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Exceptional performance 
with minimal data using 
a generative adversarial 
network for alzheimer’s disease 
classification
Pui Ching Wong 1*, Shahrum Shah Abdullah 1 & Mohd Ibrahim Shapiai 2

The classification of Alzheimer’s disease (AD) using deep learning models is hindered by the limited 
availability of data. Medical image datasets are scarce due to stringent regulations on patient privacy, 
preventing their widespread use in research. Moreover, although open-access databases such as 
the Open Access Series of Imaging Studies (OASIS) are available publicly for providing medical 
image data for research, they often suffer from imbalanced classes. Thus, to address the issue of 
insufficient data, this study proposes the integration of a generative adversarial network (GAN) that 
can achieve comparable accuracy with a reduced data requirement. GANs are unsupervised deep 
learning networks commonly used for data augmentation that generate high-quality synthetic data to 
overcome data scarcity. Experimental data from the OASIS database are used in this research to train 
the GAN model in generating synthetic MRI data before being included in a pretrained convolutional 
neural network (CNN) model for multistage AD classification. As a result, this study has demonstrated 
that a multistage AD classification accuracy above 80% can be achieved even with a reduced dataset. 
The exceptional performance of GANs positions them as a solution for overcoming the challenge of 
insufficient data in AD classification.

Alzheimer’s disease (AD) is a chronic neurological disease associated with the deterioration of the brain’s cogni-
tive abilities. It usually affects older adults whose common symptoms include memory loss, unresponsiveness, 
gradual impairment of language function, and gradual decline in daily living abilities. Research has shown that 
AD is the most common form of dementia, accounting for 60% to 80% of patients with  dementia1. Moreover, it 
is also known as an irreversible disease due to its progressive nature and lack of cure at  present2. Current treat-
ments and medicines can help alleviate symptoms and slow disease progression only. Thus, early detection and 
diagnosis of AD are highly important for delaying the worsening of this incurable neurodegenerative disease.

Medical imaging techniques are commonly used to detect and diagnose AD. Numerous methods, such as 
magnetic resonance imaging (MRI), positron emission tomography (PET), and computed tomography (CT), 
are available. However, MRI is the most popular medical imaging technique used for diagnosing AD due to its 
superior suitability. According to related research, patients are more likely to undergo MRI scans than PET and 
CT scans due to concerns about safety and price  issues3. MRI uses magnetic fields and radio waves to scan the 
inside of the brain, but unlike PET and CT, it does not emit radiation to the brain. In addition, an MRI scan is 
also not as expensive as a PET scan, thus leading to its use in AD diagnosis.

However, the abundance of images produced by MRI scans presents a significant challenge for clinicians and 
doctors in analyzing such extensive data. Recognizing the limitations of manual analysis, which is both time-
consuming and prone to  errors4, there is growing interest in computer-aided diagnosis  methods5. For instance, 
research indicates that machine learning approaches have the potential to enhance the efficiency and accuracy of 
image analysis processes. Salunkhe et al.6 tested the effectiveness of 3 different machine learning techniques for 
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diagnosing AD using MRI images. Support vector machine (SVM), random forest (RF), and decision tree (DT) 
models were used to classify the data. As a result, the best-performing classifiers identified were the ensemble 
model (90.2%), the DT model (88.5%), and the SVM model (87.2%). Thus, this study proves the effectiveness 
of machine learning methods.

Nevertheless, when dealing with more significant amounts of data, research shows that machine learning 
methods tend to encounter challenges such as decreased performance due to the complexity of MRI  images7. 
Therefore, deep learning techniques have been gradually gaining attention as replacements for existing methods 
that require advanced engineering techniques and specialized expertise to handle large datasets. In a study carried 
out by Jain et al.8, the authors used a CNN model to classify MRI images in multiple stages of AD and achieved 
a high accuracy of 95.73%. In general, multistage classification of ADs is more challenging than binary classifi-
cation tasks due to the difficulty in detecting prodromal stages that tend to have less obvious features. Thus, by 
using deep learning techniques such as those described  in8, MRI has been shown to increase the performance 
of diagnosing AD, leading to the recent trend in this field of research.

