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Abstract

Brain large-scale dynamics is constrained by the heterogeneity of intrinsic anatomical substrate. 

Little is known how the spatio-temporal dynamics adapt for the heterogeneous structural 

connectivity (SC). Modern neuroimaging modalities make it possible to study the intrinsic brain 

activity at the scale of seconds to minutes. Diffusion magnetic resonance imaging (dMRI) and 

functional MRI reveals the large-scale SC across different brain regions. Electrophysiological 

methods (i.e. MEG/EEG) provide direct measures of neural activity and exhibits complex 

neurobiological temporal dynamics which could not be solved by fMRI. However, most of 

existing multimodal analytical methods collapse the brain measurements either in space or time 

domain and fail to capture the spatio-temporal circuit dynamics. In this paper, we propose 

a novel spatio-temporal graph Transformer model to integrate the structural and functional 

connectivity in both spatial and temporal domain. The proposed method learns the heterogeneous 

node and graph representation via contrastive learning and multi-head attention based graph 

Transformer using multimodal brain data (i.e. fMRI, MRI, MEG and behavior performance). 

The proposed contrastive graph Transformer representation model incorporates the heterogeneity 

map constrained by T1-to-T2-weighted (T1w/T2w) to improve the model fit to structure-

function interactions. The experimental results with multimodal resting state brain measurements 

demonstrate the proposed method could highlight the local properties of large-scale brain spatio-

temporal dynamics and capture the dependence strength between functional connectivity and 

behaviors. In summary, the proposed method enables the complex brain dynamics explanation for 

different modal variants.

Keywords

Multimodal graph transformer; Graph contrastive representation; Neural graph differential 
equations

heng.huang@pitt.edu . 

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/978-3-031-16431-6_33.

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2024 July 
24.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2022 September ; 13431: 346–355. 
doi:10.1007/978-3-031-16431-6_33.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1 Introduction

Understanding how our brain dynamically adapts for mind and behaviors helps to extract 

fine-grained information for typical and atypical brain functioning. But how the microcircuit 

heterogeneity shapes the structure-function interactions remains an open question in 

systems neuroscience. Magnetic resonance imaging (MRI) makes it possible to infer 

the large-scale structural and functional connectivity and characterize the anatomical and 

functional patterns in human cortex. Electrophysiological methods reveal the dynamical 

circuit mechanisms at the structural and functional level with higher temporal resolution. 

Different neuroimaging modalities such as fMRI, dMRI and MEG enable us to estimate both 

static and functional connectivity during resting state and task experimental paradigms.

Existing studies of large-scale brain dynamics relate the structural and functional 

connectivity with dynamical circuit mechanisms. The biophysically based dynamical 

models explore the time-variant function connectivity with excitatory and inhibitory 

interactions which is interconnected through structural connections [6,20,22]. Microcircuit 

specialization could be summarized using graph model [3], showing insights into inter-

individual brain architecture, development and dysfunction in disease or disorder states. 

Recently, the graph harmonic analysis based on Laplacian embedding [4] and spectral 

clustering [19] is introduced to inform the cortical architectural variation. Basically, 

the previous methods define the nodes of the graph with the harmonic components 

to quantify the density of anatomical fibers. However, the inter-areal heterogeneity of 

human cortex has not been widely studied. The next challenging is to decompose the 

spatio-temporal brain dynamics with multimodal data [21]. Rahim et al. [15] improve 

the Alzheimer’s disease classification performance with fMRI and PET modalities. The 

stacking method of multimodal neuroimaging data is explored in age prediction task [10]. 

Representational similarity analysis (RSA) [9] based methods use the common similarity 

space to associate multivariate modalities. Subsequent research uses Gaussian process to 

allow complex linking functions [2]. In order to associate the higher temporal resolution of 

Electrophysiological measurements at millisecond with the higher spatial resolution of MRI 

and fMRI at millimeter, we introduce the contrastive learning with the Graph Transformer 

model to learn the heterogeneous graph representation.

Contrastive methods measure the distribution loss with the discriminative structure and 

achieve the state-of-the-art performance in graph classification. Contrastive multiview 

coding (CMC) [18], augmented multi-scale DIM (AMDIM) [1] and SimCLR [5] take 

advantages of multiview mutual information maximization with data augmentation to learn 

better representations. The graph-level representation is further explored with the extension 

of the mutual information principle in [17]. Recently, the Graph Transformer based method 

[16] is proposed to explore the nodes relationship in node embedding learning. However, it 

is challenging to accurately represent the entire given graph.

