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Background. Two large studies suggest that resistance mutations to only nonnucleoside reverse transcriptase inhibitors 
(NNRTI) did not increase the risk of virologic failure during antiretroviral therapy (ART) with efavirenz/tenofovir disoproxil 
fumarate/lamivudine (or emtricitabine). We retrospectively evaluated a third cohort to determine the impact of NNRTI 
resistance on the efficacy of efavirenz-based ART.

Methods. Postpartum women living with human immunodeficiency virus (HIV) were studied if they initiated efavirenz-based 
ART because of the World Health Organization’s recommendation for universal ART. Resistance was detected by Sanger 
genotyping plasma prior to efavirenz-based ART and at virologic failure (HIV RNA >400 copies/mL). Logistic regression 
examined relationships between pre-efavirenz genotypes and virologic failure.

Results. Pre-efavirenz resistance was detected in 169 of 1223 (13.8%) participants. By month 12 of efavirenz-based ART, 189 of 
1233 (15.3%) participants had virologic failure. Rates of virologic failure did not differ by pre-efavirenz NNRTI resistance. However, 
while pre-efavirenz nucleos(t)ide reverse transcriptase inhibitors (NRTI) and NNRTI resistance was rare (8/1223 [0.7%]) this 
genotype increased the odds (adjusted odds ratio, 11.2 [95% confidence interval, 2.21–72.2]) of virologic failure during 
efavirenz-based ART. Age, time interval between last viremic visit and efavirenz initiation, clinical site, viremia at delivery, 
hepatitis B virus coinfection, and antepartum regimen were also associated with virologic failure.

Conclusions. Resistance to NNRTI alone was prevalent and dual-class (NRTI and NNRTI) resistance was rare in this cohort, 
with only the latter associated with virologic failure. This confirms others’ findings that, if needed, efavirenz-based ART offers most 
people an effective alternative to dolutegravir-based ART.
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Following the introduction of antiretroviral therapy (ART) in 
low- and middle-resource settings, multiple World Health 
Organization (WHO) surveillance studies detected pre-ART hu-
man immunodeficiency virus (HIV) drug resistance (PDR) 
prevalent at ≥10% [1]. The resistance mutations were primarily 
associated with resistance to nonnucleoside reverse transcriptase 
inhibitors (NNRTIs). This generated concern that PDR could 

undermine the efficacy of ART composed of tenofovir disoproxil 
fumarate (TDF)/lamivudine (3TC)/efavirenz (EFV) [2]. These 
concerns and the manufacturing of affordable TDF/3TC/dolute-
gravir (DTG) triggered the WHO in 2018 to recommend TDF/ 
3TC/DTG for first-line ART [3]. However, prior to this recom-
mendation, across 2006–2014 when PDR to NNRTIs was in-
creasing, particularly among women of childbearing potential 
[4], and when first-line ART switched from zidovudine (ZDV)/ 
3TC/nevirapine (NVP) to TDF/3TC/EFV, studies of Kenyans 
found that the impact of specific PDR mutational patterns on vi-
rologic failure appeared to vary depending on whether the 
NNRTI in the ART regimen was NVP or EFV [5, 6]. 
Specifically, K103N alone, which was the most frequent PDR mu-
tational pattern, was associated with virologic failure to NVP/ 
ZDV/3TC or NVP/stavudine/3TC but not to TDF/3TC/EFV 
[5]. Similarly, a study of South Africans (ANRS 12249) found 
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that PDR to only NNRTIs (primarily K103N), including minority 
variants, had no detectable impact on viral suppression with pre-
dominantly TDF/emtricitabine (FTC)/EFV [7]. These findings 
are highly relevant, as both suggest that TDF/EFV combined 
with either 3TC or FTC (TXE) can be used effectively in people 
with K103N and perhaps other major NNRTI mutations—ex-
panding available ART options. The present study assesses in 
an additional cohort the impact of PDR on virologic failure dur-
ing EFV-based ART and evaluates specific mutant codons asso-
ciated with virologic failure.

MATERIALS AND METHODS

Study Participants and Design

Women prescribed EFV-based ART during the Promoting 
Maternal and Infant Survival Everywhere (PROMISE) trial (see 
study schema in Figure 1) were retrospectively assessed for 
HIV drug resistance mutational patterns prior to EFV-based 
ART associated with virologic failure to this regimen [8]. 
PROMISE was a large, randomized trial that compared the 
relative safety and efficacy of 3 ART regimens for the preven-
tion of mother-to-child HIV transmission during pregnancy 
in pregnant women living with HIV with CD4 counts above 
the level that (at the time) qualified for ART in sub-Saharan 
Africa and India. During the PROMISE trial, the TEMPRANO 
and strategic timing of antiretroviral therapy (START) trials 
demonstrated the benefits of starting ART despite “high” CD4 
counts [9, 10]; thus, adult PROMISE participants could initiate 
EFV-based ART at any point for their health. Most PROMISE 
participants initiated EFV/TDF combined with 3TC (59%) or 
FTC (39%), or rarely (2%) combined with other nucleoside re-
verse transcriptase inhibitors (NRTIs) [11]. Therefore, 
EFV-based ART is also referred to as TXE in this study. In our 
study population, all participants initiated EFV-based ART dur-
ing the postpartum or maternal health components of the 
PROMISE trial (Figure 1).