While CNNs can achieve better performance in classification tasks, challenges arise, such as an insufficient 
amount of training  data9. However, deep learning models require large amounts of data to learn and perform 
classification  tasks10. On the other hand, medical image data, such as MRI images, are scarce due to patient 
privacy issues, which are heavily protected. Appropriate consent and applications are needed to access patients’ 
medical records to obtain data for research purposes. Therefore, the problem of insufficient data has arisen when 
training deep learning models for AD classification.

Generative data augmentation techniques such as the generative adversarial network (GAN) seem to be 
useful for addressing this issue, given their great application in image generation tasks. It can generate realistic 
artificial samples of medical  images11, overcoming the limitations of transformation-based  techniques12. Thus, 
the current research trend is to apply a GAN, a type of unsupervised deep learning model, to solve the problem 
of insufficient data. Cabreza et al.13 utilized a deep convolutional GAN to solve the issue of insufficient labeled 
data for anomaly detection on MRI images to diagnose AD. As a result, an accuracy of 74.44% was achieved. In 
addition, focusing on small memory requirements, Jung et al.14 adopted another type of GAN known as the con-
ditional GAN for generating synthetic MR images in different stages of AD. Thus, these existing studies infer that 
the GAN is useful for expanding small medical image datasets to solve the problem of insufficient medical data.

Based on the great achievements of GANs in medical image generation tasks, this research aims to propose 
a GAN-based method that can achieve the same classification accuracy with less data by generating additional 
synthetic MR images. Unlike existing studies, this research focuses on using fewer data points to achieve the 
same accuracy instead of expanding the dataset. Since the problem of insufficient MRI data has already been 
solved, this study aimed to adapt to this situation by using less data for training with the help of a GAN. In other 
words, this research seeks to maintain the exceptional performance of deep learning techniques in diagnosing 
AD while utilizing less MRI data for training the model. With this approach, the issue of insufficient data can be 
omitted if the deep learning model can achieve the same classification accuracy with less data.

Methodology
Datasets
This study used an open-access database called the Open Access Series of Imaging Studies (OASIS) to obtain MRI 
images for training deep learning models. OASIS is a commonly used public database in the scientific commu-
nity for healthy aging and dementia-based research and  studies15. Three (3) series of datasets have been released 
since its establishment in 2007, with the latest release of the OASIS-3 dataset. The OASIS-3 is a collection of MRI 
and PET images from 1098 participants and their related clinical data. All the data are obtained from ongoing 
projects at the Washington University Knight Alzheimer Disease Research Centre for 15 years. A total of 1098 
participants comprised 605 cognitively healthy adults and 493 people with different stages of cognitive decline, 
while their ages ranged from 42 to 95 years. Nearly 2000 MR sessions with various structural and functional 
sequences are included in this database.

As this study aimed to use minimal data to achieve the same classification accuracy for AD diagnosis, only 
300 MRI subjects were chosen from the OASIS-3 database for training the deep learning model. This research 
focuses on a multistage AD classification system in which the subjects will be classified into different stages 
of the disease: AD, MCI, and NC. Thus, a balanced dataset of MR images with 100 subjects per class will be 
obtained from the database to avoid bias in the results. Moreover, the acquisition parameters of the dataset for 
all 3 classes are also standardized to the usage of axial T1-weighted MR images scanned using a 3 Tesla scanner 
only. For such specifications in the OASIS-3 database, there are generally 256 slices of images produced per MR 
scan, illustrating the cross-sectional area of the brain.

Since this study utilizes only MRI data in axial view, the 256 MRI slices consist of images scanned from the 
top to bottom of the brain in an X–Y plane parallel to the ground. Hence, not all the slices contain clinically 
relevant information for this study. For instance, some slices might capture the areas outside the brain such as 
upper neck or skull, but such information is not important for AD classification. In identifying AD, the brain 
region known as the hippocampus is the most significant region needed for analysis. Thus, slices that do not 
contain information of the hippocampus region are also considered as irrelevant slices. In order to maintain the 
quality of images used for training the deep learning model, filtration of MRI slices is performed. Firstly, since 
the hippocampus region is located at the center part of the brain, the slices that captured the upper and lower 
part of the brain are irrelevant and are filtered out. Then, the remaining slices are manually filtered by observ-
ing the availability of the hippocampus region. Finally, after filtering out all the irrelevant slices experiencing 
hippocampal absence, each subject was left with only approximately 10 useful MRI slices. As a result, for each 
class that has 100 subjects, there will be around 1000 slices per class, resulting in a total of 3000 MRI slices used 
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in training the GAN model. Figure 1 shows examples of MRI images obtained from the OASIS database for 3 
different classes of AD.

