtype of RCC, accounting for approximately 20% of all
cases>. Recently, a phase 3 trial (EVEREST) revealed that RCC patients
(including pRCC) in the very-high-risk group could benefit from

adjuvant therapy’. Current staging system is insufficient for more
accurate risk stratification. There is an urgent need for a more com-
prehensive classifier to accurately predict post-surgery recurrence.
Approaches to molecularly classify RCC, when considered along
with clinicopathological risk factors, can more accurately predict disease
course and support physicians in devising more informed, customized
treatment decisions and follow-up plans. Several validated prognostic
genetic signatures for RCC have been developed, such as the 16-gene

A full list of affiliations appears at the end of the paper.

e-mail: uroxuewei@163.com; weijh23@mail.sysu.edu.cn; luojunh@mail.sysu.edu.cn

Nature Communications | (2024)15:6215


http://orcid.org/0000-0002-7337-9774
http://orcid.org/0000-0002-7337-9774
http://orcid.org/0000-0002-7337-9774
http://orcid.org/0000-0002-7337-9774
http://orcid.org/0000-0002-7337-9774
http://orcid.org/0000-0002-3001-0395
http://orcid.org/0000-0002-3001-0395
http://orcid.org/0000-0002-3001-0395
http://orcid.org/0000-0002-3001-0395
http://orcid.org/0000-0002-3001-0395
http://orcid.org/0000-0002-3527-2140
http://orcid.org/0000-0002-3527-2140
http://orcid.org/0000-0002-3527-2140
http://orcid.org/0000-0002-3527-2140
http://orcid.org/0000-0002-3527-2140
http://orcid.org/0000-0001-6581-8151
http://orcid.org/0000-0001-6581-8151
http://orcid.org/0000-0001-6581-8151
http://orcid.org/0000-0001-6581-8151
http://orcid.org/0000-0001-6581-8151
http://orcid.org/0000-0002-3986-0177
http://orcid.org/0000-0002-3986-0177
http://orcid.org/0000-0002-3986-0177
http://orcid.org/0000-0002-3986-0177
http://orcid.org/0000-0002-3986-0177
http://orcid.org/0000-0002-5721-9586
http://orcid.org/0000-0002-5721-9586
http://orcid.org/0000-0002-5721-9586
http://orcid.org/0000-0002-5721-9586
http://orcid.org/0000-0002-5721-9586
http://orcid.org/0000-0002-0430-2845
http://orcid.org/0000-0002-0430-2845
http://orcid.org/0000-0002-0430-2845
http://orcid.org/0000-0002-0430-2845
http://orcid.org/0000-0002-0430-2845
http://orcid.org/0000-0002-8158-0101
http://orcid.org/0000-0002-8158-0101
http://orcid.org/0000-0002-8158-0101
http://orcid.org/0000-0002-8158-0101
http://orcid.org/0000-0002-8158-0101
http://orcid.org/0000-0003-1341-3878
http://orcid.org/0000-0003-1341-3878
http://orcid.org/0000-0003-1341-3878
http://orcid.org/0000-0003-1341-3878
http://orcid.org/0000-0003-1341-3878
http://orcid.org/0000-0002-1919-6010
http://orcid.org/0000-0002-1919-6010
http://orcid.org/0000-0002-1919-6010
http://orcid.org/0000-0002-1919-6010
http://orcid.org/0000-0002-1919-6010
http://orcid.org/0000-0003-2242-3138
http://orcid.org/0000-0003-2242-3138
http://orcid.org/0000-0003-2242-3138
http://orcid.org/0000-0003-2242-3138
http://orcid.org/0000-0003-2242-3138
http://orcid.org/0000-0002-4646-4391
http://orcid.org/0000-0002-4646-4391
http://orcid.org/0000-0002-4646-4391
http://orcid.org/0000-0002-4646-4391
http://orcid.org/0000-0002-4646-4391
http://orcid.org/0000-0001-9298-9941
http://orcid.org/0000-0001-9298-9941
http://orcid.org/0000-0001-9298-9941
http://orcid.org/0000-0001-9298-9941
http://orcid.org/0000-0001-9298-9941
http://orcid.org/0000-0002-5706-0990
http://orcid.org/0000-0002-5706-0990
http://orcid.org/0000-0002-5706-0990
http://orcid.org/0000-0002-5706-0990
http://orcid.org/0000-0002-5706-0990
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50369-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50369-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50369-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-50369-y&domain=pdf
mailto:uroxuewei@163.com
mailto:weijh23@mail.sysu.edu.cn
mailto:luojunh@mail.sysu.edu.cn

Article

https://doi.org/10.1038/s41467-024-50369-y

assay®, Clearcode34’, and the six-single-nucleotide polymorphism
(SNP)-based classifier'®; however, most of these molecular classifiers
were constructed based on clear cell renal cell carcinoma (ccRCC), and
they cannot be applied to patients with pRCC. Recently, several classi-
fiers for pRCC have been developed using genome-wide DNA methyla-
tion, messenger RNA (mRNA), and microRNA profiling with The Cancer
Genome Atlas (TCGA) dataset. These studies suggested that pRCC with
CpG island methylator phenotype (CIMP) is associated with particularly
poor survival®"'. However, the predictive accuracy of these classifiers in
PRCC remains unsatisfactory, thereby limiting their clinical application.

Long non-coding RNAs (IncRNAs) are transcripts longer than 200
nucleotides that lack protein-coding potential?, which are involved in
multi-level critical regulation of biological processes™™. Various
IncRNA transcripts are considered biomarkers that can effectively
predict the clinical outcome of many cancers'®”. Another recently
developed approach to characterize tumors is the use of deep learning
to identify histopathologic and molecular features on H&E-stained
tumor slides?®*. Indeed, a whole-slide-image (WSI)-based deep
learning model has been shown to accurately predict outcomes of
patients with colorectal cancer and soft tissue sarcoma’®*. In this
study, we developed a multi-classifier system based on genome-wide
IncRNA profiling, histopathologic images, and clinicopathological
factors that improves risk stratification for patients with pRCC. We
validated the predictive accuracy and reproducibility of the multi-
classifier system in two independent cohorts, including cases from
multiple centers in China and the TCGA dataset.