Inclusion criteria for this substudy were (1) initiation of 
EFV-based ART during PROMISE; (2) available plasma with 
HIV RNA >400 copies/mL prior to initiation of EFV-based 
ART; and (3) plasma HIV RNA measured at months 6 and 12 
(±3 months) of EFV-based ART. Pre-EFV resistance—hereafter, 
PDR—and other parameters known to affect the likelihood 
of ART suppression were compared between participants 
who did versus did not have virologic failure (HIV RNA 
>400 copies/mL) by 12 months of EFV-based ART. PDR 
was assessed by Sanger sequences using participants’ viremic 
plasma nearest to the initiation of EFV-based ART. Genotypic 
resistance testing was also performed using first virologic fail-
ure plasma (month 6 or 12).

One covariate associated with virologic failure led to a post 
hoc study using next-generation sequencing of pre-EFV plas-
ma. Plasma from cases and randomly selected controls (1:3) 

were tested to address the hypothesis that dual-class PDR 
with minority variants not detected by Sanger sequencing con-
tributed to virologic failure.

Laboratory Methods

RNA extracted from plasma (140–1000 μL) by QIAamp viral 
RNA mini kit (Qiagen, Valencia, California) was reverse tran-
scribed, and HIV pol encoding protease and a portion of reverse 
transcriptase was amplified using PrimeScript One Step reverse- 
transcription polymerase chain reaction (PCR) (Takara Bio USA, 
Mountain View, California) followed by consensus Sanger se-
quencing [12]. For Illumina sequencing, RNA was reverse tran-
scribed using SuperScript III First-Strand Synthesis System 
(Invitrogen, Carlsbad, California) and a primer consisting of an 
HIV-specific sequence (Supplementary Table 1) followed by a 
string of 8 random nucleotides (unique molecular identifier 
[UMI]) and a universal 24 bp Illumina index adapter sequence, 
then bead-purified (Agencourt Ampure XP, Beckman-Coulter, 
Beverly, Massachusetts). The complementary DNA was ampli-
fied (45 cycles; primers in Supplementary Table 1) using a high- 
fidelity PCR kit (FastStart High-Fidelity PCR system, Roche 
Diagnostics, Mannheim, Germany), then indexed (IDT for 
Illumina Nextera DNA Unique Dual Indexes, Illumina, San 
Diego, California) and pooled for bidirectional sequencing on 
an Illumina MiSeq (MiSeq Reagent Kit v3, Illumina).

Bioinformatic Analyses

Sanger sequences (National Center for Biotechnology Information 
[NCBI] GenBank: OR390081–OR391479, MZ706694, MZ706718, 
MZ706834, MZ706873, and MZ706935) were analyzed by 
Sequencher (v5.4.6). Neighbor-joining phylogenetic trees 
of all sequences (Geneious v11.1.5) were utilized to detect 
potential specimen mix-ups or carry-over contamination be-
tween participants. Illumina sequences (NCBI Sequence Read 
Archive BioProject: PRJNA1000967) were processed [4], and 
≥3 high-quality sequences with identical UMIs were combined 
into a consensus sequence (https://github.com/MullinsLab/drm- 
snp-calling) then aligned to the HXB2 using the Burrows- 
Wheeler algorithm [13] to identify nucleotides associated with 
resistance. The mutational frequencies are reported for partici-
pants with ≥100 consensus sequences using cut-offs of ≥20%, 
≥5%, and ≥1% mutant.

PDR was defined by the 2009 WHO surveillance list of trans-
mitted drug resistance mutations [14] for the primary analyses 
of the entire cohort and the post hoc case-control study. HIV 
drug resistance at virologic failure was defined by a genotypic 
susceptibility score (GSS) ≥10 for EFV, TDF, and/or XTC 
(Stanford HIVdb version 8.9–1) [15].

Statistical Analyses

The prevalence of PDR at the initiation of EFV-based ART and 
at virologic failure was compared across clinical sites by χ2 test. 
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Virologic failure between women with and without PDR was 
compared by Fisher exact test. Covariates associated with viro-
logic failure were analyzed using unadjusted and adjusted logis-
tic regression models of virologic failure during EFV-based ART, 
including PDR genotype, age, CD4 cell count, plasma HIV 
RNA, and detection of hepatitis B surface antigen (HBsAg) 
at PROMISE entry, HIV RNA load at EFV initiation, time 
(weeks) between delivery and EFV initiation, time (weeks) be-
tween last viremic visit and EFV initiation (pre-EFV speci-
men), time (weeks) on EFV, clinical site, delivery HIV RNA 
load, PROMISE antepartum randomization group, and 
PROMISE postpartum randomization group. To determine 
if mutations not defined as resistance mutations by Stanford 
may have contributed to virologic failure, we compared the 
frequency of mutations encoding reverse transcriptase “other” 
mutations between TDF-exposed versus TDF-unexposed par-
ticipants prior to EFV-based ART and the rates of virologic fail-
ure among TDF-exposed participants with versus without each 
specific “other” mutations by Fisher exact test.

The post hoc case-control analyses of Sanger and Illumina se-
quences compared pre-EFV genotypes between women who ex-
perienced virologic failure versus suppression on EFV-based 
ART using unadjusted logistic regression. Comparisons were con-
ducted using mutational frequencies of ≥20% mutant (assumed 
when detected by Sanger sequencing) and ≥5% and ≥1% mutant. 
To reduce bias and address data separation, Firth penalized like-
lihood approach was applied to logistic regression models [16, 17].

