
Food Sci Nutr. 2024;12:4489–4512.	﻿�   | 4489wileyonlinelibrary.com/journal/fsn3

1  |  INTRODUC TION

Fusarium species are widely distributed and are well known as one 
of the world's most damaging fungi pathogens. The most harm-
ful groups, zearalenone, trichothecenes, and fumonisin produc-
ers, continue to threaten sustainable agriculture and food safety 

in many regions. Recent reports have shown their common oc-
currence in African food and feed samples (Biomin, 2018, 2019; 
Gruber-Dorninger et  al.,  2019). Their postharvest occurrence, 
coupled with pre- and postharvest factors such as water activity, 
temperature, or repeated misuse of mineral fertilizer are caus-
ing significant crop yield losses, and accumulation of mycotoxins 

Received: 30 June 2023 | Revised: 26 February 2024 | Accepted: 13 March 2024

DOI: 10.1002/fsn3.4125  

R E V I E W

Zearalenone contamination in maize, its associated producing 
fungi, control strategies, and legislation in Sub-Saharan Africa

Abdul Rashid Hudu1  |   Francis Addy2 |   Gustav Komla Mahunu3 |    
Abdul-Halim Abubakari4 |   Nelson Opoku2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2024 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC.

1Department of Agricultural 
Biotechnology, Faculty of Agriculture, 
Food and Consumer Sciences, University 
for Development Studies, Nyankpala, 
Ghana
2Department of Biotechnology and 
Molecular Biology, Faculty of Biosciences, 
University for Development Studies, 
Nyankpala, Ghana
3Department of Food Science and 
Technology, Faculty of Agriculture, Food, 
and Consumer Sciences, University for 
Development Studies, Nyankpala, Ghana
4Department of Horticulture, Faculty 
of Agriculture, Food, and Consumer 
Sciences, University for Development 
Studies, Nyankpala, Ghana

Correspondence
Nelson Opoku, Department of 
Biotechnology, Faculty of Biosciences, 
University for Development Studies, 
Nyankpala, Ghana.
Email: nopoku@uds.edu.gh

Funding information
Islamic Development Bank

Abstract
The fungal genus Fusarium contains many important plant pathogens as well as en-
dophytes of wild and crop plants. Globally, Fusarium toxins in food crops are consid-
ered one of the greatest food safety concerns. Their occurrence has become more 
pronounced in Africa in recent times. Among the major Fusarium mycotoxins with 
food and feed safety concerns, zearalenone is frequently detected in finished feeds 
and cereals in Africa. However, the impact of indigenous agricultural practices (pre- 
and postharvest factors) and food processing techniques on the prevalence rate of 
Fusarium species and zearalenone occurrence in food and feed have not been collated 
and documented systematically. This review studies and analyzes recent reports on 
zearalenone contamination in maize and other cereal products from Africa, includ-
ing its fungi producers, agronomic and climate variables impacting their occurrences, 
preventive measures, removal/decontamination methods, and legislations regulating 
their limits. Reports from relevant studies demonstrated a high prevalence of F. verti-
cillioides and F. graminearum as Africa's main producers of zearalenone. Elevated CO2 
concentration and high precipitation may carry along an increased risk of zearalenone 
contamination in maize. African indigenous processing methods may contribute to 
reduced ZEA levels in agricultural products and foods. Most African countries do not 
know their zearalenone status in the food supply chain and they have limited regula-
tions that control its occurrence.
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(Mielniczuk & Skwaryło-Bednarz, 2020). For example, excess ni-
trogen favored increased infestation of Fusarium fungi and sub-
sequent production of zearalenone (ZEA) (Blandino et  al.,  2008; 
Podolska et al., 2017; Yi et al., 2001). Rapid infestation of grains by 
Fusarium species may cause a yield reduction of up to 19% (Lobulu 
et al., 2021), and severe water stress could cause the production 
of mycotoxins in kernels (Daou et al., 2021). As a result, foods and 
animal feeds are exposed to multiple mycotoxins simultaneously 
(Rodrigues et al., 2011). Mycotoxins are toxic metabolites of fungi 
that have adverse health effects on plants, animals, and humans. 
Among the identified Fusarium mycotoxins with food and feed 
safety concerns, ZEA is frequently detected in feeds and cereals 
in Africa (Gruber-Dorninger et al., 2018). ZEA and its metabolites 
are the most studied mycotoxin with endocrine-disrupting activity 
(Eze et al., 2018). In Africa, especially South Africa, ZEA has been 
associated with the clinical diagnosis of gynecomastia with tes-
ticular atrophy in males (Shephard,  2008). Its prevalence rate in 
agri-food is becoming a prioritized area of research, particularly 
in Africa.

Limited studies on the natural occurrence of Fusarium species 
and ZEA in food and feed in Africa are available in literature (Tables 2 
and 3). The effect of ZEA on human and animal health has prompted 
some countries to establish appropriate, permissible levels in food-
stuff intended for human and animal use. In the European Union, the 
maximum level for ZEA ranges between 0.5 and 400 μg/kg in various 
products intended for human and animal consumption (European 
Commission, 2006a, 2006b). For example, the maximum acceptable 
level for ZEA in China is 60 μg/kg (Ward, 2018). Currently, few legis-
lations (South Africa and Morocco) are available for regulating ZEA in 
food and feed in Africa (Ankwasa et al., 2021; Lahouar et al., 2018).

There are few comprehensive databases on the prevalence rate 
of Fusarium species and ZEA occurrence in Africa. However, these 
data are limited to natural with no consolidated data on the impact 
of traditional agronomic practices and climate change on Fusarium 
and ZEA concentrations. To facilitate data consolidation on the prev-
alence of Fusarium species and ZEA occurrence in Africa, this article 
highlights detailed information on ZEA and its associated producing 
fungi, agronomic practices, and climate change impacting their oc-
currence, current exposure levels, and regulatory regime in Africa. 
Furthermore, it summarizes stress levels leading to the production 
of ZEA in food and feed in Africa.

2  |  TRENDS IN MAIZE CONSUMPTION 
AND NUTRIENT SUPPLY IN AFRIC A

Although it is clear that maize is a multipurpose crop, maize use as 
direct human food is repeatedly high in Africa (54%) compared to its 
global 56% use in feed production and 13% use as a direct human 
(Erenstein et al., 2022). Maize grain is the first most consumed ce-
real in Africa with an intake ranging from 50 to >330 g/person/day 
(Palacios-Rojas et  al.,  2020; Ranum & Pe,  2014). The crop and its 
derived products including infant formulas are widely consumed in 

Eastern and Southern Africa, contributing to more than 30% of total 
calorie intake (Nuss & Tanumihardjo, 2010).

The average dietary energy intake per capita in Africa is 399 kcal 
for maize as food compared to a total intake of 80 kcal for Asia, 
301 kcal for America, 59 kcal for Europe, and 38 kcal for Oceania. 
Within Sub-Saharan Africa, the energy supply per day from maize is 
high in eastern and southern Africa (556.0 kcal/capita/day) compared 
to 287 kcal/capita/day for West and Central Africa and 318.3 kcal/
capita/day for northern Africa (Erenstein et al., 2022). Despite these 
significant contributions of maize to human nutrition in Africa, the 
grain is highly susceptible to Fusarium infection and ZEA contamina-
tion, and their effect on health is extremely unnoticed in developing 
countries, including Africa.

3  |  RECENT ADVANCEMENTS 
IN THE IDENTIFIC ATION OF 
ZE AR ALENONE-PRODUCING SPECIES

Improved new and emerging technologies are important for opti-
mizing food safety tests. Several rapid tests have been developed 
and employed to detect Fusarium species and ZEA in food products. 
Among these methods, quantitative PCR (MitoqPCR, optimized 
qPCR, multiplex qPCR), loop-mediated isothermal amplification 
(LAMP), PCR-ELISA, metabarcoding, and microarray are frequently 
used. However, the identification of Fusarium species in Africa 
mainly depends on morphological growth parameters of the fungi 
and conventional PCR methods that are time-consuming, laborious, 
and require specific expertise and experience (Table 1). Compared 
to morphological assays and singleplex PCR, multiplex PCR-based 
technique has allowed the simultaneous detection of foodborne 
fungi belonging to distinct genera in a single reaction. This process 
mainly uses highly conserved and variable sequence regions such as 
β-tubulin, elongation factor 1 α, and intergenic spacer region (IGS) 
of the rDNA that have demonstrated a high throughput and precise 
technology for characterizing Fusarium species. Although internal 
transcribed spacer (ITS) has been widely used in Fusarium species 
identification, it is now commonly accepted that internal transcribed 
spacer (ITS) is not informative enough to verify species identification 
within the Fusarium genus (Donnell et al., 2022; Summerell, 2019). 
Furthermore, conventional PCR assay is disadvantaged by its in-
ability to quantify fungal load, high workload, high cost, and high 
turnaround time.