Results

Constructing a IncRNA-based classifier in the training set

We included in our study 793 patients with pRCC from three inde-
pendent cohorts: the training set, the independent validation set, and
the TCGA set (Supplementary Fig. 1). Clinical features of patients in the
three cohorts are described in Table 1. To develop a IncRNA-based
classifier for predicting tumor recurrence, we first analyzed 53 paired
fresh-frozen pRCC and adjacent normal tissues by RNA-seq in the
discovery set and looked for differentially expressed IncRNAs in pRCC
tumors compared to normal tissue across the genome (Fig. 1A). Based
on the genome-wide analysis of IncRNAs, 40 IncRNAs were identified
as significantly differentially expressed genes (Fig. 1A; Supplementary
Table 1). The heat map clearly distinguishes between levels of these 40
IncRNA in tumors versus adjacent normal tissues (Fig. 1A).

We performed quantitative real-time polymerase chain reaction
(gQRT-PCR) to quantify the expression of the 40 differentially expressed
IncRNAs by using formalin-fixed, paraffin-embedded (FFPE) tissue sam-
ples from the training set of 382 patients. The training set included 189
patients from South China (two centers) and 193 patients from East China
(one centers). Then we conducted univariate Cox regression analysis of
recurrence-free survival (RFS) based on each of the 40 IncRNAs (Sup-
plementary Table 2). We then used a multivariate LASSO Cox regression
model to select four IncRNAs to generate a IncRNA-based risk score for
RFS for each patient (Fig. 1A), using the following formula:

Four — IncRNA — based risk score =(0.4537 x AC099850.3)
+(0.8549 x Inc — TRDMT1 — 5) @
+(0.4143 x CYTOR) +(1.2739 x LUCAT1).

The expression of the four IncRNAs is shown in Supplementary
Fig. 2. We assessed the association between IncRNA-based risk score
and disease recurrence status, and we observed that patients with
higher risk scores generally had higher recurrence rates than patients
with lower risk scores (Supplementary Fig. 3).

Constructing a WSI-based classifier in the training set
To build a WSI-based classifier, we chose a total of 182 patients with
pRCC from the training set who had either a distinct good or poor

Table 1| Baseline characteristics of patients in the three sets

Training Independent vali- TCGA Total

set (n=382) dationset(n=207) set(n=204) (n=793)
Sex
Woman 83 (21.7%) 48 (23.2%) 50 (24.5%) 181 (77.2%)
Man 299 (78.3%) 159 (76.8%) 154 (75.5%) 612 (22.8%)
Age, years
<60 223 (58.4%) 12 (54.1%) 86 (42.2%) 421 (53.1%)
260 159 (41.6%) 95 (45.9%) 18 (57.8%) 372 (46.9%)
WHO/ISUP grade
1 1 (2.9%) 11 (5.3%) 12 (5.9%) 34 (4.3%)
2 216 (56.5%) 113 (54.6%) 108 (52.9%) 437 (55.1%)
3 145 (38.0%) 79 (38.2%) 81(39.7%) 305 (38.5%)
4 10 (2.6%) 4 (1.9%) 3 (1.5%) 17 (2.1%)
Pathologic stage®
| 241 (63.1%) 155 (74.9%) 138 (67.6%) 534 (67.3%)
Il 56 (14.7%) 20 (9.7%) 20 (9.8%) 96 (12.1%)

Il 85 (22.2%) 32 (15.4%)
Recurrence-free survival (%, 95% CI)

46 (22.6%) 163 (20.6%)

3years 88.1 90.6 (88.6-92.6) 80.1 87.1
(86.4-89.8) (76.6-83.6) (85.8-88.4)
5years 82.8 82.6 (79.8-85.2) 74.7 81.0
(80.8-84.8) (70.3-79.1) (79.4-82.6)
7 years 80.4 76.7 (73.3-80.1) 64.5 76.8
(78.2-82.6) (57.8-71.2) (75.0-78.6)
Overall survival (%, 95% ClI)
3years 90.2 91.7 (89.8-93.6) 88.7 90.3
(88.7-91.7) (85.8-91.6) (89.2-91.4)
5years 84.8 85.6 (83.0-88.2) 78.2 84.2
(82.9-86.7) (73.4-83.0) (82.7-85.7)
7 years 80.4 80.1(76.9-84.3) 78.2 79.8
(78.1-82.7) (73.4-83.0) (78.1-81.5)

WHO World Health Organization, ISUP International Society of Urological Pathology.
*Pathologic stage was classified according to the TNM 2017 staging system. Source data are
provided as a Source Data file.

outcome as a development set. Patient who had more than 7 years of
follow-up after surgery and had no record of recurrence was assigned
to the distinct good outcome group (n =127). The distinct poor out-
come group consisted of patients with record of recurrence fewer than
3 years after surgery (n=>55). We then used the representative H&E-
stained FFPE tumor tissue sections of each patient to scan their digital
WSI, and applied deep learning to create the WSI-based classifier for
predicting recurrence in patients with pRCC (Fig. 1B; see Methods).
The predictive accuracy of the WSI-based score with the 10x WSI (C-
index 0.723, 95% CI 0.553-0.994) was higher than that with the 40x
WSI (C-index 0.675, 95% CI 0.514-0.727) (Supplementary Fig. 4). We
calculated the WSI-based risk score (with 10x resolution) for each
patient and found that patients with higher WSI-based risk scores also
had higher recurrence rates (Supplementary Fig. 5).