Sensitivity analyses were performed that defined PDR using 
mutations with GSS ≥10 by Stanford HIVdb to EFV, TDF, 
and/or XTC (instead of WHO resistance surveillance list). 
Participants with mutations not conferring resistance to TXE 
(eg, T215F or T215S conferring resistance to ZDV) were catego-
rized as wild-type. All statistical analyses were conducted using 
RStudio (v4.2.1) with statistical significance defined as a 2-sided 
P value <.05 [18].

Patient Consent Statement

This study addressed a secondary objective outlined in the trial 
protocol, which was approved by local and collaborating insti-
tutional review boards. All PROMISE trial participants provid-
ed written informed consent.

Role of Funding Source

The funder had no role in study design; data generation, anal-
ysis, or interpretation; or manuscript writing.

RESULTS

Study Population

A total of 1233 PROMISE participants were studied. Demographic 
and clinical characteristics of participants prior to EFV initia-
tion from 14 different sites in 7 countries are shown in Table 1. 
Participants were randomized to antepartum and postpartum 
regimens within the PROMISE protocol prior to EFV-based 

Figure 1. Promoting Maternal and Infant Survival Everywhere (PROMISE) trial randomization schema for efavirenz-based antiretroviral therapy (ART) substudy participants. 
The timing of all 3 antiretroviral drug randomizations are shown for each “component” of the PROMISE trial. The number of women in each PROMISE randomization group is 
shown in parentheses. Participants in this substudy cohort (N = 1233) had efavirenz-based ART prescribed (usually as tenofovir + lamivudine [or emtricitabine] + efavirenz) as 
part of local standard of care at any phase of the PROMISE trial. The impact of pre-efavirenz-based ART HIV drug resistance on ART suppression was assessed in women 
prescribed efavirenz-based ART at any phase of the PROMISE study. *Single-dose nevirapine was given at labor/delivery with a “tail” of tenofovir disoproxil fumarate /em-
tricitabine for 6–14 days to reduce the risk of resistance. †Eligible and willing antepartum and late-presenting mothers and their infants were randomized for the duration of 
breastfeeding; infants were to be followed to 104 weeks of age. Some mothers who were ineligible for the postpartum component were directly randomized to the maternal 
health component after delivery. ‡Randomization to the maternal health component occurred at breastfeeding cessation or at or after 74 weeks of breastfeeding for women 
randomized in the postpartum component. Those randomized directly to the maternal health component after delivery were randomized between 6 and 28 days postpartum. 
Participants randomized in the antepartum component and not randomized in the postpartum component remained in observational follow-up. Abbreviations: 3TC, lamivu-
dine; ART, antiretroviral treatment; ARVs, antiretroviral drugs; EFV, efavirenz; FTC, emtricitabine; LPV/r, ritonavir-boosted lopinavir; MTCT, mother-to-child transmission; NVP, 
nevirapine; PROMISE, Promoting Maternal and Infant Survival Everywhere; R, randomization; sdNVP, single-dose nevirapine; TDF, tenofovir disoproxil fumarate; ZDV, 
zidovudine.
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ART. The median time between delivery and EFV initiation 
was 112 weeks (interquartile range, 64–151 weeks).

Prevalence of Pre-EFV-Based ART Drug Resistance

HIV genotypes were derived from pre-EFV plasma by Sanger 
sequencing for 1223 of 1233 (99.2%) participants (10 failed 
PCR amplification). Drug resistance was detected in 169 of 
1223 (13.8% [95% confidence interval {CI}, 11.9%–15.9%]; 
Supplementary Figure 1A) with similar frequencies across sites 
(P = .8 by χ2 test). Among those with PDR, the most frequent 
mutation was K103N (97/169 [57.4%]) followed by other single 
NNRTI resistance mutations: L100I (n = 1), K101E (n = 15), 
K103S (n = 3), V106A/M (n = 3), Y181C (n = 7), Y188C 
(n = 1), G190A/E (n = 6), and P225H (n = 1). NRTI resistance 
mutations were infrequently detected (n = 12 [7.1%]), as were 
≥2 NNRTI mutations (n = 10 [5.9%]), or dual-class resistance 
(≥1 NRTI and ≥1 NNRTI mutation) (n = 8 [4.7%]) (Table 1).

Pre-EFV-Based ART Drug Resistance and Virologic Outcome During 
EFV-Based ART

Virologic failure was detected in 189 of 1233 women (15.3% 
[95% CI, 13.4%–17.5%]; Supplementary Figure 1B), observed 
by month 6 in 160 of 189 (84.7%) and by month 12 in 29 addi-
tional participants. Frequencies of virologic failure differed 
across clinical care sites (range, 4.6%–25.9%, P < .001 by χ2 

test). PDR was not associated with virologic failure (PDR: 
17.2% vs no PDR: 15.1%, P = .49; Supplementary Figure 2).