3.1  |  Quantitative PCR (qPCR)

Quantitative PCR (qPCR) is a variant of PCR technology that allows 
the real-time detection of amplicons as they accumulate. It is impor-
tant to acknowledge that the widespread adoption of qPCR is not 
without its challenges. One of the well-known issues with quantita-
tive PCR is its inability to discriminate between viable and nonviable 
Fusarium cells. This mostly results in the overestimation of viable 
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Fusarium cells and the overuse of chemicals. To address this limita-
tion, Chen et al. (2022) developed an improved method for quanti-
fying viable Fusarium cells using propidium monoazide (50 mmol/L 
optimum) coupled with real-time PCR. This method was able to 
reliably differentiate between viable Fusarium spores from nonvi-
able spores. Furthermore, the qPCR setup is that each target gene 
needs its own dye and associated probe with a unique wavelength. 
Furthermore, qPCR results depend on a calibration curve, involving 
several calculations, and may not represent the number of Fusarium 
copies in the sample (Cao et al., 2020). Complex biological molecules 
such as humic acid significantly inhibit qPCR reactions.

3.2  |  Digital PCR (dPCR)

Digital PCR (dPCR) is a powerful tool for quantifying the absolute 
copy number of target DNA or RNA. It plays a crucial role in meas-
uring genetic imbalances that result from an uneven distribution of 
targets, particularly in mycotoxin analysis. Among the various types 
of dPCR partitioning methods that have been explored for food 
safety management, microfluidic chip, and droplets, digital PCR have 
been examined in fungal biology and mycotoxin detection. With the 
droplet dPCR system, each DNA sample is mixed with oil, forming a 
water–oil emulsion. The water–oil emulsion is then divided into many 
thousands of single nanoliter droplets. During PCR, targets are am-
plified within each droplet. Recently, a ddPCR assay was developed 
by Wang et al. (2021) for the simultaneous quantification of 3-acetyl 
deoxynivalenol (3ADON) and 15-acetyl deoxynivalenol (15ADON) 
chemotypes of DON-producing Fusarium species. Furthermore, chip 
digital PCR (cdPCR) was found to accurately track mycotoxigenic 
Fusarium DNA in wheat and oat plants during the initial phase of 
infection when symptoms are not visible (Morcia et al., 2020). The 
technology has not been used in zearalenone detection and quan-
tification. Droplet digital polymerase chain reaction (ddPCR) has 
demonstrated its power in detecting gene targets differing in one 
nucleotide. Through not Fusarium, ddPCR was found to accurately 
distinguish the competitiveness between nonaflatoxigenic and 
aflatoxigenic Aspergillus flavus strains on maize kernels (Schamann 
et al., 2022).

3.3  |  Polymerase chain reaction–enzyme-linked 
immunosorbent assay (PCR-ELISA)

Polymerase chain reaction–enzyme-linked immunosorbent assay 
(PCR-ELISA) is a nucleic acid amplification assay that combines im-
munodetection method (ELISA) and PCR to quantify specific PCR 
product directly after immobilization of DNA on a microtiter plate. 
Compared to qPCR, PCR-ELISA is sensitive and specific, uses less 
time, simultaneously detects a large number of samples, and in-
volves fewer carcinogenic chemicals (Tayebeh et al., 2017). Grimm 
and Geisen  (1998) proposed and developed a PCR-ELISA for the 
detection of potential Fusarium species using the ribosomal ITS1 Co
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sequence as a target. Subsequently, Omori et  al.  (2018) explored 
the possibility of using PCR-ELISA to detect Fusarium verticillioides 
in corn. The authors targeted the FUM21 gene for Fusarium verticil-
lioides and confirmed that the technique was specific to Fusarium 
verticillioides isolates, and exhibited 100-fold more sensitivity than 
the conventional PCR assay. However, higher DNA concentration 
(>250 pg) decreases the sensitivity of the detection method (Omori 
et al., 2018).

3.4  |  Loop-mediated isothermal amplification

Loop-mediated isothermal amplification is a novel amplification for 
faster detection of nucleic acids. Compared to PCR assays that re-
quire three different temperatures (initial temperature, annealing 
temperature, and the final extension temperature), LAMP technol-
ogy utilizes a single temperature (Isothermal) and does not require a 
thermocycler. More recently, few studies have accessed the potential 
of using LAMP assay to determine Fusarium species and mycotoxin 
in maize. Wigmann et  al.  (2020) developed a direct LAMP-based 
assay for detecting Fusarium species and mycotoxins in ungrounded 
maize grains. In their methodology, 1 g of maize grains was soaked 
with 2.5 mL of sterile tap water containing 1% (v/v) Tween 20. After 
handshaking, 2 mL of the supernatants was transferred into a reac-
tion vessel and centrifuged at 11,000 g for 2 min. Subsequently, the 
Tween 20 was removed by washing with sterile deionized water and 
the pellet was resuspended in 500 μL of sterile deionized water. Five 
microliters of the suspension was used as a template in LAMP reac-
tions. This method was able to detect Fusarium verticillioides with the 
potential to produce fumonisin even at lower concentrations.

3.5  |  Full genome sequencing

Although the full genome of several ZEA-producing Fusarium iso-
lates from different parts of the world has been sequenced and used 
in the bioinformatic analysis, there are no similar studies of isolates 
originating from Africa. The first Fusarium genome to be sequenced 
completely in Africa was the South Africa's Fusarium circinatum type 
strain FSP34 (Wingfield et al., 2012). This strain was sequenced on 
a Roche 454 GS FLX system (Life Sciences, Connecticut, USA) using 
titanium chemistry and it was found that the strain contains about 
44 million bases in size, 15,000 open reading frames with putative 
gen clusters harboring evidence of the secondary metabolites of 
fumonisin and fusarin. About 70% of the Fusarium circinatum open 
read frames were most similar to those of Fusarium verticillioides 
(Wingfield et al., 2012).

Compared to the current partially sequenced genomes widely 
used to study Fusarium isolate in Africa, complete genomes provide 
detailed bioinformatic information including the size, heterozygos-
ity, repetitive sequence content, and interspecific and intraspe-
cific comparison, and facilitate all aspects of biological research. 
Complete genome sequencing has also shed light on the evolution 

of the pathogenicity history of various Fusarium fungi and allows the 
selection of several primer pairs used in PCR reactions for molecular 
characterization of the specific mycotoxigenic chemotypes. To this 
end, different primer sets have been designed for rapid and specific 
detection of ZEA-producing Fusarium species in contaminated food-
stuff such as maize flour. Based on the gene sequence of polyketide 
synthase PKS4, Meng et al. (2010) developed a low-cost technique 
using a specific primer set that was rapid, sensitive, specific, and 
reliable in the identification and quantification of ZEA-producing 
Fusarium species directly in maize flour. Similarly, Atoui et al. (2011) 
developed a real-time PCR assay from a polyketide synthase gene 
PKS13 sequences involved in ZEA biosynthesis and successfully 
detected and quantified Fusarium graminearum and was used to an-
alyze the occurrence of 32 ZEA-producing F. graminearum chemo-
types on maize.

4  |  GENES E XPRESSION IN ZE A 
PRODUC TION

Molecular techniques such as differential display RT-PCR (DDRT-
PCR) and expressed sequence tags approaches have been used to 
understand the molecular mechanisms connected with ZEA pro-
duction in maize genotypes. Two polyketide synthase genes PKS4 
and PKS13, transcription factor (ZEB2), and genes similar to isoa-
myl alcohol oxidase (ZEB1) as well as other regulatory proteins have 
been identified and reported as genes expressed in ZEA production 
(Lysøe et al., 2006). Lysøe et al. (2008) used differential display RT-
PCR to identify 54 expressed sequence tags that were upregulated 
in rice samples with higher ZEA production. Furthermore, the MIPS 
Functional Catalogue (FunCat) of classifying expressed genes classi-
fied these upregulated genes into five major functional categories: 
38% unclassified proteins, 15% metabolism, 10% proteins with bind-
ing function, 6.5% biogenesis of cellular components, and 5.5% cell 
rescue, defense, and virulence (Lysøe et al., 2008). Using microarray 
analysis on F. graminearum strains.