Table 1 shows the demographic and clinical characteristics of the MRI subjects selected for this study. For the 
whole MRI dataset collected from the OASIS database, the sex and age distributions were standardized during 
data collection to avoid bias. Both male and female subjects were collected in the distribution of 44% versus 
56% for all three classes, while the ages of the MRI subjects ranged from 65 years old to 74 years old, as shown in 
Table 1. Selection of subjects were based on clinical dementia rating (CDR), a widely used scale for assessing the 
severity of dementia symptoms. A CDR larger than 2 indicates the AD stage, a score between 0.5 to 1 indicates 
the MCI stage, while CDR equivalent to zero represents the NC stage. Lastly, all the MRI images obtained are in 
the same size of 256 pixels × 176 pixels.

Proposed method
The proposed methodology in this study consists of two steps: (1) generating synthetic images using a GAN 
and (2) performing multistage AD classification via deep learning networks. The overall framework is shown in 
Fig. 2, and the significant steps are discussed in the following subsections.

There are 2 phases in general: the training and testing phases involved in this proposed method. The proposed 
method will first be trained on the input MRI dataset in the training phase. After the training session, the trained 
model was tested on unseen MR images for generalizability. The ability of the model to accurately classify MRI 
images in their respective classes will be the benchmark of this study.

Generative adversarial network (GAN)
A GAN is a type of progressive deep learning network that is commonly used for generative tasks. Its architecture 
was first introduced by Goodfellow et al.16, and since then, it has been the most popular generative model due 
to its ability to generate realistic and high-quality images. It is mainly applied to solve data shortage and class 
imbalance  problems17. In recent years, there has been a surge of studies utilizing GANs for generating medical 

Figure 1.  Examples of MR images from OASIS in different classes of AD.

Table 1.  Demographic and clinical characteristics of the selected MRI subjects.

Classes AD MCI NC

Number of subjects 100 100 100

Sex
Male: 44% Male: 44% Male: 44%

Female: 56% Female: 56% Female: 56%

Age 69.5 ± 2.25 69.5 ± 2.25 69.5 ± 2.25

CDR CDR > 2 0.5 < CDR < 1 CDR = 0

Number of MRI slices 1000 1000 1000

Size of MRI slices 256 pixels × 176 pixels  256 pixels × 176 pixels  256 pixels × 176 pixels
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images, such as brain  MRI18–20. Using unsupervised learning, it learns and summarizes the probability distribu-
tion of input variables and then generates new samples based on its knowledge.

Figure 3 shows the model architecture of a GAN. It comprises two networks, which are the generator and 
discriminator. The generator generates new samples that look like the actual data as much as possible. On the 
other hand, the discriminator learns the data features and tries to differentiate the generated samples from the 
data. The mechanism of both networks is based on game theory, where one network tries to hide and the other 
seeks. The generator will continue updating its model and generate perfect samples that resemble real data by 
hiding any flaws. Moreover, the discriminator will be the "police" that seeks and detects fake-looking samples 
that do not look like real data. The training process of both models ends when equilibrium is achieved: the dis-
criminator can no longer discriminate between the generated samples and the real data.

In this research, MR images from each class; AD, MCI, and NC obtained from the OASIS database are input-
ted into the GAN model to generate synthetic MR images for experimental purposes. The MRI data collected is 
divided into 3 separate datasets systematically according to their classes and the GAN model is trained on the 3 
datasets sequentially. In the training loop, the GAN model iterates over the data loaders for each class and trains 
for a certain number of epochs. The generator generates sample MRI images for each class while the discriminator 

Figure 2.  Overall framework of the proposed method.

Figure 3.  GAN model  architecture16.
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performs binary classification on the samples generated by classifying whether they are real or fake images. If the 
samples are classified as real images, the discriminator labels them as one (1), while fake images are labeled 0. 
Then, after looping through all the three datasets, the generated images are saved to a directory specific to each 
class with folders labelled as “AD”, “MCI”, and “NC” respectively.