Constructing a clinicopathological classifier in the training set
Meanwhile, we evaluated several clinicopathological factors including
age, sex, grade and pathologic stage in univariate and multivariate Cox
regression analyses, and found that grade and pathologic stage were
significant factors for predicting RFS in the training set. Further mul-
tivariate analysis showed that grade and pathologic stage were also
independent prognostic factors after adjusting for age and sex (Sup-
plementary Table 3). Thus, we developed a clinicopathological classi-
fier using Cox regression based on the two predictors:

clinicopathological risk score =0.5670 x grade + 0.5326 x stage 2)

Nature Communications | (2024)15:6215



Article

https://doi.org/10.1038/s41467-024-50369-y

LncRNA-based classifier

Percentile

~log,(P)

% -4 -2 0 2 4 6
IncRNAs expression difference
(log,FC,Tumour-normal)

0 20 40 60 80 100

B Tumour
B Normal

Partial Likelihood Deviance
Coefficients

[ S e S
Log(A)

ENSG00000265415
ENSG00000234961
ENSGO0000248323

ENSG00000222041

Discovery set
(53 paired pRCC
and adjacent

normal tissue)

Genome-wide
RNA-seq analysis:
8,219 IncRNAs

> >

DEG analysis
identified 40 highly
ranked differentially|
expressed INcRNAs

-

construct a
four IncRNA-based
risk score

Lasso cox regression:

B

WSI-based classifier

[

WSI

Development set

Fn-

Distinct poor outcome

55

Distinct good outcome

n=127

Mapping

Tilling

40x

Deep Learning Model

)
—

) 4
)

40x WS risk score:
lower accuracy

10x WSl risk score:
higher accuracy

y

Multi-classifier
system

}

J

Clinicopathological classifier

-

Grade

Grade 1

Pathologic stage

$ 30

Stage I Stage IT Stage II

Grade 2 Grade 3 Grade 4

Cox regression:
construct a

clinicopathological

risk score

~

J

Grade 1, 2, 3, 4 were scored as 1, 2, 3, 4, respectively. Patho-
logic stage 1, 2, 3 were scored as 1, 2, 3, respectively (Fig. 1C; see

Methods).

clinicopathological classifier using Cox regression coefficients:

The multi — classifier risk score =1.2924
x the IncRNA-based risk score +2.6315

Constructing a multi-classifier system in the training set « the WSI-based +0.8646 % (0.5670 x zrad 3)
Next, we developed a multi-classifier system integrating the the asedscore + 0. ©. grade
four-IncRNA-based classifier, the WSI-based classifier, and the +0.5326 x stage).
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Fig. 1| Construction of the multi-classifier system. IncRNA expression data, WSIs,
and clinicopathological factors were used to develop the three classifiers respec-
tively. We then integrated the three classifiers to develop a multi-classifier system.
A The development of the IncRNA-based classifier. Upper left of panel: volcano plot
comparing IncRNA expression in pRCC versus adjacent normal tissues (n=53).
Biological significance (log, fold change (FC)) is depicted on the x axis, and the
statistical significance (-log;o P) is depicted on the y axis. Forty IncRNAs were
identified with a log, FC >1, and the false discovery rate was <10™%. Upper right of
panel: heat map showing the expression level of 40 IncRNAs in 53 paired pRCCs.
Middle left of panel: LASSO Cox regression analysis to select IncRNAs to include in

the classifier. The two dotted vertical lines were drawn at the optimal values using
the minimum criterion (right) and 1 minus the standard error (1-s.e.) criterion (left).
Middle right of panel: LASSO coefficient profiles of the 40 differentially expressed
IncRNAs. A vertical line was drawn at the optimal value using the minimum cri-
terion, which resulted in four non-zero coefficients. Four IncRNAs were finally
selected using the LASSO Cox regression model to build the four IncRNA-based
score. Lower panel: flow chart. B The development of the WSI-based classifier using
deep learning. C The development of the clinicopathological classifier. Pictures of
pathologic stages were created with BioRender.com. Source data are provided as a
Source Data file.

We found that, for the multi-classifier risk score, the C-index for
predicting RFS was 0.831, which was significantly higher than that of
any single classifier alone (C-index 0.661-0.760, p < 0.01 for all com-
parisons). Next, we divided patients in the training set into high-risk
(n=191) and low-risk (n =191) groups, using the median multi-classifier
risk score (4.1020) as the cutoff. Compared to patients in the low-risk
group, patients in the high-risk group had shorter RFS (Hazard ratio
(HR) 11.17, 95% Cl 5.11-24.40, p < 0.001) (Fig. 2A) and shorter overall
survival (OS) (HR 9.71, 95% CI 4.65-20.28, p<0.001) (Supplemen-
tary Fig. 6).

Validating the multi-classifier system in two independent sets
To estimate the reproducibility and validity of this multi-classifier
system, we tested it in two independent patient datasets: an inde-
pendent validation set and the TCGA set (Table 1). The independent
validation set included 207 cases from North China (two centers) and
the TCGA set included 204 cases from the United States. The risk score
for each patient in both independent sets was calculated using the
same formula which are used in the training set (Fig. 2B, C). The multi-
classifier risk score showed stable predictive accuracy that was similar
in the independent validation set (C-index 0.831) and the TCGA set (C-
index 0.858), and the accuracy was significantly higher both than that
of any single classifier alone (C-index 0.642-0.777, p<0.05 for all
comparisons). Applying the same cutoff to establish high-risk and low-
risk groups in the independent validation set, we found that patients in
the high-risk group had shorter RFS (HR 12.85, 95% CI 4.61-35.84,
p<0.001) and OS (HR 10.90, 95% CI 3.90-30.46, p<0.001) than
patients in the low-risk group (Fig. 2B and Supplementary Fig. 6). Given
the distinct IncRNA expression data type in the TCGA set, patients in
the TCGA set were divided into high-risk and low-risk groups, using a
distinct median risk score (5.3700) as the cutoff. Patients in the high-
risk group in the TCGA set also had significantly shorter RFS (HR 8.54,
95% CI 3.02-24.14, p<0.001) and OS (HR 9.21, 95% CI 2.16-39.32;
p=0.003) than patients in the low-risk group (Fig. 2C and Supple-
mentary Fig. 6). After adjusting for clinical variables (age, sex, stage,
and grade), the multi-classifier system remained an independent
prognostic factor for predicting both RFS and OS in three sets (all
p <0.05, Supplementary Tables 4-7).