Lee et al. (2011) found significantly elevated ZRA1 gene levels, a 
putative ATP-binding cassette transporter gene, in test samples con-
taining 15 μM ZEA compared with those without ZEA supplements. 
It has been suggested that these genes are expressed between 4 and 
14 days after infection with the necessary growth conditions (Lysøe 
et al., 2006, 2008). This particular finding is significant that plant de-
bris can transfer ZEA and its conjugate metabolites into the soil and 
subsequently translocate ZEA to other plant parts including leaves, 
stems, grains, and fruits (Gerling et al., 2022; Jaster et al., 2023; Rolli 
et al., 2018).

5  |  ZE AR ALENONE AND ITS PRODUCING 
FUNGI IN SUB-SAHAR AN AFRIC A

Zearalenone, a metabolite produced by various species of Fusarium 
fungal, has been observed as a natural contaminant of cereals, in 
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particular maize, in many countries in Africa, Europe, and the USA. 
Globally, high levels of ZEA production are associated with Fusarium 
graminearum and Fusarium culmorum. However, F. oxysporum, F. spor-
otrichioides, F. proliferatum, and F. verticillioides have also been linked 
to ZEA production (Beev et  al.,  2013). Although these fungi have 
been widely reported to colonize a variety of food crops including 
maize, sorghum, wheat, rice, millet, and other legumes products, 
recent evidence suggests that ZEA can also contaminate water, 
meat, fish, and dairy commodities (Alaboudi et al., 2022; Falkauskas 
et al., 2022; Gonkowski et al., 2018; Jafari-Nodoushan, 2022).

The chemical structure of ZEA and its five known conjugate me-
tabolites are shown in Figure 1. The toxin is soluble in solvents such 
as acetonitrile, acetone, methyl chloride, and alcohol. In terms of sta-
bility, ZEA is stable to conventional food processing temperatures 
(EFSA, 2011). Globally, ZEA and its metabolites are well known for 
their estrogenic activities, resulting in reproductive system dysfunc-
tion. Furthermore, ZEA exhibits cytotoxicity by modifying biolog-
ical macromolecules such as DNA, proteins, and nucleic acid (Eze 
et al., 2018; Jafari-Nodoushan, 2022; Rai et al., 2020).

Over the past decade, morphological and molecular analysis 
performed on various food crops showed the presence of sev-
eral fungi genera. Among these fungi genera, Fusarium species are 
the most dominant fungi frequently isolated from grains in Africa 
(Akello et al., 2021; Ekwomadu et al., 2018; John et al., 2018). The 
most common isolated Fusarium species from food crops in Africa 
are F. graminearum, F. verticillioides, F. culmorum, F. sporotrichioides, 
and F. equiseti (Table  2). Their occurrence rate ranged from 3% to 

100%, showing the ubiquitous presence of potential mycotoxigenic 
Fusarium species in Africa. These species have been isolated from 
several grains, including maize, wheat, and sorghum. Table  1 pro-
vides a summary of published accounts on the Fusarium species 
prevalence rate in Africa as well as their detection methods.

6  |  LEGISL ATION ON ZE AR ALENONE IN 
AFRIC A

As part of managing the exposure risk of animals and humans to dif-
ferent toxic compounds, some countries, including the European 
Union (European Commission,  2006a, 2006b), Brazil (Corrêa & 
Ferreira,  2023), and Asia/Oceania (FAO,  2004), have established 
regulatory limits for mycotoxin concentrations in food and feedstuff. 
Currently, the UDA has not established regulatory levels for ZEA 
contamination in grain or food products. The WHO/FAO set 200 g/
kg bw/day for pigs and gilts, 17.6 g/kg bw/day for piglets, 56 g/kg 
bw/day for sheep, and 20 g/kg bw/day for dogs as the lowest ob-
served adverse effect level (LOAEL) for ZEA.

For many African countries, most of these regulations are lim-
ited to aflatoxins and fumonisin (Chilaka et  al.,  2022). Data on 
ZEA occurrence and evidence of high dietary exposure in individ-
ual countries are limited for use in the establishment of maximum 
permitted levels in food and feed raw material. As a result, many of 
these countries have adopted the European Commission and Codex 
Alimentarius Commission standards for ZEA (Ankwasa et al., 2021; 

F I G U R E  1  Chemical structure 
of zearalenone and its associated 
metabolites.
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Imade et al., 2021; Lahouar et al., 2018). However, only South Africa 
and Morocco have set regulatory limits for ZEA concentration in 
food and feed products. In South Africa, the maximum limits for 
ZEA in feeding stuff for sow/pigs, piglets, and calves/dairy cattle 
have been pegged at 5000, 3000 μg/kg, and 500 μg/kg, respectively 
(Government Notice, 2010). In Morocco, Zinedine and Mañes (2009) 
proposed ZEA limits of 200 μg/kg for all cereals intended for human 
consumption.

7  |  CONTRIBUTION OF PREHARVEST AND 
POSTHARVEST FAC TORS TO FUSARIUM 
INFESTATION AND ZE AR ALENONE 
ACCUMUL ATION IN FOOD

Preharvest practices high in repeated misuse of chemical fertilizer 
and farmer-saved seeds, poor harvesting conditions, poor dry-
ing conditions, and poor storage structures result in fungi growth 
and mycotoxin production (Lehmane et al., 2022; Tang et al., 2019). 
Hence, ZEA concentrations in food are underpinned by three pow-
erful factors—Preharvest factors identified as fertilization levels, 
fungicides use, and harvest practices; postharvest factors such as 
drying techniques, storage conditions; and food processing fac-
tors including sorting and fermentation. Figure  2 provides a sum-
mary of maize exposure routes to Fusarium infestation and ZEA 
contamination.

7.1  |  Nitrogen fertilization

It is well established that nitrogen fertilizer increases maize sus-
ceptibility to Fusarium attack and ZEA accumulation through in-
creased oxidative stresses (Borràs-Vallverdú et  al.,  2022). The 
type of stress significantly impacts the kind of mycotoxins ob-
served in maize grains. It has become something of a truism that 

high nitrogen doses (>200 kg N/ha) increased ZEA accumulation in 
maize grains (Blandino et al., 2008; Podolska et al., 2017; Scarpino 
et al., 2022). However, the type of nitrogen fertilizer did not have 
a significant impact on ZEA accumulation in maize grains (Blandino 
et al., 2008).

7.2  |  Use of fungicides

The use of fungicides has been extensively reported in Africa; how-
ever, often of over or under (sublethal) applications, a phenomenon 
that may trigger the production of various mycotoxins. This is so 
because fungicides have the potential to induce the production of 
hydrogen peroxide (H2O2), which is a key precursor that influences 
the biosynthesis pathway of secondary metabolites (Audenaert 
et al., 2010; Ferrochio et al., 2013). The impact of fungicides on the bi-
osynthesis of mycotoxins using Fusarium species has been reported. 
Cendoya et al. (2021) studied the impact of commercial fungicides: 
epoxiconazole + metconazole, tebuconazole, pyra-clostrobin + epox-
iconazole, and prothioconazole on fumonisin accumulation and 
observed that all the studied fungicides used in sublethal doses en-
hanced fumonisin production except prothioconazole. The impact 
of oxidative stress on Fusarium mycotoxins is summarized in Table 2. 
However, the influence of oxidative stress on ZEA accumulation and 
ZEA gene expression has not been reported globally.

7.3  |  Harvesting operations

In Ethiopia and most countries in Africa, farmers use dry and bent-
down kernels that are completely dry and show a black layer at the 
base to determine harvest time (Mohammed, Bekeko, et al., 2022; 
Mohammed, Seid, et  al.,  2022). Other indigenous methods used 
by farmers to estimate maize moisture content for harvesting and 
storage are puncturing kernels with their thumbnails, biting kernels 

TA B L E  2  Impact of oxidative stress factors on Fusarium species activities.