Dual-class resistance (defined as ≥1 NRTI and ≥1 NNRTI 
mutation) was the only PDR pattern associated with virologic 
failure during EFV-based ART in logistic regression models 
(Table 2) (unadjusted odds ratio [OR], 14.6 [95% CI, 3.70– 
80.0]; adjusted OR, 11.2 [95% CI, 2.21–72.2]). PDR with only 

Table 1. Baseline Demographic and Clinical Characteristics of 
Participants Prior to Initiation of Efavirenz-Based Antiretroviral Therapy

Characteristic

N = 1233
Median (IQR) or  

no./No. (%)

Age, y 26 (22–30)

CD4 count at PROMISE entry, cells/μL 507 (428–632)

HIV RNA load at PROMISE entry, log10  

copies/mL
3.92 (3.47–4.43)

HIV RNA load at EFV initiation, log10  

copies/mL
3.87 (3.34–4.47)

Time between delivery and EFV initiation, wk 112 (64–151)

Time between last viremic visit and EFV 
initiation, wk

1.1 (0.0–24.1)

Time on EFV-based ART, wk 57.7 (42.3–82.1)

Country

India 14 (1.1)

Malawi 353 (28.6)

South Africa 406 (32.9)

Tanzania 17 (1.4)

Uganda 82 (6.7)

Zambia 34 (2.8)

Zimbabwe 327 (26.5)

Clinical care site

Site A 220 (17.8)

Site B 206 (16.7)

Site C 147 (11.9)

Site D 152 (12.3)

Site E 121 (9.8)

Site F 127 (10.3)

Sites G–Na 260 (21.1)

HIV RNA load at deliveryb

≤400 copies/mL 658 (53.4)

>400 copies/mL 542 (44.0)

Hepatitis B virus test result

HBsAg negative 1191 (96.6)

HBsAg positive 42 (3.4)

PROMISE antepartum treatment regimen

Triple ARV (ZDV/3TC + LPV/r) 526 (42.7)

Triple ARV (TDF/FTC + LPV/r) 177 (14.4)

ZDV monotherapy (+ sdNVP + TDF/FTC tail) 529 (42.9)

No antepartum randomizationc 1

PROMISE postpartum treatment regimen

Maternal triple ARV (TDF/FTC + LPV/r) 423 (34.3)

No maternal treatment 590 (47.9)

Not randomized (observational follow-up 
only)

220 (17.8)

HIV subtyped

C 1128 (91.5)

A 59 (4.8)

D 27 (2.2)

B 7 (0.6)

G 2 (0.2)

HIV genotype at initiation of EFV-based ARTd

Wild-type 1054 (86.2)

Any resistance mutations 169 (13.8)

NRTI mutation(s) only 12 (1.0)

K103N only 97 (7.9)

Y181C only 12 (1.0)

Table 1. Continued  

Characteristic

N = 1233
Median (IQR) or  

no./No. (%)

G190A only 5 (0.4)

Other single NNRTI mutation 25 (2.0)

≥2 NNRTI mutations 10 (0.8)

≥1 NRTI and ≥1 NNRTI mutation 8 (0.7)
aAggregated sites with <100 participants enrolled.  
bThirty-three participants did not have HIV RNA viral load measurements within 14 days of 
delivery.  
cOne participant was enrolled into PROMISE at delivery (ie, “late presenter”) and thus was 
not randomized during the antepartum component.  
dTen samples did not amplify and thus have no HIV subtype or genotype. Resistance to 
protease inhibitors was not detected in any participants.  

Abbreviations: 3TC, lamivudine; ART, antiretroviral therapy; ARV, antiretroviral drug; EFV, 
efavirenz; FTC, emtricitabine; HBsAg, hepatitis B surface antigen; HIV, human 
immunodeficiency virus; IQR, interquartile range; LPV/r, ritonavir-boosted lopinavir; 
NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleos(t)ide reverse 
transcriptase inhibitor; PROMISE, Promoting Maternal and Infant Survival Everywhere; 
sdNVP, single-dose nevirapine; TDF, tenofovir disoproxil fumarate; ZDV, zidovudine.
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NRTI mutation(s) or multiple NNRTI mutations were not asso-
ciated with virologic failure compared to no PDR. Additionally, 
PDR with single major NNRTI mutations (K103N, Y181C, or 
G190A) was not associated with virologic failure during 
EFV-based ART. We observed that most participants with 
PDR due to a single pretreatment NNRTI mutation associated 
with high-level resistance to EFV (Stanford GSS ≥30) (n = 97/ 
114 [85.1%]) had suppression of HIV replication during 
EFV-based ART (n = 81/97 [83.5%] with K103N, n = 10/12 
[83.3%] with Y181C, and n = 5/5 [100%] with G190A). 
Comparison of pre-EFV genotypes across all PROMISE partici-
pants found that assignment to a TDF-containing regimen during 
PROMISE was associated with detection of V118I in the reverse 
transcriptase gene (6.2% vs 2.7%, P = .002, Supplementary 
Table 2); however, V118I among those randomized to TDF 
was not associated with virologic failure during EFV-based 
ART (4.6% vs 6.6%, P = .6).

Additional covariates associated with virologic failure during 
EFV-based ART in the adjusted logistic regression include en-
rollment at clinical site B (adjusted OR compared to site A, 2.69 
[95% CI, 1.51–4.92]) and site C (adjusted OR, 2.62 [95% CI, 
1.39–5.01]), previous virologic failure at delivery (adjusted 
OR, 2.71 [95% CI, 1.76–4.21]), younger age (P < .01), shorter 
time interval between last viremic study visit (pre-EFV geno-
type) and EFV initiation (P < .001), detection of HBsAg 
(P < .01), and prior PROMISE antepartum treatment random-
ization (P < .001) (Table 2, Supplementary Table 3). CD4 count 
at entry into the PROMISE trial, the time interval between de-
livery and EFV initiation, the duration of EFV-based ART, and 
the PROMISE postpartum treatment randomization were not 
associated with virologic failure on EFV-based ART.