Literature on previous multimodal based methods could not be directly applied to link 

structural connectivity, functional connectivity and behaviors for the following reasons. 1) 

Most of the existing methods use simple and direct correlational approaches to relate SC 

and FC. However, the linearity assumption violates the brain spatio-temporal dynamics in 
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many cases. 2) The scanner availability and patient demands may cause the incomplete data 

problem which may affect the model’s performance. 3) As far as we know, little efforts 

has been made to study how the heterogeneity across human cortex affects the dynamical 

coupling strength of brain function with structure.

To address these issues, we develop a novel Graph Transformer based framework for 

associating the heterogeneity of local circuit properties and revealing the dependency of 

functional connectivity on anatomical structure. The proposed method consists of three 

parts, the Dynamical Neural Graph Encoder, the graph Transformer pooling with multi-head 

attention, and the contrastive representation learning model. The proposed method has the 

following advantages:

• The proposed method provides insights into the brain spatio-temporal dynamical 

organization related to mind and behavior performance. Existing graph pooling 

methods may yield similar graph representation for two different graphs. To 

obtain accurate graph representation, the novel Graph Transformer use multi-

head attention to acquire the global graph structure given multimodal inputs. 

Moreover, we use the contrastive learning model to associate structural and 

functional details of dMRI, fMRI and MEG.

• The proposed method makes it possible to incorporate the areal heterogeneity 

map with functional signals using multimodal data from the human connectome 

project (HCP).

• The proposed method is evaluated with the meta-analysis to explore the 

behavioral relevance of different brain regions and characterize the brain 

dynamical organization into low level functions region (i.e. sensory) and the 

complex function regions (i.e. memory).

2 Methods

To explore the coupling strength of structural and functional connectivity, the heterogeneous 

Graph Transformer with contrastive learning is trained based on the multimodal brain 

measurements (i.e. MRI, fMRI and MEG). We use a graph Gi = (V, ℰi) to represent the 

heterogeneous graph representation, with the node type V = [vt, i ∣ t = 1, …, T ; i = 1, …, N]
with N brain ROIs and T  time points. The connection of different brain ROIs in spatial 

and temporal domain is denoted by the edge mapping ℰ. Given two types of multimodal 

graph representation GA and Gℬ with different time points TA and Tℬ and their multivariate 

value XA = [xt1
A, xt2

A, …, xtA
A ] and Xℬ = [xt1

ℬ, xt2
ℬ, …, xtℬ

ℬ ]. The dynamical neural graph encoder is 

used to represent the spatio-temporal dynamics within each modality. Y A = [yt1
A, yt2

A, …, yTP
A ]

and Y ℬ = [yt1
ℬ, yt2

ℬ, …, yTP
ℬ ]. The adjacency matrices for each view are represented as AA and Aℬ. 

We use HA and Hℬ to represent the learned node representation within each modality. Then 

we use the Graph Transformer pooling layer together with the multi-head attention model to 

stack the entire node features. The overall framework is illustrated in Fig. 1.
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2.1 Dynamical Neural Graph Encoder for Single Modal Data

The dynamical brain network with N neurons could be modeled as

z.(t) = f(z, l, t),

(1)

where z(t) = [z1(t), z2(t), …, zN(t)]T  represents the internal states of N neuron nodes at time t. 
f( ⋅ ) denotes the nonlinear dynamical function of each node. And l(t) = [l1(t), l2(t), …, lS(t)]T

represents the external stimuli for S neurons.

To represent the dynamics of each single modality, we define a continuous neural-graph 

differential equation as follows,

Z
.
(t) = fGtk(t, Zt, θt); Zt

+ = ℒGtk
j (Zt, Xt); Y t = ℒGtk

y (Zt),

(2)

where fG, ℒG
j  and ℒG

y  are graph encoder networks. Zt
+ is introduced to represent the value 

after discrete operation.

2.2 Multimodal Graph Transformer Module

To explore the relationship among different modalities, we introduce the multi-modal graph 

transformer layer. The previous pooling layer ignores the importance of nodes, we design a 

novel Graph Transformer pooling layer to keep the permutation invariance and injectiveness. 