Stress compound Effect on Fusarium growth, and mycotoxin production Fusarium strain used References

Sodium dodecyl sulfate (0.02%) Decrease FUM gene expression F. verticillioides Nagygyörgy 
et al. (2014)

H2O2 (0.5, 2.0 mM) Increase fumonisin production by up to 300%
Enhance FUM gene expression

F. verticillioides Ferrigo et al. (2015)

H2O2 Increase DON and acetyl-DON production
Enhance TRI gene expression

F. graminearum Ponts et al. (2007, 
2009)

H2O2 (0.05%) Reduce fungi growth rate F. graminearum Zheng et al. (2012)

SDS (0.05%) Enhance the growth of colony diameter F. graminearum Zheng et al. (2012)

H2O2 (0.5 mM) Increase DON and NIV production F. culmorum Ponts et al. (2009)

NaCl Increased mycelial growth, mycelial biomass, sporulation, 
and microconidia

F. oxysporum Maharshi et al. (2021)

EC (2–4 dS/m) Significantly enhanced fungal growth
Increased biomass of fungal up to 90%

F. oxysporum Shoaib et al. (2018)

Sublethal dose Prothioconazole Increase DON production F. graminearum
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with their teeth, or using sound made by kernels when agitated by 
hand (Joseph et al., 2015; Kagot et al., 2022; Liu et al., 2016). Such 
harvesting operations may influence Fusarium infestation and ZEA 
production. A study conducted to evaluate the impact of grain matu-
ration, harvesting time, and late-season rainfall showed that grains 
harvested late and exposed to preharvest rainfall had higher ZEA 
than those harvested early and not subjected to rainfall (Moraes 
et al., 2022). Recent data indicate that for every 1-day delay in har-
vesting, ZEA production is projected to increase by 0.8-fold in grains 
(Edwards & Jennings,  2018). It was previously reported that hay 
dried on the field had more ZEA than those dried under the shed 
(Taffarel et al., 2013).

7.4  |  Storage conditions

In Africa, storage methods and structures differ by ethnic groups 
and agroecological area. Most storage structures in Africa are char-
acterized by high relative humidity and temperatures. These struc-
tures and environmental conditions result in high relative humidity 
(>60%), temperature buildup, and insect propagation which may lead 
to ZEA accumulation   (Tang et al., 2019). A study conducted in three 
climatic locations in Africa on the influence of storage practices on 
ZEA contamination in rice showed that storage location (N'diaye in 
Senegal, Cotonou in Benin, and Yaoundé in Cameroon), processing 
type (plastic woven bags and pallets), and duration of storage (0, 90, 
and 180 days) affect ZEA concentration. The authors observed that 
storage structures with high relative humidity and low temperatures 

recorded significantly increased levels of ZEA (80% RH; 24.4°C; 
400.3 ppm ZEA) for grains stored for 6 months compared to storage 
structures with low relative humidity (62.8% RH; 27.8°C; 100.2 ppm 
ZEA).

Similarly, temperature variations affect ZEA levels in grains 
under storage. High levels of ZEA (51.8–468.6 ppm) were observed 
in grain spikes exposed to 100% relative humidity at different tem-
peratures. At relative humidity ≤90%, ZEA concentrations were 
very low (0.1–3.6 ppm) at all tested temperatures. At 100% relative 
humidity, mean ZEA contamination with significantly higher at 20 
and 25°C (235.1 and 278.2 ppm) than at 30°C (104.7 ppm) (Moraes 
et al., 2022). Additionally, improper cleaning of grains before storage 
may lead to Fusarium and ZEA contamination of grains. High pro-
portions of plant debris such as cobs and husks may increase ZEA 
levels in the stored grains due to contaminated plant debris in grains 
(Bamba et al., 2020; Tang et al., 2019).

7.5  |  Transboundary trade and zearalenone  
occurrence

Although reports from Africa are not consistent with levels of ZEA 
detected in imported and locally produced products, transbound-
ary trade has emerged as one major factor contributing to the 
spread and distribution of mycotoxigenic fungi. A survey carried 
out in Nigeria has reported higher concentration levels of deox-
ynivalenol, and ZEA in imported wheat grains (mean 858.7 μg/kg 
for deoxynivalenol; 50.1 μg/kg for ZEA), whereas relatively lower 

F I G U R E  2  Maize grain and human exposure routes to ZEA contamination in food.
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levels (mean 517.8 μg/kg for deoxynivalenol; 14.5 μg/kg for ZEA) 
were detected in samples obtained from local farmers' stores 
or markets (Egbontan et  al.,  2017). In a similar study, Manizan 
et al. (2018) evaluated the occurrence of ZEA in local and imported 
grains in Cote D'Ivoire and did not detect ZEA in the 41 imported 
rice samples; however, 44.4% of the local samples being contami-
nated with ZEA at varying levels.

8  |  IMPAC T OF CLIMATE CHANGE 
ON ZE AR ALENONE AND FUSARIUM 
OCCURRENCE

Climate change has already carried along an increased risk of natural 
toxins through disruption of plant metabolic and cellular processes. 
Among these climate variables, elevated atmospheric CO2 concen-
tration, temperature, and precipitation are predicted to affect myco-
toxigenic fungi redistribution and their derived mycotoxins (Medina 
et  al.,  2017). Recent reports suggest that elevated CO2 had a sig-
nificant correlation (R2 = .938; p < .001) with ZEA accumulation (Cui 
et al., 2022). Atmospheric CO2 concentration has also been shown 
to influence disease severity caused by Fusarium species. Likewise, 
higher emission of CO2 increases maize susceptibility to F. verticil-
lioides attack (Vaughan et al., 2014), F. culmorum (Bencze et al., 2017), 
and F. graminearum (Hay et al., 2021).

Recent projected global climate status showed that Africa will 
experience extreme precipitation and temperature events like heat 
waves and drought. Extreme environmental temperatures combined 
with high precipitation amounts or prolonged droughts increase the 
level of stress suffered by plants, making all cereals, especially maize, 
even more, prone to fungi infection and mycotoxin contamination 
(Kos et al., 2023). For Fusarium mycotoxins, high ZEA concentrations 
are observed particularly at the flowering and harvesting stage, 
with extreme levels of precipitations (Han et al., 2022; Janić Hajnal 
et  al.,  2023). It is worth mentioning that Fusarium strains isolated 
from Africa are more resilient to extreme temperatures and lower 
water potential (Jedidi et al., 2021).

9  |  INCIDENCES AND LE VEL S OF 
ZE AR ALENONE CONTAMINATION IN 
AFRIC A

9.1  |  Zearalenone in cereal and cereal products

Zearalenone is a stable mycotoxin and is not degraded under storage 
(Krska et al., 2003). Several global surveys found a higher incidence 
rate of ZEA in Africa, with varying incidence rates and levels among 
grains. A recent global survey showed a high prevalence rate of ZEA in 
food and feed samples; for example, a global survey conducted from 
2008 to 2017 showed a higher prevalence rate of ZEA prevalence in 
Sub-Saharan Africa (52.2%) and South Africa (41.6%) than in Europe, 
America, and South Asia (Gruber-Dorninger et  al.,  2019). Similarly, 

Lee and Ryu (2017) showed higher incidences of ZEA in unprocessed 
cereals from Africa (59%) than in Europe and America (48%).

In eastern Africa, Mohammed et al. (2023) profiled multiple my-
cotoxins in 80 postharvest maize grains from three major producing 
areas in Ethiopia: of the mycotoxins analyzed, ZEA was detected in 
81%, with levels as high as 3750 μg/kg. Previously in Ethiopia, ZEA 
concentrations were investigated in a total of 100 maize samples 
collected from smallholder farmers' stores (Getachew et al., 2018). 
ZEA was detected in 96% of the samples, with mean and maximum 
concentrations of 92 and 1656 μg/kg, respectively. Of the 96% posi-
tive samples, 13.5% contained levels above the European Union (EU) 
recommended value for unprocessed cereals (100 μg/kg). In another 
study in south and south-western Ethiopia, Mesfin et al. (2021) ran-
domly sampled 176 stored maize from various households and ana-
lyzed them for Fusarium mycotoxins: ZEA concentration was up to 
2447 μg/kg. In Tanzania, Kamala et al.  (2015) investigated multiple 
mycotoxin levels in 300 maize samples collected from various rural 
households. For the ZEA-positive samples (10%), 66% contained lev-
els exceeding the EU maximum permitted limits. In a later study by 
Suleiman et al. (2017), 30 samples of maize purchased from farmers 
and traders in Tanzania were analyzed for ZEA. All 30 samples tested 
positive for ZEA with levels ranging from 50 to 189.9 μg/kg. More 
recently in Kenya, maize samples collected between 2018 and 2020 
for multiple mycotoxin profiling revealed that 18% of the 480 maize 
samples collected from Kenyan households had ZEA levels above 
1000 μg/kg (Kagot et al., 2022).