Our finding that the PDR genotypes associated with virologic 
failure during EFV-based ART varied by prior PROMISE an-
tepartum treatment arm (Table 3) in the adjusted model 
prompted additional comparisons. Among the majority (86%) 
of PROMISE participants randomized to antepartum ZDV 
monotherapy or ZDV/3TC + lopinavir/ritonavir (LPV/r), only 
dual-class PDR was associated with virologic failure during 
EFV-based ART (OR, 9.43 [95% CI, 1.24–104] and OR, 14.6 
[95% CI, 2.66–148], respectively). In contrast, among 177 
(14.4%) of PROMISE participants randomized to antepartum 
TDF/FTC + LPV/r, any PDR mutation was associated with viro-
logic failure (OR, 4.21 [95% CI, 1.55–11.1]), including single 
major NNRTI mutations K103N and Y181C (OR, 5.02 [95% 
CI 1.47–16.0] and OR, 8.68 [95% CI, 1.26–60.1], respectively). 
An interaction test (P = .018) found that the genotype effect 
in the adjusted virologic failure model depended on the prior 
antepartum treatment randomization arm. Among participants 
with virologic failure, a greater proportion had PDR in the TDF/ 
FTC + LPV/r arm compared to the other 2 antepartum arms 
(34.8% vs 10.5% for ZDV monotherapy vs 14.6% for ZDV/ 
3TC + LPV/r; Table 3). However, the proportion with NNRTI 

PDR was not significantly greater in participants randomized 
to TDF/FTC + LPV/r compared to the other 2 regimens 
(14.4% [95% CI, 9.5%–20.5%] vs 11.8% [95% CI, 9.2%–14.9%] 
for ZDV monotherapy or 13.4% [95% CI, 10.6%–16.6%] for 
ZDV/3TC + LPV/r).

Illumina sequences from 22 of 24 cases and 79 of 80 controls 
evaluated whether PDR patterns in the TDF/FTC + LPV/r arm 
including low-frequency TDF or FTC resistance mutations 
missed by Sanger genotyping were associated with virologic fail-
ure during EFV-based ART. A comparison of PDR by Sanger 
and Illumina sequences, using a threshold frequency of 20%, 
found concordant genotypes for 100 of 101 (99.0%) participants 
based on the WHO surveillance mutations list [14]; the discord-
ant result was in a control with K103N detected at a frequency of 
25% by Illumina that was not detected by Sanger sequencing. In 
our sensitivity analyses defining PDR by Stanford’s GSS ≥10 to 
EFV, TDF, and/or XTC, we detected 3 discordant results: K70N 
in 1 participant and K238T in another participant were missed 
by Illumina sequencing, and A98G detected at 26.2% frequency 
by Illumina was not detected by Sanger. While the Stanford 
HIVdb gives a GSS ≥10 to EFV, TDF, and/or XTC for these 3 
mutations, these codons are not included in the WHO list of sur-
veillance mutations. Additionally, while Illumina detected resis-
tance mutations at <20% frequencies (n = 20/101 and n = 25/ 
101 using 5% and 1% thresholds, respectively), none of these 
mutations conferred resistance to TDF (Supplementary 
Table 4). NRTI resistance was detected at <20% frequency in 
0 of 22 cases and 2 of 79 (2.5%) controls: M184I at 1.8% in 1 par-
ticipant alone and D67G at 2.2% in another participant who also 
had K101E at 4.2%. The inclusion of minority variants recatego-
rized, at most, 2 case and 7 control participants’ genotypes, pri-
marily from single to multiple NNRTI mutations (no additional 
participants with dual NRTI + NNRTI resistance mutations); 
thus, the increased odds of virologic failure associated with 
NNRTI PDR was maintained (Supplementary Tables 4 and 5).

Sensitivity analyses repeated the pairwise comparisons of 
pre-EFV genotypes associated with virologic failure using 
Stanford HIVdb GSS ≥10 to EFV/TDF/XTC and yielded results 
similar to primary analyses (Supplementary Tables 5–7). The 
minor differences were in the subgroup analyses of the antepar-
tum TDF/FTC + LPV/r arm with single NNRTI mutations, ≥2 
NNRTI mutations, and dual-class PDR associated with virolog-
ic failure in the unadjusted model (Supplementary Table 7).

HIV Drug Resistance at Virologic Failure

Of the 189 women with virologic failure during EFV-based 
ART, 180 (95.2%) genotypes were derived from their first fail-
ure timepoint (month 6 or month 12) and 9 specimens failed 
PCR amplification. Sixty-three of 159 (44.8%) women without 
PDR had drug-resistant variants detected at virologic failure. 
However, more than half (89/159 [55.2%]) had wild-type 
HIV at virologic failure during EFV-based ART (Table 4). In 
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Table 2. Comparison of Women With Virologic Failure Versus Antiretroviral Therapy (ART) Suppression During Efavirenz-Based ART

Characteristic No.