Stratified analysis of the multi-classifier system and nomogram
construction

When stratified by clinical variables (age, sex, grade, and stage), the
multi-classifier system was still a clinically and statistically significant
prognostic model for predicting RFS and OS in all 793 patients with
pRCC (p<0.05 for all comparisons, Fig. 3 and Supplementary
Figs. 7-9). High stage and grade were recognized as key determinants
for selecting very-high-risk post-surgery patients who could benefit
from adjuvant therapy’; however, our results showed that the RFS of
patients with stage I and stage Il pRCC in the multi-classifier risk-score-
defined high-risk group was significantly shorter than that of patients
with stage Ill pRCC in the low-risk group (HR 6.04 and 9.44, respec-
tively, p<0.05 for all comparisons) (Supplementary Fig. 10). Con-
sistently, RFS was significantly worse for patients with grade 1/2 pRCC

in the high-risk group compared to those with grade 3/4 pRCC in the
low-risk group (HR 5.80, p < 0.001, Supplementary Fig. 10).

In addition, we constructed a nomogram that combined the
IncRNA-based classifier, the WSI-based classifier, and the clin-
icopathological variables (stage and grade) to provide clinicians with a
quantitative method to predict the 3-year, 5-year, and 7-year recur-
rence-free probabilities in a patient with pRCC (Fig. 4A). Calibration
plots showed that the nomogram predict well in the training set, the
independent validation set, and the TCGA set (Fig. 4B).

Combining the multi-classifier risk score with other biomarkers
in the TCGA dataset

Several clusters of pRCC have been defined in the TCGA dataset based
on CIMP, DNA methylation, mRNA, and microRNA profiling®". We
compared these molecular cluster-based analyses with the multi-
classifier risk score in the TCGA set, and we found that the multi-
classifier risk score was significantly more accurate in predicting RFS
compared to any of the molecular cluster-based approaches (C-index
0.858 for multi-classifier risk score compared to 0.569-0.660 for
cluster-based analyses, p<0.001 for all comparisons) (Fig. 5A). The
TCGA Research Network reported that the CIMP hypermethylation
pattern is a very important prognostic factor in pRCC®". Interestingly,
in our study, we found that all the patients with tumors characterized
by CIMP pattern had ultra-high multi-classifier-based risk scores (>12.0,
Fig. 5B). The multi-classifier-based risk score of all the patients with
tumors with CIMP pattern was >14.0, and it was <11.6 for all patients
who did not display CIMP pattern. Strikingly, RFS was poorest among
patients with pRCC with CIMP pattern and an ultra-high multi-
classifier-based risk score (Fig. 5C). This suggests that our multi-
classifier system is strongly correlated with CIMP and can accurately
predict CIMP pattern.

Discussion

In this study, we combined a four-IncRNA-based classifier, a WSI-based
classifier, and a clinicopathological-based classifier to generate a multi-
classifier risk score that is predictive of RFS. This multi-biomarker-
based approach more accurately predicted RFS in patients with pRCC
than any of the three classifiers alone, and it also outperformed the
existing staging system. The multi-classifier-based risk score was
developed and validated in three independent sets, which included
patients from multiple centers in China and the United States, and the
predictive accuracy of the approach was similar among patients from
different regions of these countries. To our knowledge, this is the
largest biomarker discovery project to date in pRCC.

The 2022 World Health Organization classification no longer
recommends subclassification of pRCC into type 1 and type 2,
and stage and grade are currently the two most relevant clin-
icopathological prognostic factors of pRCC. The prognosis of patients
with high-stage and high-grade pRCC is usually worse than that of
patients with low-stage and low-grade pRCC; tumor with high stage
and/or high grade could benefit from adjuvant therapy’. However, our
results showed that the prognosis of patients with pRCC stage I/Il in
the multi-classifier-defined high-risk group was significantly worse

Nature Communications | (2024)15:6215
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Fig. 2 | Multi-classifier-based risk score and Kaplan-Meier survival analysis in
the training set and two validation sets. A The multi-classifier-based risk score

and Kaplan-Meier survival analysis in the training set (n = 382). Upper left of panel:
distribution of the multi-classifier-based risk scores and patient recurrence status.
Lower left of panel: heat map showing the scores generated using each of the three
classifiers independently. Right of panel: Kaplan-Meier survival analysis for RFS in

patients with pRCC who were divided into low-risk and high-risk groups. B, C The
multi-classifier-based risk scores and Kaplan-Meier survival analysis in the inde-
pendent validation set (n =207) and the TCGA set (n =204), respectively. HRs, 95%
Cls and two-sided P values were calculated using the Cox proportional hazards
model. Source data are provided as a Source Data file.

compared to patients with pRCC stage Ill in the multi-classifier-defined
low-risk group. Moreover, the prognosis of patients with multi-
classifier-defined high-risk grade 1/2 pRCC was worse than the prog-
nosis for patients with multi-classifier-defined low-risk grade 3/4 pRCC.
Thus, our multi-classifier-based risk score could be combined with
current clinicopathological risk factors for pRCC to obtain more
accurate prognostic data to inform personalized treatment strategy:
identifying the low-risk subgroup of patients in the same clinical stage
to prevent overtreatment where the absolute benefits of adjuvant

therapy are minimal relative to surgery alone; identifying the high-risk
subgroup in the same clinical stage to prevent undertreatment where
adjuvant therapy is needed to minimize the likelihood of recurrence.