Several studies in southern Africa have also reported maize con-
tamination with ZEA. In a survey conducted between 2001 and 2021 
in Eswatini, 892 maize and maize-based products were sampled and 
screened for ZEA contamination. In these samples, 7% of maize 
grain and 17% of maize meal were contaminated with ZEA (Dlamini 
et al., 2022). A total of 100 maize samples were randomly selected 
from small-scale and commercial farmers in South Africa and in-
vestigated for ZEA contamination using HPLC. The results showed 
that more than half of the small-scale and commercial maize sam-
ples were contaminated with ZEA at mean levels below the South 
African regulatory limits (Ekwomadu et  al.,  2021). In Zimbabwe, a 
study conducted to assess the impact of storage duration (0, 90, and 
180 days) on ZEA contamination in maize showed an increase in ZEA 
concentration by 89.6% and 173.6% in 90 and 180 days storage peri-
ods, respectively (Hove et al., 2016).

Within the western Africa subregion, higher concentration levels 
of ZEA have been observed in recent studies. For instance, in Côte 
d'Ivoire, 125 samples of maize were analyzed for ZEA, and all the sam-
ples were contaminated with ZEA with 40% of the samples exceeding 
the EU regulatory limits (Bamba et al., 2020). In 2019 and 2021, Oyeka 
et  al.  (2019) and Olopade et  al.  (2021), respectively, investigated 
ZEA concentrations in maize from different agroecological zones in 
Nigeria. While none of the samples analyzed by Olopade et al. (2021) 
had levels exceeding the maximum permitted levels, 16.7% of the 
36 maize samples analyzed by Oyeka et al. (2019) had ZEA concen-
trations above the EU maximum level for maize intended for direct 
human consumption. Additionally, all 20 samples were positive 
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for ZEA phase I metabolites; alpha and beta zearalenol (Olopade 
et al., 2021). In another study in Togo, ZEA was detected in only one 
of 52 maize samples in lower concentrations (Hanvi et al., 2019).

Generally, the incidence rate of ZEA is fairly low for maize 
samples from northern Africa. Mahdjoubi et  al.  (2020) evaluated 
Algerian maize kernels from different local markets and reported 
that only one of seven ZEA-positive samples exceeded the EU 
maximum permitted levels. In Egypt, Sebaei et al. (2020) evaluated 
multiple cereals including 55 maize samples for ZEA contamination 
and observed that two samples had ZEA at levels 10 and 108 μg/
kg. Previous research by Abdallah et al. (2017) also revealed that 10 
out of 79 maize samples collected from farms and market centers in 
Egypt were contaminated with ZEA.

Meanwhile, data on ZEA occurrence in maize grains from Central 
Africa are quite real. A survey conducted on multiple products in-
cluding 37 maize samples in Cameroon revealed that about 89% of 
the maize samples were contaminated with ZEA in levels ranging 
from 0.2 to 309 μg/kg (Abia et al., 2013). In the Democratic Republic 
of Congo (Mulunda et al., 2013), 40 maize samples collected from 
main markets were analyzed for various Fusarium mycotoxins. For 
ZEA, 92.5% of the samples were positive with concentrations rang-
ing from 24 to 811.2 μg/kg.

9.2  |  Zearalenone in processed food and beverages

A survey evaluated ZEA levels in 50 traditionally maize fufu col-
lected from households in Bamunka in Cameroon. Forty percent and 
90% of the samples contained detectable levels of alpha and beta 
zearalenol. All 50 traditional maize fufu samples were ZEA positive 
with levels ranging from 5 to 150 μg/kg (Abia et al., 2017). In another 
survey, 101 maize porridge samples from households across three 
rural villages in Tanzania were evaluated for mycotoxins. ZEA was 
detected in 31% of the samples with levels ranging from 10.20 to 
269.9 μg/kg (Geary et  al.,  2016). In another study in South Africa, 
Shephard et al. (2013) analyzed maize-based evening meals and por-
ridge donated by 54 females in Transkei, a region with high esopha-
geal cancer for multiple mycotoxin occurrence. For ZEA, the author 
observed that all the samples were contaminated with ZEA with val-
ues ranging from 0.2 to 239 μg/kg for maize-based food and 0.44 
to 239 μg/kg for porridge samples. Fast forward to Limpopo (South 
Africa), analyses of 20 maize porridge showed no contamination of 
ZEA and beta zearalenol. However, alpha zearalenol was detected 
in 19 of the 20 samples at levels between 10.25 and 61.5 μg/kg 
(Tebele et al., 2020). A study on the occurrence of ZEA in cooked 
maize porridge and dietary exposure of Tanzanian households to 
ZEA was performed in 2016. It was reported that 23% of the pro-
cessed maize-based porridge had ZEA concentration above the limit 
for infant food (ZEA > 20 μg/kg) (Geary et al., 2016).

In Cameroon, a selection of 14 traditional maize beers and eight 
dagwa—a dry fried snack made from milled maize and groundnuts—
samples produced from maize were screened for the presence of 
ZEA and other mycotoxins. Of these samples, 86% of the traditional 

beer and 100% of the dagwa samples were confirmed to contain 
ZEA in levels ranging from 1.6 to 35 μg/kg and 6 to 57 μg/kg, re-
spectively (Abia et  al.,  2013). The authors further observed that 
mycotoxin-related knowledge was low among fermented food sell-
ers. Contrary to this observation, Adekoya, Njobeh, et al. (2017) and 
Adekoya, Obadina, et  al.  (2017) evaluated 32 maize-based beers 
from South Africa for the cooccurrence of mycotoxins and reported 
that none of the samples contained detectable levels of ZEA despite 
the detection of fumonisin in 53% of the samples. Tables 3 and 4 
provide a summary of published accounts on ZEA levels in other 
food products and beverage samples in Africa.

9.3  |  Occurrence of ZEA in animals and 
animal products

Apart from grains, a few studies also investigated the occurrence of 
ZEA in animals and animal products in Africa, where it was reported 
not to be as frequent as in grains. For instance, in South Africa, the 
mycotoxin survey in red meat from rural subsistence farmers and 
registered abattoirs by van Deventer et al. (2021) reported no ZEA 
contamination in all tested samples (LOD; 20 μg/kg). Meanwhile, in 
Zambia (another Southern African country), Gonkowski et al. (2018) 
investigated the presence of ZEA and its analog products in 27 sun-
dried Kapenta fish collected from three cities and found ZEA and 
α-ZEA in all samples with concentration levels ranging from 27.2 to 
53.9 μg/kg and <3.0 to 71.1 μg/kg, respectively, 66.7% tested posi-
tive for β-zearalenone with levels ranging from <12 to 59.8 μg/kg 
(Gonkowski et al., 2018).

In the West African subregion, 33% of 108 dried beef samples in 
Nigeria tested positive for α-zearalenone with concentration levels 
ranging from 47.6 to 167.34 μg/kg (Dada et al., 2020). ZEA and β-
zearalenone were, however, absent.

9.4  |  Zearalenone in water sample

Recently, various studies have quantified ZEA in agricultural and 
domestic water sources. This may present a potential contamina-
tion route for plants through radical uptake and humans through 
drinking and cooking with ZEA-contaminated water (Agnieszka 
et al., 2012; Rolli et al., 2018). An analysis of water samples from 
Zambia showed the presence of ZEA in three out of four water 
samples from lakes, with values ranging from <2.0 to 18.0 ng/L 
(Gonkowski et al., 2018).

10  |  REPORTED E XPOSURE A SSESSMENT 
AND RISK CHAR AC TERIZ ATION OF 
ZE AR ALENONE IN AFRIC A

Generally, there are two pathways for measuring human dietary 
exposure to ZEA. The First and most widely used method is the 
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direct exposure pathway, where dietary exposure evaluation of ZEA 
combines household consumption data and the concentration of 
ZEA in food products and expressed as nanogram/kilogram body 
weight/day. The Food and Agriculture Organization of the United 
Nations (FAO) and the Joint Expert Committee on Food Additives 

(JECFA) under the World Health Organization (WHO), as well as 
the European Food Safety Authority (EFSA), have developed vari-
ous guidelines for dietary data collection including living standards 
monitoring survey, household income and expenditure surveys, and 
National household budget survey.

TA B L E  3  Summary of zearalenone occurrence in raw food and feed from Africa.