Equation (1) shows the loss function that describes how the GAN learns, where G represents the generator 
model and D represents the discriminator  model16. As the goal of the GAN is to maximize the number of cor-
rectly classified sample images, the generator and discriminator models will both continuously learn through 
the loss function until equilibrium is reached.

Classification with pretrained CNN
The diagnosis and classification of MRI images into multiple stages of AD will be performed using a convolutional 
neural network (CNN) classifier. A CNN is a popular deep learning network used for image analysis because it 
can learn features directly from raw data without explicit feature engineering. Thus, it can capture rich feature 
representations of the data and thus achieve high accuracy in pattern recognition, identification, and classification 
 tasks21. In a CNN, first, input images go through convolutional layers for feature extraction, where each layer 
contains a filter that activates certain features from the images. Then, in the pooling stage, the activated features 
are simplified, and the network parameters are reduced through weight sharing. Finally, in the classification layer, 
the fully connected layer outputs the probabilities of the classes after the input images are classified. In this study, 
the MRI images were classified into three (3) classes: AD, MCI, and NC.

Subsequently, the efficiency and widespread usage of CNNs in image analysis tasks have led to the develop-
ment of enhanced CNN-based pretrained networks, such as AlexNet, VGG, ResNet, DenseNet, and EfficientNet. 
These networks were developed using transfer learning, a technique that can transfer the knowledge learned from 
one task to  another22. These models were previously trained using ImageNet, a large dataset consisting of 1000 
different classes of images. Then, using the knowledge and model parameters learned from the previous task, 
these pretrained CNN models can be simply used for another task with just some fine-tuning. Using pretrained 
networks can save time and computational resources when designing a brand-new deep learning model for a 
task while achieving exceptional results due to rich  knowledge23. Numerous studies have utilized pretrained 
CNN models for AD classification tasks and achieved high  performance24–26.

In this study, the pretrained EfficientNet model was chosen to classify MRI images into different stages of AD. 
The EfficientNet model balances accuracy and computational  resources27. It can achieve higher accuracy with 
fewer parameters and calculations than other networks due to its ability to efficiently adjust the network’s size and 
resolution. Figure 4 shows the network architecture of the EfficientNet model. It has an efficient network design 
that is made up of 2D depthwise convolutional  units28. The network mainly consists of mobile inverted bottleneck 
convolutions (MBConv), and this structure is useful for optimizing computational resources in EfficientNet.

Experiment setup
As the proposed methodology shown in Fig. 2 has two significant steps, this study will perform two experiments 
to achieve the proposed objective: use a GAN to achieve the same accuracy with less data. Experiment 1 syn-
thesized MRI images using a GAN, while Experiment 2 involved multistage classification of MR images using 
the EfficientNet model. The GAN and EfficientNet models were developed in these two experiments using the 
Python-based deep learning framework PyTorch and a graphics processing unit (GPU). Commonly used for 
research development and implementation, PyTorch is an open-source machine-learning library that empha-
sizes automated differentiation, tensor computation, and GPU  acceleration29. The experimental setups for both 
experiments are discussed in the following subsections.

Experiment 1
An experiment to generate synthetic MR images using a GAN is performed to test and validate the objective 
proposed in this study: to achieve the same accuracy with less data. By training the GAN using real MR images 
obtained from the OASIS database, synthetic or fake MR images can be produced, and these data will be applied 
in Experiment 2. Table 2 shows the hyperparameters assigned for training the GAN in this experiment.

After being resized to dimensions of 64 pixels by 64 pixels for the RGB images, the 1000 MR images per class 
collected from the OASIS database were input into the GAN model for training. The size of the latent vector, the 
number of epochs, the batch size, the learning rate, the optimizer, and the loss functions used to train the model 
are subsequently determined based on a paper by Radford et al.30, where these values have been identified as 
the ideal hyperparameters that can enable the network to output the best results. The performance of the GAN 
model is evaluated by observing the generator and discriminator losses, as well as the similarity between the 
generated MR images and the real images collected.

Experiment 2
In this experiment, a test of whether the classification accuracy can be maintained even with a lesser amount of 
real data is carried out. As explained in Table 1, the dataset collected for this study included 1000 MRI images 
per class. For this experiment, the dataset was divided at a ratio of 8:2 for classification model training and 
validation. For each class, 800 MRI images were used for model training, while the remaining 200 MRI images 
were used for model validation.