A subtype of pRCC with CIMP hypermethylation is associated with
particularly poor prognosis®. In the present study, we found that all of
the patients with CIMP hypermethylation also had an ultra-high multi-
classifier-defined risk score as well as very poor survival outcomes,
indicating that these patients may benefit from more intensive treat-
ment. Necrosis has been shown to be a prognostic factor in ccRCC.
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Fig. 3 | HR of RFS for patients with pRCC predicted using the multi-classifier-
based risk score in high-risk and low-risk groups. The HR of RFS for all 793
patients with pRCC predicted using the multi-classifier-based risk score in sub-
groups stratified by clinical and pathological parameters. HRs, 95% Cls and two-
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sided P values were calculated using the Cox proportional hazards model. HRs are
depicted as the central point for the error bars, while the 95% Cl is represented by
the length of the error bars. Source data are provided as a Source Data file.

However, there is currently no conclusive evidence that necrosis is
prognostic in the pRCC context. In fact, in a study of 607 patients with
pRCC, Leibovich et al.’ reported that necrosis was not a prognostic
factor, and a similar conclusion was reached by another study of 421
patients with pRCC from the Mayo Clinic®. Moreover, in the TCGA
pRCC dataset used in this study, data regarding tumor necrosis are not
available. For these reasons, we did not evaluate necrosis as a potential
classifier in our study.

In recent years, increasing evidence has shown that IncRNA is
involved in multi-level regulation of biological processes, and is con-
sidered a effective biomarker that can be stably examined in FFPE
tissue. The feasibility of predicting cancer outcomes by detecting
IncRNA expression by qRT-PCR assay from FFPE tissue samples was
confirmed in many prognostic studies. Prensner et al." used FFPE tis-
sue samples from 1008 patients with localized prostate cancer and
evaluated IncRNA expression profiles by microarray in the training
cohort, which identified the IncRNA SChLAP1 as the highest-ranked
overexpressed gene associated with cancer progression. Validation in
three independent cohorts confirmed the prognostic value of
SChLAPL. Ozawa et al.*® assessed the relationship between the
expression levels of 12 IncRNAs located in the 8q24.21 locus, which
were detected using qRT-PCR analysis of FFPE tissue samples, and
prognosis for patients with colorectal cancer. Two of these IncRNAs
were identified and validated as reliable prognostic biomarkers for
colorectal cancer. Qu et al.” developed an IncRNA-based signature of
ccRCC that could be effectively identified through qRT-PCR analysis
of FFPE tissue samples. In this study, our IncRNA-based classifier could
predict patient survival and is applicable to routinely available FFPE
tumor tissue from patients with pRCC. Moreover, the IncRNA expres-
sion profiles required for this classifier can be acquired not only
through high-throughput sequencing but also via qRT-PCR assay,
making our classifier practical and cost-effective to implement in
clinical practice.

One of the distinctive characteristics of IncRNAs is their highly
tissue-specific and cell-type-specific expression pattern, compared to
mRNAs?*%., Qu et al.” compared a four-IncRNA-based signature with
two established mRNA signatures (the 16-gene assay and ClearCode34)
in three independent sets that included 1869 patients with ccRCC, and

the four-IncRNA-based signature more accurately predicted OS than
the two established mRNA signatures (C-index 0.74 vs. 0.64 and 0.66,
respectively). Our IncRNA-based classifier also has higher predictive
accuracy than the mRNA cluster in the TCGA set (C-index 0.777
vs. 0.608).

Of the four IncRNAs included in the IncRNA-based classifier,
CYTOR (Ensembl ID: ENSGO0000222041) is a well-studied IncRNA on
chromosome 2, which acts as an oncogene in many cancers. It was
shown to promote colon cancer metastasis in vitro and in vivo by
interacting with [-catenin and drive colorectal cancer progression
by interacting with NCL and Samé68*°*. Moreover, CYTOR is
involved in chemotherapy resistance and epithelial-mesenchymal
transition of oral squamous cell carcinoma®. LUCAT1 (Ensembl ID:
ENSG00000248323) is located on chromosome 5 and it is noteworthy
that this IncRNA is a significant prognostic factor for poor survival in
ccRCC?. In colorectal cancer, LUCATI was determined to promote
tumor proliferation by inhibiting the function of NCL and enhance
chemotherapy resistance both in vitro and in vivo®. LUCAT1 was also
reported to promote tumorigenesis in esophageal squamous cell car-
cinoma by regulating the stability of DNA methyltransferase 1*.
AC099850.3 (Ensembl ID: ENSGO0000265415) located on chromo-
some 17, acts as an oncogene in hepatocellular carcinoma and
regulates tumor cell proliferation and invasion in vitro and in vivo
through the PRRI1/PI3K/AKT axis®. Inc-TRDMTI-5 (Ensembl ID:
ENSG00000234961) is located on chromosome 10, and is positioned
antisense to a well-known EMT marker, VIM. Inc-TRDMT1-5 was shown
to correlate with poor survival in breast cancer®.