Country/region Food crop
Sample size 
(positive sample) Detection method Mean (range) (μg/kg) References

Eastern Africa

Kenya Fish feed 78 (40) HPLC 136 (<38–757.9) Mwihia et al. (2020)

Ethiopia Sorghum 80 (19) HPLC 3.62 (<LOD-121) Mohammed, Bekeko, 
et al. (2022) and 
Mohammed, Seid, 
et al. (2022)

Kenya Animal feed 25 (19) HPLC 67 (61–167) Rodrigues et al. (2011)

Kenya Feed 10 (6) LC–MS/MS NS (11.2–28.2) Warth et al. (2012)

Tanzania Cassava 405 (154) LC–MS/MS NS (21.4–8493) Sulyok et al. (2015)

Rwanda Cassava 222 (104) LC–MS/MS NS (100–2826) Sulyok et al. (2015)

Southern Africa

South Africa Chicken feed 62 (62) LC–MS/MS 100 (NS-610) Njobeh et al. (2012)

South Africa Cattle feed 25 (24) LC–MS/MS 72 (NS-123) Njobeh et al. (2012)

South Africa Horse feed 3 (3) LC–MS/MS 43 (NS-46) Njobeh et al. (2012)

South Africa Swine feed 2 (2) LC–MS/MS 148 (NS-170) Njobeh et al. (2012)

Madagascar Cassava 126 (41) LC–MS/MS 83.8 (16.3–286.7) Abass et al. (2019)

Namibia Kalaharituber pfeilii 8 (8) ELISA NS (45–9680) Hainghumbi et al. (2022)

Western Africa

Côte d'Ivoire Cobs 125 (125) HPLC NS (38.61–234.87) Bamba et al. (2020)

Côte d'Ivoire Spathes 125 (125) HPLC NS (94.54–341.84) Bamba et al. (2020)

Nigeria Sorghum 20 (18) LC–MS/MS 18 (<LOQ-20) Olopade et al. (2021)

Nigeria Millet 20 (17) LC–MS/MS 64 (<LOQ-396) Olopade et al. (2021)

Nigeria Granola 18 (11) LC–MS/MS 1.73 (0.81–5.99) Ezekiel et al. (2020)

Nigeria Popcorn 19 (1) LC–MS/MS 6.40 Ezekiel et al. (2020)

Nigeria Millet 87 (14) LC/MS 419 (0–1399) Chilaka et al. (2016)

Nigeria Rice 41 (33) HPLC 203.6 (0.7–570.6) Egbuta et al. (2015)

Togo Sorghum 12 (2) LC–MS/MS 22 (19–24.6) Hanvi et al. (2019)

Northern Africa

Tunisia Wheat 155 (123) HPLC 110 (0–560) Zaied et al. (2012)

Algeria Wheat 30 (19) UHPLC–MS/MS 102 (9.6–295) Mahdjoubi et al. (2020)

Algeria Rice 30 (6) UHPLC–MS/MS 9.9 (8.6–15.5) Mahdjoubi et al. (2020)

Egypt Wheat 15 (6) HPLC 1.55 (0.53–2.5) El-Desouky and 
Naguib (2013)

Egypt Barley 15 (4) 1.5 (0.70–1.77) El-Desouky and 
Naguib (2013)

Egypt Animal feed 77 (71) LC–MS/MS NS (NS-791) Abdallah et al. (2017)

Central Africa

Cameroon Edible nontimber products 210 (194) ELISA 62.7 (<15–500) Djeugap et al. (2019)

Cameroon Peanut 35 (15) LC–MS/MS 4 (<LOQ-45) Abia et al. (2013)

Cameroon Soybean 10 (10) LC–MS/MS 15 (12–18) Abia et al. (2013)

Congo Bean 30 (27) TLC 185.2 (12.5–273.2) Mulunda et al. (2013)

Abbreviations: nd, not detected; NS, not stated.
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Using this method, high exposure risks have been reported 
by some countries in Africa. Consumers in the savannah zone of 
Nigeria were reported to have a high risk of exposure to ZEA with 
% tolerable daily intake (TDI) of 395.6, 158.3, and 66 which were 
1582, 633, and 264 times higher than the tolerable daily intake of 
0.25 μg/kg/bw·day (Adetunji et al., 2017). A study on the occur-
rence of ZEA in food and dietary exposure of the population to 
ZEA was assessed in Algeria by Mahdjoubi et al. (2020). Mean ZEA 
exposure in the adult population through maize was lower (0.08 kg 
body weight per day; TDI 31.97%) compared to wheat (0.85 kg b.w. 
per day; TDI 341.4 5).

The second pathway to assessing ZEA exposure is the indirect 
method. This approach uses biomarkers such as urine, breast milk, 
and serum. Across the African continent, few studies on the lacta-
tional or maternal transfer of ZEA to infant and birth outcomes are 
available. For Western Africa, Braun et al. (2022) evaluated the as-
sociation between the transfer of ZEA from food to breastmilk and 
infants in Nigeria. ZEA was detected in lactating mothers' meals 
(0.1–33 μg/kg) and urine (11–1142 ng/L) but was not detected 
in breast milk. However, urine samples from exclusively breast-
fed infants contained ZEA ranging from 8.6 to 983 ng/L (Braun 
et al., 2022). Similarly, in Nigeria, Ezekiel et al. (2022) demonstrated 
that urine samples of exclusively breastfed infants (N = 23) contain 
ZEA ranging from 17 to 784 ng/L, while ZEA could not be detected 
in breast milk consumed by exclusively breastfed infants (N = 22).

Recently in Eastern Africa, Mesfin et al. (2023) evaluated my-
cotoxins in the breast milk of 138 lactating mothers in Ethiopia 
and reported that ZEA (LOD = 0.66, LOQ = 4.38) could not be de-
tected. However, another study conducted in Ethiopia that deter-
mined the association between ZEA in pregnant women and birth 
outcomes showed that 50.9% (295) out of 579 serum samples of 
a pregnant woman contained ZEA with a concentration of up to 
9 ng/mL (Tesfamariam et al., 2022). Also, 33.9% (196), 42% (243), 
65.3% (378), and 64.6% (374) were positive for zearalenone, alpha 
zearalenol, beta zearalenol, beta zearalanol at concentrations up 
to 15.6, 10.5, 13.2, and 12.9 ng/mL, respectively; however, the 
study found no significant association between ZEA, and its de-
rivative compounds exposures, and birth outcomes (Tesfamariam 
et al., 2022).

In Southern and Central Africa, Shephard et al.  (2013) evalu-
ated ZEA exposure levels in 54 adult females from South Africa 
using urine samples: ZEA was detected in all the urine samples 
with a mean level of 0.529 ng/mg creatinine, while 92% and 72% of 
the samples contained alpha and beta zearalenol with mean con-
centrations of 0.614 ng/mg creatinine and 0.702 ng/mg creatinine, 
respectively. In Yaoundé, Cameroon, Abia et al.  (2020) collected 
and analyzed 89 Cameroonian adults' urine for various Fusarium 
mycotoxins; the authors observed that ZEA and its phase I metab-
olites were the most frequently detected mycotoxins (82% of the 
sample analyzed contained detectable quantities of ZEA, alpha 
zearalenol, and beta zearalenol) with two samples exceeding the 
EU TDI.

Being the major staples of many African communities, cereal 
and legumes, particularly maize and sorghum, are frequently used 
as complementary foods for infants and young children. However, 
the dietary exposure assessment for ZEA reported from different 
countries in Africa is based on average intake and body weight for 
adults. This assessment may not represent the true exposure levels 
for infants and young children.

11  |  INNOVATIVE STR ATEGIES TO 
REDUCE RISK LE VEL S OF ZE AR ALENONE IN 
AFRIC A

11.1  |  On-field preventive methods

There is an urgent need to transform African indigenous food 
systems to respond to the present increased occurrence of my-
cotoxins in food grains. It has been established that the first 
step in mycotoxin management is to prevent fungi infestation, 
that is, production systems should incorporate elements and ac-
tivities that will prevent fungi infestation. Providing agricultural 
education and technologies aimed at changing farmers' pre- and 
postharvest practices, by using demonstrations (e.g., proper fer-
tilization and fungicide use, with an explanation of their impact 
on agriculture) may help reduce ZEA occurrence and improve my-
cotoxin levels in the African food supply chain (Njeru et al., 2019; 

TA B L E  4  Summary of zearalenone occurrence in beverages.