(1)min max
G D

V(D, G) = Ex ∼ pdata(x) log D(x)+ Ez ∼ pz(z) log (1− D(G(z)))
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Figure 4.  EfficientNet model  architecture28.

Table 2.  Summary of the hyperparameters used for GAN training.

Hyperparameters GAN training

MRI image size 64 × 64 × 3

Number of training data

AD: 1000

MCI: 1000

NC: 1000

Size of latent vector, z 100

Epoch 100

Batch size 64

Learning rate 0.0002

Optimizer Adam optimizer

Loss function Binary cross entropy
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To verify the hypothesis of this study, different ratios of real data versus synthetic data are tested on the clas-
sification model. Different amounts of real MR images were used for each ratio, as shown in Table 3. From the 
previous experiment, the synthetic MR images generated by the GAN are applied in this experiment after being 
normalized and resized. In the first ratio (1:0), which acts as a control set, a maximum amount of real data (800) 
is included since the usage of the GAN is not incorporated in this set. As the amount of real data used gradually 
decreases, other ratios are gradually applied to the synthetic images to maintain a balanced dataset, as shown in 
Table 3. Different distributions of real and synthetic MR images are included according to the different ratios, 
and each dataset is used to train the EfficientNet model for classification.

Table 4 shows the hyperparameters applied for the training and validation tasks of the EfficientNet model 
during the classification of the MRI datasets into three (3) stages of Alzheimer’s disease. Using the various MRI 
dataset ratios, as shown in Table 3, the EfficientNet model is trained, and the results for each dataset are observed 
to determine whether the proposed objective can be achieved. As shown in Table 4, upon inputting the MR 
images into the EfficientNet model, the images need to be resized to 224 by 224  pixels dimensions to match the 
network architecture, as shown in Fig. 4. Then, the model is trained based on the hyperparameters, as shown 

Table 3.  Dataset distribution.

Datasets Real vs generated images ratio Number of original images Number of generated images Total number of images

Without GAN 1:0

AD: 800 AD: 0

800MCI: 800 MCI: 0

NC: 800 NC: 0

With GAN

9:1

AD: 720 AD: 80

800MCI: 720 MCI: 80

NC: 720 NC: 80

8:2

AD: 640 AD: 160

800MCI: 640 MCI: 160

NC: 640 NC: 160

7:3

AD: 560 AD: 240

800MCI: 560 MCI: 240

NC: 560 NC: 240

6:4

AD: 480 AD: 320

800MCI: 480 MCI: 320

NC: 480 NC: 320

5:5

AD: 400 AD: 400

800MCI: 400 MCI: 400

NC: 400 NC: 400

4:6

AD: 320 AD: 480

800MCI: 320 MCI: 480

NC: 320 NC: 480

3:7

AD: 240 AD: 560

800MCI: 240 MCI: 560

NC: 240 NC: 560

2:8

AD: 160 AD: 640

800MCI: 160 MCI: 640

NC: 160 NC: 640

Table 4.  Summary of hyperparameters used for EfficientNet training and validation.

Hyperparameters Training Validation

MRI image size 224 × 224 × 3 224 × 224 × 3

Number of image data 800 200

Epoch 100 100

Batch size 32 32

Learning rate 0.0001 0.0001

Momentum 0.9 0.9

Optimizer Adam optimizer Adam optimizer

Loss function Categorical cross-entropy Categorical cross-entropy
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in Table 4; these values are inspired by Tan et al.28. The performance of the pretrained EfficientNet model was 
evaluated based on the classification accuracy for different dataset ratios of MRI images.  

Results
Experiment 1
In this experiment, a GAN is applied to generate synthetic MR images based on real data obtained from OASIS. 
The objective of this study was tested and validated, in which the image data produced in this experiment were 
used to facilitate Experiment 2. Figure 5 shows the performance of the GAN in terms of its generator and dis-
criminator losses during training. The generator loss illustrates how successfully the generator generates realistic 
sample images and is determined based on the discriminator’s reaction and feedback. On the other hand, the 
discriminator loss indicates the ability of the discriminator to distinguish between real and fake images. In a 
GAN, the generator and discriminator models are always in a competitive environment where they are concur-
rently trained based on game theory. One tries to generate realistic samples to trick the other, while the other 
tries to discriminate the reals and fakes as accurately as possible. Thus, the training of a GAN will be completed 
when both the generator and discriminator reach an equilibrium point. In the loss graph, as shown in Fig. 5, the 
equilibrium is represented by the convergence of both network models to nearly constant values as the number 
of iterations gradually increases. According to the training procedure performed in this study, an accuracy of 
97.36% is achieved when training the GAN to generate synthetic MR images.