Increasing studies have shown that deep learning combined with
digital scanning of H&E-stained slides can identify histopathological or
molecular features that are difficult to recognize with the human eye
and could be used to develop diagnostic or prognostic cancer
biomarkers®*°. A deep learning WSI-based model can predict survival
in leiomyosarcoma and can help pathologists make more accurate
diagnoses®, and another WSI-based model precisely predicted the
cancer-specific survival of patients with colorectal cancer®. In
the present study, our WSI-based classifier discriminated patients with
different risks of pRCC recurrence with high accuracy. This classifier is
directly applicable to routine H&E-stained tissue sections, which
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Fig. 4 | The nomogram based on the IncRNA-based classifier, the WSI-based
classifier, and the clinicopathological risk factors. A The nomogram based on
the IncRNA-based classifier, the WSI-based classifier, and clinicopathological risk
factors for predicting the 3-year, 5-year, and 7-year recurrence-free probability for
patients with pRCC after surgery. B Calibration curves of the nomogram to predict
3-year, 5-year, and 7-year RFS in the training set (n =382), independent validation
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set (n=207) and TCGA set (n=204). The actual outcome is plotted on the y axis,
and the nomogram-predicted outcome is plotted on the x axis. Model performance
is shown relative to the 45° line, representing the performance of an ideal nomo-
gram for which the predicted outcome perfectly corresponds with the actual
outcome. The error bands represent the 95% Cls around the observed values.
Source data are provided as a Source Data file.

makes it easy to translate for clinical application. Tumor heterogeneity
is a critical factor that must be considered when investigating the
molecular and histological characteristics of tumors. When developing
our WSI-based classifier, we could only aim to minimize the impact of
intra-tumor heterogeneity, as it is impossible to completely exclude it.
In this study, we utilized a representative H&E-stained tumor slide
(diagnostic slide), which chosen by pathologists for pathological
diagnosis, represents the most characteristic view of the tumor. Given
that slides at a 10x resolution provided better predictive accuracy than
those at 40x resolution in our study, it suggests that incorporating a
broader spectrum of histological information into deep learning image
recognition could enhance model prediction accuracy. In future stu-
dies, we might increase the number of representative slides used,
aiming to improve the predictive accuracy of our WSI-based classifier.

Several limitations of this study should be noted. First, the gen-
eralizability of our retrospective study is constrained because it only

included patients from China and the United States. Although using
the median risk score as a cutoff is a common practice in many studies,
this approach’s population-specific nature restricts its clinical appli-
cation. Therefore, this multi-classifier system requires further valida-
tion through prospective studies in large-scale, multi-center clinical
trials that encompass additional geographic regions before it can be
widely applied in clinical settings. Second, we used a manual annota-
tion method to delineate the tumor area in WSIs, which increases the
workload of pathologists. In future studies, we will apply a convolu-
tional neural network to automate the procedure for high-throughput
clinical applications.

In summary, we developed and validated a practical multi-
classifier system for patients with localized pRCC that can comple-
ment the current staging system to predict tumor recurrence with
increased accuracy. Our multi-classifier-based risk score discriminates
patients with localized pRCC according to risk of disease recurrence
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after surgery, thus enabling more informed decisions about adjuvant
therapy.

Methods
Patients
This study was approved by the Institutional Review Boards of the First
Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University
Cancer Center, Renji Hospital of Shanghai Jiao Tong University, Peking
University First Hospital, and Affiliated Yantai Yuhuangding Hospital of
Qingdao University. The informed consent was waived because
patients were not directly recruited for this study.

In this study, we used 589 formalin-fixed, paraffin-embedded
(FFPE) tissue samples from 589 patients with pRCC who were treated

between January 2008 and December 2018. Inclusion criteria were
patients with sporadic unilateral pRCC, stage I-1ll, who underwent
resection without neoadjuvant therapy or adjuvant therapy, and for
whom clinicopathological characteristics, follow-up information, and
fixed tumor tissue were available. Two genitourinary pathologists (Y.C.
and B.L.) reassessed all of these samples. The training set (382 cases)
included 189 patients from South China (First Affiliated Hospital and
Cancer Center of Sun Yat-sen University) and 193 patients from East
China (Renji Hospital of Shanghai Jiao Tong University). The inde-
pendent validation set included 207 cases from North China and
comprised 121 patients from Peking University First Hospital and 86
patients from Affiliated Yantai Yuhuangding Hospital of Qingdao
University. For all patients in our cohorts from China, baseline imaging
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assessments were conducted within 3 months following surgery.
Beyond the initial assessments, patients diagnosed with stage | disease
underwent annual evaluations until the occurrence of disease recur-
rence, metastasis, or death, whichever occurred first. For patients with
stage Il and stage Il disease, evaluations were scheduled every
3-6 months during the first 3 years, followed by annual assessments
until the occurrence of disease recurrence, metastasis, or death,
whichever occurred first. Imaging assessments were collaboratively
performed by urologists and radiologists at each site. CT scans (pre-
ferred) or MRIs (when CT was unavailable or impractical) were utilized
for imaging the chest, abdomen, and pelvis. Additionally, bone scans,
brain imaging, and other supplementary imaging procedures were
undertaken as indicated by symptoms. For the TCGA set, RNA-seq data
(level 3), clear diagnostic whole-slide images (WSls) and clinical data
were downloaded from the Genomic Data Commons portal (https://
portal.gdc.cancer.gov/) on June 1, 2023. 204 cases with stage I-lII,
complete RNA-seq data, clear diagnostic WSIs and follow-up data were
finally selected for further analysis. Cases with conflicting information
were thoroughly re-evaluated and discussed again using all available
information to reach a final diagnosis.

Genome-wide RNA-seq data analysis

To generate IncRNA expression profiles, we obtained, as a discovery
set, a panel of 53 fresh-frozen tumor samples with paired adjacent
normal tissue from patients with pRCC treated between January 2016
and June 2020 at First Affiliated Hospital, Cancer Center of Sun Yat-sen
University, and from Renji Hospital of Shanghai Jiao Tong University.
Total RNA was extracted using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA). RNA purity and integrity were analyzed using a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) and an Agilent Bioanalyzer 2100 (Agilent Technologies, Santa
Clara, CA, USA). The libraries were built and sequenced by CapitalBio
Corporation (Beijing, China). Briefly, total RNA was subjected to
removal of ribosomal RNA using a Ribo-Zero rRNA removal kit (Illu-
mina, USA). A NEBNext Ultra Il RNA Library Prep Kit for lllumina (New
England Biolabs, Ipswich, MA, USA) was used to generate sequencing
libraries following the manufacturer’s protocols, and the library quality
was monitored on an Agilent Bioanalyzer 2100 (Agilent). Fragments
were finally sequenced on a HiSeq 2000 platform (Illumina).