Virologic Failure 
(n = 189)

ART-Suppressed 
(n = 1044)

Logistic Regression Model of Virologic Failure on 
EFV-Based ART

Median (IQR) or No. (%) Unadjusted OR (95% CI) Adjusted OR (95% CI)

Clinical data 1233

Age, y (analyzed per 5 y) 24 (21–28) 26 (23–30) 0.66 (.56–.78)*** 0.75 (.61–.90)**

CD4 count at PROMISE entry, cells/μL (analyzed per 50 cells/μL) 500 (431–623) 510 (426–632) 1.00 (.96–1.04) 1.01 (.96–1.06)

HIV RNA load at PROMISE entry, log10 copies/mL 4.03 (3.58–4.56) 3.90 (3.45–4.40) 1.33 (1.06–1.67)* 0.90 (.66–1.24)

HIV RNA load at EFV initiation, log10 copies/mL 3.95 (3.53–4.62) 3.85 (3.29–4.44) 1.32 (1.08–1.62)** 1.12 (.84–1.49)

Time between delivery and EFV initiation, wk (analyzed per 26 wk) 110 (66.0–145.0) 113 (63.8–153.0) 0.98 (.92–1.06) 0.96 (.86–1.06)

Time between last viremica visit and EFV initiation, wk (analyzed per 4 wk) 0.6 (0.0–9.1) 1.3 (0.0–26.4) 0.96 (.94–.98)*** 0.96 (.93–.98)***

Time on EFV-based ART, wk 55.6 (36.4–78.9) 58.0 (43.3–82.6) 1.00 (.99–1.00) 1 (.99–1.00)

Clinical siteb 1233

Site A 220 25 (11.4) 195 (88.6) Reference Reference

Site B 206 48 (23.3) 158 (76.7) 2.35 (1.40–4.0)** 2.69 (1.51–4.92)***

Site C 147 38 (25.9) 109 (74.1) 2.70 (1.56–4.73)*** 2.62 (1.39–5.01)**

Site D 152 7 (4.6) 145 (95.4) 0.40 (.16–.88)* 0.43 (.17–1.00)*

Site E 121 12 (9.9) 109 (90.1) 0.88 (.42–1.76) 1.25 (.52–2.83)

Site F 127 16 (12.6) 111 (87.4) 1.13 (.58–2.18) 1.23 (.58–2.53)

Sites G–Nc 260 43 (16.5) 217 (83.5) 1.53 (.91–2.62) 1.53 (.86–2.80)

HIV RNA load at delivery 1200d

≤400 copies/mL 658 72 (10.9) 586 (89.1) Reference Reference

>400 copies/mL 542 113 (20.8) 429 (79.2) 2.14 (1.56–2.95)*** 2.71 (1.76–4.21)***

Hepatitis B virus test result 1233

HBsAg negative 1191 188 (15.8) 1003 (84.2) Reference Reference

HBsAg positive 42 1 (2.4) 41 (97.6) 0.19 (.02–.72)* 0.17 (.02–.68)**

PROMISE antepartum treatment regimen 1232e

Triple ARV (ZDV/3TC + LPV/r) 526 89 (16.9) 437 (83.1) Reference Reference

Triple ARV (TDF/FTC + LPV/r) 177 24 (13.6) 153 (86.4) 0.78 (.47–1.25) 0.69 (.38–1.21)

ZDV monotherapy (+ sdNVP +  TDF/FTC tail)f 529 76 (14.4) 453 (85.6) 0.82 (.59–1.15) 0.48 (.31–.76)**

PROMISE postpartum treatment regimen 1013g

Maternal triple ARV (TDF/FTC + LPV/r) 423 72 (17.0) 351 (83.0) Reference Reference

No maternal treatment 590 95 (16.1) 495 (83.9) 0.93 (.67–1.31) 0.68 (.46–1.00)

HIV genotype at EFV initiationh 1223i

Wild-type 1054 159 (15.1) 895 (84.9) Reference Reference

Any resistance mutations 169 29 (17.2) 140 (82.8) 1.18 (.75–1.79) 1.08 (.65–1.75)

NRTI mutation(s) only … 0 12 0.22 (.00–1.72) 0.13 (.00–1.19)

K103N only … 16 81 1.14 (.63–1.93) 1.21 (.62–2.24)

Y181C only … 2 10 1.34 (.26–4.67) 0.93 (.17–3.41)

G190A only … 0 5 0.51 (.00–4.53) 0.40 (.00–4.40)

Other single NNRTI mutation … 3 22 0.87 (.23–2.42) 0.84 (.21–2.60)

≥2 NNRTI mutations … 2 8 1.65 (.31–6.04) 1.48 (.26–5.95)

≥1 NRTI and ≥1 NNRTI mutation … 6 2 14.6 (3.70–80.0)*** 11.2 (2.21–72.2)**

Unadjusted analyses examined the relationship with each covariate independently, whereas the adjusted logistic regression model included all covariates (age, CD4 count, HIV 
RNA load, interval between delivery and EFV initiation, interval between last viremic visit and EFV duration, duration of EFV, clinical site, hepatitis B test result, previous PROMISE 
treatment randomization arms, and genotype).  