In addition, some comparisons between real and synthetic MRI images for each class of Alzheimer’s disease 
have been carried out. A comparison table is shown in Table 5, where one example of real and generated image 
from AD, MCI, and NC class is included in the table. From Table 5, the structures and details of the MRI images 
can be clearly viewed and compared between real and generated data. The figures show that the GAN performed 
exceptionally well in the generation of realistic MR images. The generated synthetic images have similar edges 
and detailed structures that look as realistic as the real images. Hence, the GAN successfully produced the image 
data needed to facilitate Experiment 2, a crucial step in achieving the proposed objective in this research.

Experiment 2
Following the success of Experiment 1 in facilitating this experiment, a pretrained EfficientNet model was used 
to classify MRI images into multiple classes of ADs. As shown in Table 6, nine (9) balanced datasets with differ-
ent ratios of real versus synthetic MR images were used in this experiment to test the model’s performance in 
multistage classification. This experiment aimed to test whether the classification accuracy could be maintained 
by decreasing the number of real MR images. The function of incorporating GAN-generated images in this 
experiment is to maintain a balanced dataset for each ratio and avoid bias in the results.

In the first dataset, with a ratio of 1:0, all the MR images are real data obtained from the OASIS database, 
without using a GAN. This dataset will serve as the benchmark for this experiment to observe the performance 
of the EfficientNet model in the following cases where less real data is used. With respect to the control set, the 
training accuracy of EfficientNet for multistage classification reaches 99.083%, while for validation, an 88.667% 
accuracy is achieved.

Then, the GAN-generated MR images are gradually included in the following datasets with different ratios 
because a lesser amount of real data is used in these datasets. For example, in the 8:2 dataset, only 80% of the 
total real images are used, while another 20% of synthetic images are included to maintain a balanced dataset. 

Figure 5.  Performance of the GAN model.
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In other words, when the benchmark dataset with a ratio of 1:0 includes 800 real MR images, the 8:2 dataset 
includes only 640 real images. By observing its classification results in this case, 99.625% accuracy was obtained 
from training, while validation resulted in 82.500%. Table 6 shows that the validation accuracy achieved by the 
first four ratios is as high as 80%. Thus, as compared with the control set, the datasets with ratios of 9:1, 8:2, and 
7:3 achieved remarkably high accuracies even with less real data used.

In the other remaining datasets, the amount of real MRI data used gradually decreases as more synthetic 
images are added. The classification accuracy results for both training and validation are tabulated in Table 6. 
As observed, the validation accuracy for the datasets with ratios of 6:4 and below slightly decreases compared 
to that of the control set. For visual representation purposes, the results in terms of accuracy and loss graphs are 
also illustrated for a few of the dataset ratios, as shown in Table 7, 8, 9, 10, 11. Table 7 shows the accuracy and 
loss graphs for the control set, while Table 8, 9, 10, 11 show the results for datasets with different amounts of real 
and synthetic MR images used.

Discussion
Based on the results of Experiment 1, the GAN model successfully generated synthetic MR images based on 
the real data input. By achieving an accuracy of 97.36%, the generated images are quite similar to the real data, 
as shown in the comparison figures. The GAN model efficiently learns the essential aspects and features in MR 
images to generate realistic images. However, as observed from the generator and discriminator loss graph, this 
experiment still has several limitations. During the beginning of the training process, the loss values are quite 
unstable and fluctuate at high values. After training for approximately 1000 iterations, the stability and accuracy 
increase as the loss values are maintained at low values. For an ideal GAN, the generator and discriminator losses 
are supposed to converge to a value where perfect equilibrium is reached. However, due to the instability and 

Table 5.  Comparison between real and GAN-generated MR images for each class.

Class AD MCI NC

Real images

Generated images

Table 6.  Classification results of the EfficientNet model.