Quality control and pre-processing of FASTQ files were done using
fastp to obtain the clean reads (clean data)*’. Obtained RNA-seq paired-
end clean data were then analyzed using Hisat2", Samtools 1.9%,
Stringtie 1.3.5”, and DESeq2*. Briefly, human reference genome
(Homo sapiens.GRCh38.84.gtf.gz) was obtained from Ensembl (ftp://ftp.
ensembl.org/pub/release-84/gtf/homo_sapiens/Homo_sapiens.GRCh38.
84.gtf.gz). Then, the reference genome index was created by the build-
index function in the Hisat2 software (http://ccb.jhu.edu/software/
hisat2) package with default options. The alignment of paired-end
reads from each sample to the reference genome was performed using
Hisat2 with default settings. After the alignment, the generated SAM files
were sorted to BAM files using Samtools 1.9 (http://samtools.
sourceforge.net). Subsequently, Stringtie 1.3.5 was used to assemble
the transcripts using BAM files as inputs. We then used Stringtie and its
prepDE.py to generate raw read count matrices for genes and tran-
scripts. The genes were annotated by GENCODE version 22. Those
IncRNAs located in the sex chromosomes were filtered. Only IncRNAs
expressed in at least 80% of the tumor samples (counts >1) were inclu-
ded, and, finally, 8219 IncRNAs were selected for subsequent differential
expression analysis. Differential expression analysis was performed
using the DESeq2 package in R software. 40 IncRNAs were identified with
alog?2 fold change of more than 1, and the false discovery rate (FDR) was
less than 107% (Supplementary Table 1). Raw sequencing data analyzed in
this study have been uploaded to the Gene Expression Omnibus at the
National Center of Biotechnology Information and can be found under

accession number: GSE180777 or (https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE180777).

For the TCGA set, the expression of IncRNAs was derived from
RNA-seq data downloaded from the Genomic Data Commons portal
(https://portal.gdc.cancer.gov/).

qRT-PCR

For each sample of FFPE tumor tissue from the training set and the
independent validation set, serial sections were stained with hema-
toxylin and eosin for histological confirmation of the presence (>80%)
of tumor cells. Three 20-pum tissue sections from each sample were
used to obtain sufficient RNA. RNA was extracted with the Qiagen FFPE
RNeasy kit and the HiPure FFPE RNA Kit (Magen, Guangzhou, China)
following the manufacturer’s instructions. For qRT-PCR, total RNA
(2pg) was reverse transcribed using PrimeScript RT Master Mix
(Takara, Shiga, Japan), and gPCR was performed on triplicate samples
in a SYBR Green Reaction Mix (Yeasen, Shanghai, China) with ABI
7900HT Fast Real Time PCR System (Applied Biosystems, Carlsbad,
CA, USA). The sequences of the primers used in this study are listed in
Supplementary Table S1, and the results were normalized to the
expression levels of ACTB using the 272 method; ACt is the difference
of Ct values between the IncRNA of target gene and the internal
reference (ACTB).

The construction of the IncRNA-based classifier

A multivariate LASSO Cox regression model was employed to select
four IncRNAs, which were then used to generate a IncRNA-based risk
score for RFS for each patient, as described in Eq. (1). The expression
levels of the four IncRNAs for the training and independent validation
sets were obtained from qRT-PCR assays, while for the TCGA set, they
were extracted from RNA-seq data. Given the distinct data types, the
applied cutoffs varied accordingly. In the training set, patients were
divided into high-risk and low-risk groups using the median risk score
of 0.9800 as the cutoff. This same cutoff was employed for classifying
patients in the independent validation set into respective risk groups.
For the TCGA set, patients were divided into high-risk and low-risk
groups, using a distinct median risk score (1.8100) as the cutoff.

Sample preparation and image pre-processing for WSI

A representative H&E-stained tumor slide (the one containing the
highest grade of tumor in the specimen) was created for each patient in
the training and independent validation sets***. Next, a WSI in the SVS
file format was created for each representative slide using a KF-PRO-020
scanner (KFBIO, Ningbo, China), at 40 equivalent magnification
(0.25 um/pixel). Then, each representative slide was scanned with KF-
PRO-020 scanner at 40x equivalent magnification to generate a WSI in
the SVS file format. A WSI with the 40x resolution typically contained an
order of 100,000 x10,000 pixels—multiple orders of magnitude larger
than images currently feasible for classification by deep learning
methods*®*’. The WSIs were annotated using the ASAP 1-8 platform,
available at https://github.com/computationalpathologygroup/ASAP/
releases. Next, a manual annotation method was applied to annotate the
tissue regions and map the tumor area on all WSIs using polygons to
draw the outline. This step was independently checked by another
pathologist*. To preserve the prognostic information present at high
resolution, WSIs were divided into multiple non-overlapping image
regions known as tiles at 10x and 40x resolutions. Each pixel at 40x
represents a physical size of approximately 0.24 x 0.24 pm. By creating
a grid of potential tiles starting from the top-left corner of the slide
picture, including areas outside the tumor segmentation, tiling was
carried out. Candidates were tiles with an overall tissue percentage of
more than 75% (compared to the whole area in each tile)*”. Tiles were
extracted with OpenSlide from level O, converted to numpy arrays, and
resized with OpenCV using the resize function (https://docs.opencv.
org/3.4.0/da/d54/group_imgproc_transform.html), with interpolation
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set to cv2.INTER_CUBIC for up-sampling and cv2.INTER_AREA for down-
sampling, and saved in a lossless format (as TIFF files). To prepare each
tile for the later prediction model, non-tissue-containing white back-
ground was removed from each tile using a series of RGB filters, and
then color was normalized using the Macenko method®.