The Graph Transformer module consists of a multi-head attention layer and a Graph 

Transformer pooling layer.

Graph Multi-head Attention.—Within each view, the inputs for the multi-head attention 

consists the terminal state of dynamical neural graph encoder. The inputs are transformed 

to query Q ∈ Rnq × dk, key K ∈ Rn × dk and value V ∈ Rn × dv, where nq is the number of query 

vectors and n represents the number of input nodes. dk and dv denotes the dimensionlity 

of corresponding key vector and value vector. The attention dot production is defined as 

Att(Q, K, V ) = w(QKT )V . We define the output of the multi-head attention module (MH) as

MH(Q, K, V ) = [O1, …, Oℎ]W O; Oi = Att(QW i
Q, KW i

K, V W i
V ),

(3)

where W i
Q, W i

K and W i
V  are parameter matrices. The output project matrices is defined as 

W O. Using the heterogeneous graph representation learned by graph encoder (GE), the 

graph multi-head attention block could be denoted by

GMH(Q, K, V ) = [O1, …, Oℎ]W O; Oi = Att(QW i
Q, GEi

K(H, A), GEi
V (H, A)),

(4)
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Graph Transformer Pooling Together with Graph Multi-head Attention.—
Inspired by traditional Transformer based method [12], we introduce a novel Graph 

Transformer pooling layer to learn the global representation of the entire graph, which is 

defined as follows:

GMPoolk(H, A) = LN(Z + rFF (Z)); Z = LN(S + GMH(S, H, A)),

(5)

where rFF  is any row-wise feed forward layer. S is the seed matrix which could be directly 

optimized. LN is a layer normalization. In addition, we introduce the self-attention layer to 

explore the relationship between different nodes.

SelfAtt(H) = LN(Z + rFF (Z)); Z = LN(H + MH(H, H, H)),

(6)

Together with graph encoder module, the overall framework is defined with the coarsened 

adjacency matrix A′

Poolingk(H, A) = GMPool1(selfAtt(GMPoolk(H, A)), A′),

(7)

2.3 Contrastive Graph Representation Learning

Finally, we apply the shared projection head fϕ( . ) ∈ Rdℎ to the aggregated heterogeneous 

representation of each view. In the experiment, we use an MLP with two hidden layers as the 

projection head. The projected representations is defined as, ℎ g

A
 and ℎ g

ℬ
. For each view, the 

node representation are concatenated as follows,

ℎ g = σ( ∥
l = 1

L
[ ∑
i = 1

n
ℎ i

l
]W ),

(8)

The graph and node representations of the overall Graph Transformer module are defined as 

ℎ = ℎ g

A
+ ℎ g

ℬ
 and H = HA + Hℬ. In the training stage, the cross modal mutual information 

between the node representation and graph representation is defined as,

max
θ, ω, ϕ, ψ

1
∣ G ∣ ∑G

[ 1
∣ g ∣ ∑

i = 1

∣ g ∣
[MI(ℎ i

A
, ℎ g

ℬ
) + MI(ℎ i

ℬ
, ℎ g

A
)]],

(9)
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where θ, ω, ϕ, ψ represent the parameters of heterogeneous graph convolution and projection 

head. ∣ G ∣ is the total numbers of graph. ∣ g ∣ is the number of nodes. MI is denoted as the dot 

production MI(ℎ i

A
, ℎ g

ℬ
) = ℎ i

A
⋅ (ℎ g

ℬ
)
T

.

3 Experimental Results

We evaluated the proposed method with resting state fMRI of 1200 subjects from Human 

Connectome Project (HCP). The resting state fMRI was preprocessed using the HCP 

minimal preprocessing pipeline [8]. The artefacts of the BOLD signal were further removed 

using ICA-FIX. The cortical surface was parcellated into N = 360 major ROIs using 

MMP1.0 parcellation [7]. We excluded 5 subjects with less than 1200 time points for 

resting-state fMRI data. Additionally, about 95 subjects have resting-state and/or task MEG 

(tMEG) data. We used 80% of the whole dataset for training and evaluation. The remaining 

dataset is used for testing. The corresponding resting-state MEG data were acquired in three 

6 min runs. The preprocessing of MEG data followed the pipeline provided by HCP data 

[11]. The source reconstruction was performed using the FieldTrip toolbox. Then sensor 

data was bandpass filtered into 1.3 55 Hz and projected into source space by synthetic 

aperture magnetometry. After source reconstruction on the 8k-grid, the time courses were 

parcellated using MSMAll atlas [8]. The parcellated time courses were z-score normalized 

for both fMRI and MEG data. In addition, we used the ratio between T1 to T2 weighted 

maps from HCP dataset as the heterogeneity map. The parcellated diffusion MRI (dMRI) 

was analysed to generate the structural connectivity (SC) and compute the adjacency matrix 

A for graph encoder module.