Abbreviations: 3TC, lamivudine; ART, antiretroviral therapy; ARV, antiretroviral drug; CI, confidence interval; EFV, efavirenz; FTC, emtricitabine; HBsAg, hepatitis B virus surface 
antigen; HIV, human immunodeficiency virus; IQR, interquartile range; LPV/r, ritonavir-boosted lopinavir; NNRTI, nonnucleoside reverse transcriptase inhibitor; NRTI, nucleos(t)ide 
reverse transcriptase inhibitor; OR, odds ratio; PROMISE, Promoting Maternal and Infant Survival Everywhere; sdNVP, single-dose nevirapine; TDF, tenofovir disoproxil fumarate; 
ZDV, zidovudine.  
aLast viremic visit was the plasma specimen collected prior to and closest to EFV initiation with HIV RNA >400 copies/mL.  
bOverall effect of clinical site on adjusted model of virologic failure was significant (P < .001), so pairwise comparisons were performed with clinical site A—which had the most 
participants enrolled—as the reference group.  
cSites with <100 participants enrolled were aggregated.  
dThirty-three participants did not have HIV RNA viral load measurements within 14 days of delivery: 4 who failed on EFV-based ART and 29 who suppressed on EFV-based ART.  
eOne participant enrolled after delivery and was not randomized in antepartum component of PROMISE.  
fThere was no difference in the odds of failing EFV-based ART when randomized to the ZDV monotherapy arm (reference group) versus the triple ARV (TDF/FTC + LPV/r) arm during 
the antepartum component (OR, 0.94 [95% CI, .57–1.53]; P = .9). Results of Fisher exact test shown in Supplementary Table 3.  
gComparison only included the women who were randomized after delivery in PROMISE, either to the postpartum component or directly to the maternal health component, to 
evaluate the effect of triple ARV versus no treatment on virologic failure on EFV-based ART. Women who were not randomized after delivery (observational follow-up only) were 
excluded from this analysis (n = 220) as this group did not have a uniform treatment assignment.  
hTwo separate models (both including all other covariates in the table) were generated to examine the effects of genotype; one to compare any drug resistance detected vs 
wild-type and the other to compare each mutational category (n = 7) to wild-type.  
iTen samples did not amplify and thus have no genotype.  

*P < .05, **P < .01, ***P < .001 by logistic regression with Firth bias reduction.
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contrast, nearly all women with PDR maintained detectable re-
sistance (25/29 [89.7%]) at virologic failure (OR, 11.6 [95% CI, 
3.33–62.8]; P < .0001 by Fisher exact test). Wild-type HIV at 
failure was detected in 3 of 29 (10.3%) with PDR, with 
V106VA and Y181YC no longer detected in 1 woman and 
K103KN in another 2 women. Among participants randomized 
in PROMISE to antepartum TDF/FTC + LPV/r, no new NRTI 
resistance mutations were detected in any of the 23 of 24 with 
virologic failure during EFV-based ART successfully geno-
typed; the 10 who had NNRTI PDR maintained these variants 
at virologic failure, with 3 accumulating additional NNRTI mu-
tations and 4 with detection of emergent NNRTI mutations.

DISCUSSION

Salient observations from this study include that NNRTI re-
sistance mutations were prevalent among women prior to 
EFV-based ART initiation; however, NNRTI resistance mutations 
alone were not associated with virologic failure to EFV-based 
ART, except in a subset of the cohort randomized antepartum 
to TDF/FTC + LPV/r. Detection of NRTI + NNRTI resistance 
mutations were infrequent in this cohort; however, this dual- 
class drug resistance was strongly associated with virologic fail-
ure. Among women with virologic failure during EFV-based 
ART, testing at the time of virologic failure found that more 
than half maintained their wild-type genotypes.

It is notable that most study participants with PDR comprised 
of major NNRTI mutations, including K103N (estimated to con-
fer a 15- to 40-fold reduction in EFV susceptibility for subtype C 
[19]), had suppression of HIV replication during treatment with 
TXE. This finding is consistent with studies of Kenyans and South 
Africans in whom PDR to NNRTI alone did not affect virologic 
outcome to EFV-based ART [5, 7]. Together, these data suggest 
that the combination of TXE, presumably with good adherence, 
is sufficiently potent to suppress viral replication despite the pres-
ence of NNRTI PDR. A systematic review of the virological effi-
cacy of 4 regimens, including TDF/3TC/NVP, TDF/FTC/NVP, 
TDF/3TC/EFV, and TDF/FTC/EFV, found EFV/TDF/FTC to 

have equivalent or superior efficacy to its comparator arms across 
4 comparator studies, possibly due to the higher potency of EFV 
compared to NVP, with potential contributions by FTC due to its 
longer intracellular half-life compared to 3TC [20]. The greater 
activity of EFV at achievable blood levels compared to NVP 
may explain our observation that NNRTI PDR did not diminish 
overall efficacy of EFV-based ART. Additionally, a slower metab-
olism of EFV due to cytochrome p450 CYP2B6 polymorphisms 
prevalent among Africans may have further increased the potency 
of EFV [21, 22] and contributed to EFV-based ART suppression 
of HIV replication despite NNRTI PDR.

The observation that any PDR was associated with virologic 
failure during EFV-based ART in the subanalyses of partici-
pants assigned to antepartum TDF/FTC + LPV/r in PROMISE 
differed from the larger group of participants. Our hypothesis 
that prior TDF/FTC exposure selected resistant variants with di-
minished replication capacity that persisted as minority variants 
was not supported by our Illumina studies. Whether minority 
variants persisted on the same viral template as NNRTI resis-
tance mutations at frequencies below our limit of detection is 
unlikely, given that no additional NRTI mutations were detect-
ed among these participants at virologic failure. However, this 
subgroup differed from the other antepartum arms by later en-
rollment into PROMISE and thus a shorter interval between 
their antepartum TDF/FTC + LPV/r and EFV-based ART. 
We speculate that these mothers may have been administered 
routine but unrecorded single-dose NVP in labor, and that 
mutations selected by NVP may have contributed to virologic 
failure. Studies evaluating the effects of single-dose NVP on 
later NVP-based ART have found that a shorter interval be-
tween single-dose NVP and later ART is associated with viro-
logic failure [23, 24], most likely because replication-competent 
HIV variants “decay” with time [25, 26].