Country Product No. of samples Detection method Detection range (μg/L) References

Nigeria Fermented melon 25 (8) HPLC 33 (21–45) Adekoya, Njobeh, et al. (2017) and 
Adekoya, Obadina, et al. (2017)

Fermented locust bean 8 (5) HPLC 18 (11–33) Adekoya, Njobeh, et al. (2017) and 
Adekoya, Obadina, et al. (2017)

Fermented African oil bean 13 (4) HPLC 72 (39–117) Adekoya, Njobeh, et al. (2017) and 
Adekoya, Obadina, et al. (2017)

Nigeria Kumu – LC–MS/MS 0.2 Ezekiel et al. (2015)

Pito – LC–MS/MS 0.2

Cameroon Maize beer 14 (12) LC–MS/MS 17 (1.6–35) Abia et al. (2013)

Dagwa 8 (8) LC–MS/MS 32 (6–57)
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Visser et al., 2020). That is, scale-up education on the use of resist-
ant cultivars, appropriate soil amendment methods, proper weed 
management, and harvesting techniques should be facilitated. 
Unfortunately, commercially available maize cultivars in Africa 
have not been tested for specific resistance to Fusarium species 
(Tembo et al., 2022). Previous studies in South Africa, and Nigeria 
reported potential resistance of some maize-inbred lines to F. ver-
ticillioides and fumonisin accumulation (Olowe et al., 2015; Small 
et al., 2012). No studies have so far evaluated maize cultivars from 
Africa for ZEA resistance.

11.1.1  |  Impact of soil amendments on Fusarium 
species and zearalenone concentration

Being a typical soil-borne pathogen, Fusarium species survive on or 
within infected soil and crop residues, which remains the leading 
cause of grain contamination before harvest. Consequently, using 
soil amendments to change the microenvironment of soil should 
be preferred to direct unamended soil. Biochar though more ex-
pensive than common fertilizers (Latawiec et al., 2019) can reduce 
Fusarium infestation and expression in crops through its potential 
to fix carbon and increase soil pH and elementary composition 
(Akhter et al., 2015; Marra et al., 2018). Recently in Nigeria, Akanmu 
et al. (2020) found biochar as an effective tool in managing resident 
Fusarium verticillioides and have successfully used biochar from 
poultry fecal waste and sawdust to reduce disease severity (ear rot) 
caused by Fusarium verticillioides in maize. Activated carbon would 
serve as an adsorbent to mycotoxins, capable of binding 100% ZEA 
at 0.1%, 0.25%, 0.5%, and 1% dose levels (Bueno et al., 2005). This 
adsorption capacity and increased pH explained that biochar and ac-
tivated carbon not only delayed conidial germination but also carried 
a high adsorption capacity for mycotoxin (Li et al., 2022).

11.1.2  |  Contribution of natural extract in 
controlling Fusarium species and zearalenone

The utilization of natural extract is emerging as a possible method 
to suppress mycotoxigenic fungi growth and their production of my-
cotoxins in grain under storage. Although a higher aw level favors 
Fusarium growth, antifungal activities of some natural extracts such 
as essential oils are effective at higher aw levels (Velluti et al., 2004). 
Olopade et al. (2019) explored the possibility of using montmorillon-
ite clay and/or Cymbopogon citratus to decontaminate ZEA in stored 
grains and observed that 12% Cymbopogon citratus reduced ZEA 
contamination by 98.3% while 12% montmorillonite–Cymbopogon 
citratus mixed showed a 66% reduction of ZEA in for 4 weeks. Ali 
et al.  (2021) suggest that essential oils obtained from Mentha longi-
folia and Citrus reticulata can inhibit F. culmorum growth at 500 μL/
mL. Similarly, Sahab et al. (2014) evaluated the antifungal activities of 
some essential oils extracted from rocket seeds (Eruca sativa), rose-
mary (Rosmarinus officinalis) leaves, and tea tree (Melaleuca alternifolia) 

against Fusarium isolates obtained from maize. Essential oil from 
rocket seeds and tea trees exhibited high antifungal activity and com-
pletely inhibited all Fusarium isolates growth at 0.1% and 0.4% re-
spectively, while rosemary essential oil showed moderated antifungal 
activity with reduced growth of Fusarium isolates (Sahab et al., 2014). 
At 0.995 aw, cinnamon oil, clove oil, lemongrass oil, oregano oil, and 
palmarosa oil exhibited inhibitory effects on F. graminearum growth, 
and their ability to produce zearalenone (Velluti et al., 2004).

11.1.3  |  Biological-driven methods to reduce 
Fusarium infection and zearalenone

A good number of microbial species have demonstrated their ability to 
counter the growth and ZEA excretion in toxigenic Fusarium species. 
A study by Shude et al. (2021) using antagonist yeast species isolated 
from leaf, flowers, anther, and/or stem of cereals crops, and weed 
plants exhibited varying inhibitory effects on the mycelial growth of 
Fusarium graminearum. Most of the yeast antagonists (87.21%) that in-
hibited the growth could maintain inhibition until 20 days postinocula-
tion (dpi); however, about 58.33% (7 out of 12) of the antagonist yeast 
increased ZEA concentrations (Shude et  al.,  2021). Subsequently, 
acibenzolar-s-methyl was combined with yeast antagonist (Papiliotrema 
flavescens and Pseudozyma sp.) to test against F. graminearum on spring 
wheat: it was observed that the combination of yeast and acibenzolar-
s-methyl treatment effectively reduced Fusarium head blight severity, 
and deoxynivalenol concentration compared to the sole treatments 
(Nothando et al., 2021; Shude et al., 2022).

Another study conducted by Debbi et al. (2018) explored the po-
tential of using Trichoderma spp. from Algeria as a biocontrol agent 
against F. oxysporum. f. sp. lycopersici (FOL), and F. oxysporum f. sp. 
Radices lycopersici (FORL) showed that T. ghanense and T. asperellum 
might reduce the severity of crown and root rot and Fusarium wilt 
diseases by 53.1%, and 48.3%, respectively.

11.2  |  Primary processing methods to reduce 
zearalenone concentration

11.2.1  |  Cleaning and sorting

Primary intervention methods such as cleaning and sorting of dam-
aged, discolored, and shriveled kernels reduce Fusarium toxins in 
grains (Pascale et al., 2022; Schaarschmidt & Fauhl-Hassek, 2021). 
In many African countries, such as South Africa, Ghana, Benin, 
Nigeria, Malawi, and Tanzania, grains are customarily hand-sorted 
and cleaned before domestic and industrial use. However, this pro-
cess is tedious and difficult to apply in medium-to-large-scale food 
processing industries. For practical purposes involving high produc-
tion volumes, mechanized tools and ultraviolet light have been used 
to segregate ZEA-contaminated products. Aoun et  al.  (2020) ex-
plored and developed a low-cost sorting tool (Dropsort device) that 
can be used in Africa for reducing mycotoxin levels in grains. Though 
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not ZEA, the dropsort, a low-cost sorter that separates grains based 
on kernel bulk density and 100-kernel weight, combined with size 
sorting was more effective in reducing fumonisin (another Fusarium 
mycotoxin) concentration to under 2 ppm, but could not reduce 
aflatoxin levels in maize grain to under 20 ppm (Aoun et al., 2020). 
Although the DropSort accepted fraction had significantly higher 
100-kernel weight and kernel bulk density than the rejected frac-
tion, the technology only or in combination with visual sorting had 
up to 19% rejection rate, and this may hinder its acceptability in 
Africa, particularly with commercial traders since volume is the 
commonly accepted method in trading than weight. Cleaning grains 
(removal of dust, coarse, small, broken, shriveled, and low-density 
kernels) have been tested and proven to be capable of eliminating 
67%–87% of ZEA concentration in maize (Pascale et al., 2022).

11.2.2  |  De-hulling

De-hulling is a widespread food processing technique used in 
Africa and has successfully been used to reduce mycotoxin con-
centrations in finished food. For zearalenone, the toxin is largely 
restricted to the outer layers of grain, and therefore, if parti-
tioned into various fractions, including germs, bran, and coarse 
and fine grits may reduce human and animal exposure to ZEA 
(Brera et  al.,  2006; Habschied et  al.,  2011; Schwake-Anduschus 
et  al.,  2015). In Malawi, Njombwa et  al.  (2020) evaluated occur-
rence levels of ZEA in dairy cattle concentrate feed and observed 
that 75% (83 out of 111) of corn bran tested positive for ZEA with 
minimum, maximum, and median concentration levels of 100, 
2400, and 240 μg/kg, respectively. In South Africa, corn bran, 
corn flour, corn germ, and corn grits were reported to be contami-
nated with ZEA at mean levels of 245.6, 31, 29.8, and 8.6 μg/kg, 
respectively, compared to the mean value of 93.4 μg/kg for whole 
maize (Burger et al., 2013). The major limiting factor to this control 
technique in Africa is that the hull is used as a component in ani-
mal feeds. This may increase animal exposure risk and invariably 
human intake of ZEA through the consumption of animal products.