Construction and evaluation of the deep learning WSI-based
classifier

182 cases from the training set with a so-called distinct outcome, either
good or poor, were used as the development set to obtain clear ground
truth for developing a prognostic score utilizing deep learning on
digital pathological images. 76,348 tiles at 10x resolution and
1,789,634 tiles at 40x resolution in the developing cohort were used to
train the deep learning models. Then, the developing cohort was
randomly split into three sets—a discovery set (1,322,009 tiles from 136
WSIs), a tuning set (209,600 tiles from 18 WSlIs), and a holdout internal
test set (334,373 tiles from 28 WSIs)—for development of the outcome
classifier”. The model was built around multiple instance learning and
comprised a MobileNet V3 representation network***°, a Noisy-AND
pooling function®, and a fully connected classification network similar
to the one used by Skrede et al.?°. The entire network was trained end-
to-end (i.e., directly from image to patient outcome), and each training
iteration used a batch size of 32 collections with 64 tiles each. In brief,
this convolutional neural network was a modified MobileNetV3 archi-
tecture that had been pre-trained on ImageNet and fine-tuned by
transfer learning on the development set, which took tiles from an
image and output a slide-level 4 probability (risk score) of tumor
recurrence’®. We added positional transforms, such as a horizontal
flip and a rotation of 0°, 90°, 180°, or 270°, at random to the training
data. We used a gradient approximation method that significantly
lowers memory usage during training, which allowed us to use these
tiles?>*, The Noisy-AND pooling function applied a trained non-linear
function on tile representation averages. This function enhances
robustness against tiles not representing the ground truth and, toge-
ther with the large number of tiles, alleviates the issues of spatial
heterogeneity. The network processed each tile in the WSI during
inference. Using TensorFlow 2.4.0, the models were trained beyond
apparent convergence, and each 10x model was evaluated at iteration
5000, 5500, and so on up to iteration 15,000. Each 40x model was
evaluated at iterations 10,000, 11,000, and so on up to iteration
30,000. The models were selected from each network training using
the performance in the tuning set from developing cohort with the
C-index as metric, resulting in optimal models for each resolution. The
predictive accuracy of the WSI-based score with the 10x resolution was
higher than that with the 40x resolution.

We used the internal holdout test set from the development set
for internal assessment, and we independently evaluated any potential
performance variability related to randomization in data splitting
using a four-fold cross-validation scheme. On the holdout test set, the
WSI-based model with the 10x resolution was able to predict tumor
recurrence possibilities with a C-index of 0.723 (95% CI 0.553-0.994),
and, upon four-fold cross-validation in the development set, the
C-index ranged from 0.634 to 0.721, with a mean of 0.688 across the
four values. Furthermore, the WSI-based model with the 40x resolu-
tion had lower performance than that with the 10x resolution, which
achieved a C-index of 0.675 (95% CI 0.514-0.727), and, upon four-fold
cross validation in the development set, the C-index ranged from 0.581
to 0.643, with a mean of 0.609 across the four values. Thus, we chose
the WSI-based model with the 10x resolution for the subsequent ana-
lyses. In the process of training and validating the multi-classifier sys-
tem, 141,029 tiles at 10x resolution from 382 WSIs in the training set,
79,866 tiles at 10x resolution from 207 WSIs in the independent vali-
dation set, and 81,323 tiles at 10x resolution from 204 WSIs in the
TCGA set were included for analysis. Using the WSI based model,
we calculated a risk score (with 10x resolution) for each patient in the

training, independent validation, and TCGA sets. Patients in all three
sets were divided into high-risk and low-risk groups using the median
risk score from the training set (0.2857) as the cutoff. The source code
for the deep learning model is available online (https://github.com/
guichengpengl/WSI-based-deep-learning-classifier-in-papillary-renal-
cell-carcinoma).

Outcomes
The primary outcome was RFS, defined as the time from surgery
to local recurrence and distant metastasis'®. The secondary out-
come was OS, defined as the time from surgery to death from
any cause.

Statistical analysis

LASSO Cox regression analysis was used to select the most useful
prognostic markers among candidate IncRNA and to construct a
IncRNA-based classifier for predicting the RFS of patients with pRCC in
the training set. We used the Kaplan-Meier method to analyze the
correlation between variables and survival. We used the Cox regres-
sion model for multivariate survival analysis and Cox regression
coefficients to generate a prognostic model and a nomogram. HRs and
95% confidence intervals (Cls) were calculated using the Cox propor-
tional hazards model. Harrell's C-indexes were calculated to examine
discrimination®’. All statistical tests were performed with R software
version 4.1.0 (R Foundation for Statistical Computing, Vienna, Austria).
Statistical significance was set at p <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The Raw-sequencing data generated in this study have been deposited
in the Gene Expression Omnibus database under accession code
GSE180777. All whole-slide images and patient data from the TCGA
cohort used in this study are available from the Genomic Data Com-
mons Data Portal [https://portal.gdc.cancer.gov/]. Source data are
provided with this paper. The WSIs and annotation data for the train-
ing set and independent validation set are subject to restrictions.
These data were utilized with institutional permission via Institutional
Review Board approval for the current study and are not publicly
available due to patient privacy obligations. However, these data will
be made available to interested research partners upon request to the
lead contact (J-HL) or the Institute of Precision Medicine, First Affili-
ated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
Access to the data requires a data transfer agreement, approved by the
legal departments of the requesting researcher and by all legal
departments of the institutions that provided data for the study, and
an ethics clearance. Source data are provided with this paper.

Code availability
The source code is available online (https://github.com/guichengpengl/
WSI-based-deep-learning-classifier-in-papillary-renal-cell-carcinoma)®.
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