In our overall adjusted model, clinical site, age, interval be-
tween last viremic visit and EFV initiation, and virologic status 
at prior delivery were all associated with virologic outcome on 
EFV-based ART. The association of clinical site may be attributed 
to geographical or site-specific characteristics that could contrib-
ute to nonadherence to EFV-based ART resulting in virologic 
failure, which has been reported previously [27]. Age could be 
an indicator of a more mature approach to treatment adherence 
and is consistent with prior studies associating younger age with 
lower rates of ART adherence [28, 29]. Previous virologic fail-
ure at delivery during PROMISE and shorter interval between 
last viremic study visit and EFV initiation could indicate a 
pattern of nonadherence to treatment. Others have shown 
that historical nonadherence is predictive of future treatment 
failure [30, 31]. The large proportion of women (48.5%) 
whose virologic failure genotype was wild-type, which was 
variable across sites, provides additional evidence of potential 
nonadherence; however, our analyses were limited by lack of 
objective adherence measurements.

Table 4. Prevalence of Human Immunodeficiency Virus Drug Resistance 
Among Participants With Virologic Failure During Efavirenz-Based 
Antiretroviral Therapy

HIV Genotype Prior to 
Initiation of EFV-Based 
ART (n = 189)a

No. (%) 
Wild-type at 

Virologic 
Failure

No. (%) Drug 
Resistant at 

Virologic 
Failure Odds Ratio (95% CI)

Wild-type (n = 159)b 89 (55.2) 63 (44.8) Reference

Drug-resistant (n = 29)c 3 (10.3) 25 (89.7) 11.6 (3.33–62.8)***

Abbreviations: ART, antiretroviral therapy; CI, confidence interval; EFV, efavirenz; HIV, 
human immunodeficiency virus.  
aOne (0.9%) specimen was not sequenced prior to EFV-based ART initiation.  
bSeven (5.0%) specimens were not sequenced at virologic failure.  
cOne (3.0%) specimen was not sequenced at virologic failure.  
***P < .0001 by Fisher exact test.
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There were several additional limitations to this study. The 
PROMISE trial inclusion criteria limited the study population 
to pregnant women with HIV who, due to a lack of disease 
and high CD4 counts, did not qualify for ART, and most par-
ticipants (92.4%) we studied had viral load <5 log copies/mL at 
PROMISE enrollment. Therefore, our findings may not be rep-
resentative of all women with HIV, particularly women with 
low CD4 cell counts due to HIV disease progression. The var-
iation in virologic failure rates across clinical sites suggests that 
barriers to drug adherence differed between sites, particularly 
at the sites where virologic failure with wild-type HIV was 
more common. This may result in an underestimation of the 
association between PDR and virologic failure by month 6 or 
12 of treatment; however, it is notable that the lack of an asso-
ciation between NNRTI PDR and treatment outcome in the 
previously published studies were in cohorts with relatively 
low rates of virologic failure (Kenyans [5.8%] and South 
Africans [5.5%]) [5, 7]. While we evaluated minority variants 
in a subset of women randomized to antepartum TDF/FTC  
+ LPV/r within PROMISE, low-frequency drug resistance var-
iants were not examined in all study participants, so it is uncer-
tain if low-frequency mutations impacted treatment outcomes 
in others; however, minority variants did not appear relevant in 
either the Kenyan or South African cohorts [5, 7]. Additionally, 
the discordance between Illumina and Sanger genotypes de-
tected in 3 participants suggests that primer bias, rather than 
sampling depth, affected our Sanger and/or next-generation se-
quencing, as >300 templates were sequenced by Illumina for all 
3 discordant specimens. The post hoc comparison was com-
prised of a relatively small population (∼14% of the cohort) 
and the validity of these results is uncertain given the zero 
and single-digit event numbers that give low precision ORs. 
Last, analyses were focused on participants who completed at 
least 1 year of follow-up (and had specimens available), which 
limits the generalizability of our findings to participants with 
≥12 months of follow-up on EFV-based ART.

In summary, this study found that the most prevalent 
NNRTI HIV drug resistance mutation, K103N, does not appear 
to increase the odds of virologic failure to EFV-based ART, ex-
cept potentially in individuals previously administered TDF. 
The latter exception was from post hoc analysis of a relatively 
small population, which has not been confirmed in other stud-
ies. Dual class NNRTI + NRTI PDR was strongly associated 
with virologic failure during EFV-based ART in this study. 
However, the prevalence of dual class PDR was low in our 
study, which suggests that pretreatment genotypic testing prior 
to first-line ART initiation may not improve treatment out-
comes for most people, which is consistent with current 
WHO guidelines. A potential exception is individuals infected 
during preexposure prophylaxis, although notably the preva-
lence of transmitted NRTI resistance has remained low, partic-
ularly for TDF-associated mutations [1]. In conclusion, our 

data, along with those from 2 other studies [5, 7], suggest that de-
spite a high prevalence of NNRTI resistance in resource-limited 
settings, TXE could offer an effective HIV treatment for most in-
dividuals living with HIV. While TDF/3TC/DTG is currently 
recommended by the WHO for first- and second-line ART, giv-
en the limited number of affordable antiretrovirals in resource- 
limited settings, TXE should be regarded as a potential alterna-
tive regimen when TDF/3TC/DTG is contraindicated or not 
well tolerated.
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