11.3  |  Secondary processing methods to reduce 
ZEA concentration in grains

11.3.1  |  Fermentation

Being water-soluble mycotoxins, ZEA concentration can be par-
tially reduced during fermentation or in an alkaline solution. Under 
alkaline conditions, the lactone ring of ZEA (Figure  1) is opened 
to form water-soluble salt. The transfer of ZEA into water used 
for soaking or fermentation is effective at elevated pH. African 
indigenous fermentation process, mainly as spontaneous or in 
most cases the addition of yeast, is capable of reducing ZEA levels 
in traditionally fermented food and beverages. In Nigeria, Ezekiel 
et al. (2015) assessed the levels of ZEA in Kunu-zaki—a traditional 

fermented nonalcoholic maize-based beverage, and pito—a tradi-
tional fermented alcoholic drink made from sorghum. It was ob-
served that the traditional fermentation process used in preparing 
these drinks can reduce ZEA levels up to 76.2% and 94.8% for 
kuku-zaki and pito, respectively. Previously in Botswana, Nkwe 
et  al.  (2005) analyzed sorghum malts and their corresponding 
wort and beer samples for ZEA levels; the traditional wort (90 μg/
kg) and beer (92 μg/kg) samples contain less ZEA than their raw 
malted sorghum samples (485 μg/kg). More recently, an effective 
reduction in the content of ZEA was observed in bread prepared 
by baking with the addition of yeast, ranging from 14.3% to 35.4% 
(Podgórska-Kryszczuk et al., 2022).

11.3.2  |  Radiation

Radiation is a powerful tool for decontaminating mycotoxins and 
improving the storability of food is irradiation (gamma radiation, 
electron beams, and X-ray). In recent years, ionizing radiation, as 
a physical, cold process, has been investigated as a method for the 
degradation of ZEA and its associated fungi in food grains (Calado 
et al., 2020). In Egypt, Sebaei et al. (2020) examined the reduction 
of ZEA in grains using gamma radiation and reported that ZEA was 
more easily degraded in wheat than in maize. In Tunisia, an irradia-
tion dose (gamma radiation) of 3 and 10 kGy was sufficient to reduce 
90% of the natural fungal load and 32% of ochratoxin A in sorghum, 
respectively (Ben Amara et al., 2022). Similarly, Zhao et al. (2019) 
demonstrated the 90.24% degradation rate of zearalenone using 
microwave irradiation for 2 min coupled with activated carbon.

11.3.3  |  Ozone

Ozonation, an advanced environmentally friendly and gener-
ally recognized as safe technology, can attack a wide range of 
microorganisms and natural compounds (Qi et  al.,  2016; Ribeiro 
et al., 2021). The process is highly recognized for its ability to gen-
erate ozone gas easily from oxygen (pure or from the air) without 
leaving residues. Ozone has been approved as a safe antimicrobial 
agent and has enhanced consumer confidence as well as wide-
spread industrial application in the control of industrial pests such 
as Fusarium species (Food and Drug Administration,  2001). It is 
worth mentioning that ozone application allows water reutiliza-
tion. This technique has been instrumental in managing Fusarium 
species and ZEA levels in maize products. In a study on maize flour 
exposure to ozone gas (51.5 mg/L of ozone for up to 60 min), my-
cotoxin analysis revealed that ZEA concentration was reduced to 
62.3% (Alexandre et al., 2019). Similarly, Qi et al. (2016) observed 
an 86% reduction in naturally contaminated ZEA in maize when 
exposed to 100 mg/L of ozone for 100 min.

In malt and beer production, Zuluaga-Calderón et  al.  (2023) 
use ozone in the steeping stage to reduce Fusarium graminearum 
incidence from 100% to 47% without affecting the germinative 
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properties. Although the technology has a superior degradation rate 
for ZEA than electron beam irradiation (Yang et al., 2020), its appli-
cation increases monounsaturated fatty acids and decreases poly-
unsaturated fatty acids such as linoleic, oleic, and α-linolenic fatty 
acids (Purar et al., 2022; Qi et al., 2016).

11.3.4  |  Dielectric barrier discharge

Dielectric barrier discharge is another nonthermal treatment tech-
nology employed to degrade mycotoxins in food. The technology 
has been tested to degrade up to 98.28% of ZEA in food products 
at 50 KV for 120 s (Huang et al., 2022). Zheng et al. (2023) evaluated 
the impact of dielectric barrier discharge cold plasma on ZEA degra-
dation in maize and observed a 56.57% degradation of ZEA at 50 KV 
for 120 s with an increase in the fatty acid composition and reduced 
crude fiber content. Dielectric barrier discharge treatment for ZEA 
degradation is more efficient in liquid food products (Feizollahi & 
Roopesh, 2021). Furthermore, dielectric barrier discharge generated 
from 85% Ar + 15% O2 resulted in higher degradation of ZEA com-
pared to N2 (Feizollahi & Roopesh, 2021).

12  |  RECENT PROGRESS IN THE USE OF 
INDUSTRIAL ADSORBENTS

Different industrial adsorbents have been studied at the laboratory 
level and have been proposed for use in the elimination of zearale-
none at the industrial scale level, with temperature playing a critical 
role in the quantity and maintenance of ZEA. Activated carbon has 
proven to be effective in eliminating more than 83% of ZEA during 
the bleaching process of corn oil at 70°C, although excessive tem-
perature (above 100°C) could cause adsorbed ZEA to desorb from 
activated carbon (Hu et al., 2023). Du et al. (2023) also reported that 
the metal–organic framework absorbents exhibited sufficient effi-
cacy in removing more than 83.3% of ZEA in vegetable oil within 
30 min. Ghafari et  al.  (2022) found that silica nanoparticles could 
remove about 92.1% of ZEA in contaminated sunflower oil (Ghafari 
et al., 2022).

Commercially available inorganic and organic mycotoxin adsor-
bents such as S-Mont, Minazel® plus, and Mycosorb® patented and 
registered as feed quality enhancers have demonstrated their effi-
cacy in alleviating the harmful effect of ZEA on livestock including 
pigs (Nesic et al., 2008).

F I G U R E  3  Reported methods used to control Fusarium infestation and ZEA concentration in grains and processed food. (a) Hypothetical 
model explaining phytohormone-mediated molecular mechanisms in maize plant defense response against Fusarium verticillioides 
(Lanubile et al., 2017), (b) Integration of various molecular tools to develop resistant maize line, (c) using soil amendments to change the 
microenvironment of soil, (d, e, and f) various postharvest methods employed to reduce ZEA levels in grains and processed foods.
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13  |  CONCLUDING REMARKS AND 
FUTURE RESE ARCH

1.	 Although ZEA has a severe impact on grain quality and the 
economic well-being of livestock and humans, it is clear that 
few studies have evaluated its presence in agricultural produce 
with not much awareness of the toxin in Africa.

2.	 Given that climate change patterns are widely evident in Africa 
with the projected increase in atmospheric CO2 concentration and 
relative humidity, which flavors Fusarium species growth and ZEA 
production, little progress is made in understanding the impact 
of this changing climate with the recently higher levels of ZEA in 
Africa. Overall, F. verticillioides and F. graminearum were the most 
commonly isolated species in all the subregional blocks (northern, 
eastern, western, southern, and central Africa). Understanding 
plant stress responses, enabling plants to withstand the changing 
environmental conditions, is essential to address and prevent the 
Fusarium species activities.

3.	 Preventive and mitigation efforts evaluated and applied to  
control Fusarium species on-field and in storage as well as ZEA 
production so far are insufficient and need future investigation 
(Figure 3).

4.	 Most countries in Africa do not know the status of ZEA in their 
food supply chain, and there are limited regulations (only in South 
Africa and Morocco) to control ZEA occurrence in maize and 
other cereal crops.

5.	 Some indigenous food processing techniques used in Africa have 
proven to have an inherent effect in reducing ZEA levels in pro-
cessed maize foods; however, not much attention has been given 
to these techniques to further optimize these processing tech-
niques for ZEA elimination (Figure 3).

6.	 Although nonthermal food processing technologies have exhib-
ited their power to effectively eliminate a large number of dif-
ferent mycotoxins, including ZEA in processed foods, regulations 
for its use in mycotoxin management are limited. As such more 
research is needed to assess the safety of these technologies 
(ozone, radiation, dielectric barrier discharge) with mycotoxin 
management in the storage and processing of food, and to en-
hance consumer acceptability.
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