3.1 Heterogeneity Improves the Model Fit to FC

In the first experiment, we tested the similarity between empirical FC and heterogeneous 

FC patterns acquired by the proposed method compared with the homogeneous model. 

The empirical group averaged FC, particle-averaged homogeneous FC and heterogeneous 

FC are shown in Fig. 2. We used a simple non-neural model to introduce self-coupling 

heterogeneity strength wi = wmin + wscalesi based on the heterogeneity map si, where wmin and 

wscale are heterogeneity parameters.

Synaptic Dynamical Equations.

We introduced the biophysically-based computational model to simulate the functional 

dynamics y. i(t) for each node i with the heterogeneity map si.

y.i(t) = − yi(t) + ∑
j

Cijyj(t) + nνi(t),

(10)

where nνi(t) is the independent Gaussian white noise. C represents the coupling matrix. yi(t)

is the learned representation using the proposed method. We incorporated the SC matrix SC

and global coupling parameter GC with y. i(t),
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y.i(t) = − ∑
j

[(1 − wi)δij − GCSij
C]yj(t) + nνi(t),

(11)

We used the squared Pearson correlation coefficient to evaluate the similarity between 

empirical FC and model fit FC for a single hemisphere. Figure 2 shows that the similarity of 

the proposed graph Transformer model is larger with r = 0.68 than the homogeneous model 

(r = 0.49)(p < 10−4, dependent correlation test). The proposed model also yields higher 

FC similarity than Deco’s model [6] (r = 0.57). The experimental result linking multiple 

modalities demonstrates the hypothesis that the T1w/T2w map shapes the microcircuit 

properties and spatio-temporal brain dynamics. The introduction of T1w/T2w heterogeneity 

with the proposed method could capture the dominant neural axis for microcircuit 

specialization is shown in Fig. 3. In summary, the proposed method with the prior of 

areal heterogeneity could inform the dynamical relationships among structure, function, and 

physiology.

3.2 Functional Connectivity and Behaviors

In the second experiment, we used a NeuroSynth meta-analysis [13] to assess the topic terms 

with the structural-functional coupling index in Fig. 4. The experimental results demonstrate 

the existence of behavior related global gradient spanning from lower to higher level 

cognitive functions. The evidence of global gradient reveals that higher coupling strength 

in sensory-motor areas which requires fast reacting (i.e. “visual perception”, “multisensory 

processing”, “motor/eye movement”). However, the coupling strength in high level cognitive 

regions (i.e. “autobiographical memory”, “emotion” and “reward-based decision making”) is 

low. Similar organization phenomenon could be found in the previous research [13,14].

4 Conclusions

In the study, we propose a novel Graph Transformer based method for decoding the 

brain spatio-temporal dynamics. Different from most of the existing graph convolution 

method, the Graph Transformer model with multi-head attention guarantees the learning 

of global graph structure of multimodal data (i.e. dMRI, fMRI and MEG). The contrastive 

learning model makes it possible to associate multimodal graph representation and reveal 

how the heterogeneity map shapes the human cortical dynamics. The experimental results 

demonstrate the importance of regional heterogeneity and the corresponding intrinsic 

structure-function relationship within brain dynamical organization. Moreover, the proposed 

method provides insights into brain inter- and intra-regional coupling structure and the 

relationship between dynamical FC and human behaviors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic illustration of the graph transformer representation learning
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Fig. 2. 
Heterogeneity map improves the model fit to functional connectivity (FC). (a) Empirical FC. 

(b) Homogeneous FC. (c) Heterogeneous FC. And (d-f) correlations between empirical FC 

and model FC, for the Homogeneous (d) Heterogeneous Graph Transformer (e) and Deco’s 

model (f).
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Fig. 3. 
T1w/T2w heterogeneity map (left) and the example surrogate heterogeneity map (right)
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Fig. 4. 
Behaviorally relevant gradient shows brain organization
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