Datasets Real vs generated images ratio Training accuracy (%) Training loss (%) Validation accuracy (%) Validation loss (%)

Without GAN 1:0 99.083 0.023 88.667 0.948

With GAN

9:1 99.542 0.015 87.167 0.994

8:2 99.625 0.012 82.500 1.262

7:3 99.667 0.014 80.167 1.319

6:4 99.375 0.020 75.000 1.378

5:5 99.458 0.015 73.167 2.063

4:6 99.958 0.013 68.000 2.128

3:7 99.458 0.028 61.167 2.201

2:8 99.917 0.014 58.500 2.468
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difficulty in training a generative model, such a perfect equilibrium is usually impossible to achieve. In contrast, 
convergence to a steady point is normally achievable and is sufficient for good-performance GANs. Thus, as 
observed from the graph in Fig. 5, both losses converge to a steady value but do not reach the perfect equilibrium 
point. However, despite these limitations, the generated synthetic images used in this study are quite accurate 
and sufficient for facilitating classification.

Table 7.  Accuracy and loss graph for a dataset ratio of 1:0

Table 8.  Accuracy and loss graph for a dataset ratio of 8:2

Table 9.  Accuracy and loss graph for a dataset ratio of 6:4
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On the other hand, experiment 2 successfully utilized the pretrained EfficientNet model to classify MRI 
images into multiple stages of Alzheimer’s disease. Nine datasets were used to test the model’s classification 
accuracy when trained with different amounts of MR images. Starting from 100%, 90%, 80%, and so on, differ-
ent percentages of the MRI images collected from the OASIS database are used in the experimental datasets. 
Dataset 1, which uses 100% real MR images, acts as the control set, while starting from dataset 2, only 90% of 
the real images are used, and this percentage decreases gradually for the other datasets. To maintain a balanced 
dataset in all the datasets, insufficient or vacant datasets with reduced real images were loaded with synthetic 
MR images generated by the GAN in experiment 1 instead. After the EfficientNet model is trained for multistage 
classification, the training accuracy achieved for all the datasets with or without the use of a GAN is maintained 
at approximately 99%. The classification model was subsequently validated with different dataset ratios, and 
comparable results were obtained, as shown in Table 6. Compared with the control set, the validation accuracies 
obtained by the datasets with ratios of 9:1, 8:2, and 7:3 were comparable at approximately 80% and above. Thus, 
this comparable accuracy can be used to validate the hypothesis that the EfficientNet model can produce the 
same classification accuracy even with fewer data used. This study has several limitations. As shown in Table 6, 
the datasets with a smaller ratio of real images than generated images experienced a slight decrease in their vali-
dation accuracies compared to those of the control set. This might be due to too many generated images being 
included in the dataset, which included only a small number of real images. Therefore, the accuracy slightly 
decreases because the test set used for validation comprises only real MR images. Hence, since the model was 
trained on a large number of generated images, it has limited ability to identify real images. Nevertheless, the 
classification accuracies achieved by the model were still acceptable, as they were still maintained at approxi-
mately 60% and above, even for the dataset with the slightest real data used. Hence, from the results obtained, 
it can be inferred that the 9:1, 8:2, and 7:3 ratios of real versus synthetic images are the best and ideal situations 
where fewer real images can be obtained from the database while at the same time achieving the same accuracy 
as the benchmark dataset.

Table 10.  Accuracy and loss graph for a dataset ratio of 5:5

Table 11.  Accuracy and loss graph for a dataset ratio of 3:7
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Conclusion
In summary, the objective proposed in this study was successfully achieved, albeit with several limitations. The 
aim was to utilize a GAN to attain comparable accuracy with reduced data in AD classification. The results from 
both experiments demonstrate that the exceptional performance of the EfficientNet model in AD classification 
can be maintained even when utilizing a smaller MRI dataset obtained from the OASIS database for training. 
Therefore, by validating this hypothesis through these experiments, the challenge of insufficient data in AD 
classification can be effectively addressed by incorporating a GAN. This study contributes valuable insights to 
the research field and can potentially enhance AD diagnosis for the well-being of Alzheimer’s disease patients. 
Future research directions may involve improving the stability of GANs, enhancing the generalization ability of 
the EfficientNet model, and incorporating additional enhancement modules to further enhance classification 
performance.

Data availability
The MRI dataset was collected from the Open Access Series of Imaging Studies (OASIS) (https:// www. oasis- 
brains. org/).
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