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Abstract

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused 

by pathogenic variants in COL7A1 and is characterized by extreme skin fragility, chronic 

inflammation, and fibrosis. A majority of patients with RDEB develop squamous cell carcinoma, 

a highly aggressive skin cancer with limited treatment options currently available. In this study, 

we utilized an approach leveraging whole-genome sequencing and RNA sequencing across 3 

different tissues in a single patient with RDEB to gain insight into possible mechanisms of RDEB-

associated squamous cell carcinoma progression and to identify potential therapeutic options. 

As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered 

microsatellite instability and accelerated aging as factors potentially contributing to the aggressive 

nature and early onset of RDEB squamous cell carcinoma. By integrating multitissue genomic 

and transcriptomic analyses in a single patient, we demonstrate the promise of bridging the gap 

between genomic research and clinical applications for developing tailored therapies for patients 

with rare genetic disorders such as RDEB.
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INTRODUCTION

Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder 

characterized by extreme skin fragility, wide-spread blistering of the skin and mucous 

membranes, chronic inflammation, and fibrosis leading to severe scarring, joint contractures, 

and in some cases, vision loss. Up to 90% of RDEB patients with the severe-generalized 

form develop squamous cell carcinoma (SCC) (Fine et al, 2009), which is frequently 

highly aggressive and life threatening. RDEB is caused by loss-of-function pathogenic 

variants in COL7A1, the gene that encodes COLVII (Hovnanian et al, 1992). COLVII itself 

does not appear to be a tumor suppressor because COL7A1 heterozygotes do not exhibit 

increased cancer risk, and variations in COL7A1 are not currently associated with any non-

RDEB cancers (Tartaglia et al, 2021). Instead, extreme epidermal fragility, trauma-induced 

blistering, and impaired wound healing feed into a progressive cycle of scarring and fibrosis 

that culminates at an early age in SCC that is highly metastatic and lethal with a 5-year 

survival rate approaching 0% (Fine et al, 2009). Exceptions exist, as several patients with 

RDEB have survived metastasis free after developing multiple cutaneous SCCs over many 

years (Tartaglia et al, 2021).

Current treatment for RDEB is mainly palliative, focusing on symptom-relief therapies 

that include bandaging, pain and itch control, and management of bacterial and fungal 

infections, although several curative treatments are currently being explored. Studies have 
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shown that increased TGF-ß expression and activity contribute to RDEB fibrosis (Fritsch 

et al, 2008; Küttner et al, 2013; Ng et al, 2012) and that reduction of TGF-ß signaling 

using the angiotensin II receptor blocker losartan can ameliorate long-term symptoms in a 

murine model of RDEB (Nyström et al, 2015). A phase II clinical trial called REFLECT 

(symptom-RElieF with Losartan – EB Clinical Trial) was recently completed, with losartan 

receiving orphan drug designation by the European Medicines Agency and Food and 

Drug Administration for treatment of RDEB. Other curative therapies that aim to replace 

COLVII are in progress. Gene therapies include topical COL7A1 delivery through the 

nonintegrating viral vector Beremagene Gepervavae (NCT03536143) (Gurevich et al, 2022) 

and transplantation of autologous epidermal sheets transduced with full-length COL7A1 
(NCT01263379) (Siprashvili et al, 2016). Cellular therapies include allogeneic bone marrow 

transplantation (NCT02582775 and NCT01033552) (Wagner et al, 2010) and transfusion of 

ABCB5-positive mesenchymal stem cells to reduce RDEB-induced inflammation and tissue 

scarring (NCT03529877) (Kiritsi et al, 2021). Because RDEB-associated SCC is positively 

correlated with the severity of RDEB, a reduction in RDEB symptoms should reduce the 

risk of developing RDEB-associated SCC.

Currently, no specific therapies have been approved for RDEB-associated SCC. Studies of 

the development of SCC in patients with RDEB are complicated by the relative patient 

scarcity because RDEB is a rare disease, and RDEB-associated SCC is even rarer. In recent 

years, the use of microarray and next-generation DNA and RNA sequencing (RNA-seq) 

has provided insight into the molecular basis of RDEB-associated SCC (Breitenbach et al, 

2015; Chacón-Solano et al, 2019; Chang and Shain, 2021; Cho et al, 2018; Ng et al, 2012; 

Zhang et al, 2018). On the basis of these studies, PLK1 was found overexpressed in RDEB-

associated SCC, and targeting PLK1 by the specific inhibitor rigosertib is currently being 

investigated in 2 clinical trials (NCT03786237 and NCT04177498). Meanwhile, off-label 

use of ruxolitinib, a Jak1/2 inhibitor, was limited by significant side effects (Mittapalli et al, 

2020). The largest sequencing study to date looked at the genomes of 27 RDEB-associated 

SCC tumors and compared them with those of 38 UV-induced cutaneous SCC and 279 

head and neck SCC tumors from the general population (Cho et al, 2018). They found head 

and neck SCC to be the most similar to RDEB-associated SCC and identified APOBEC 

mutational processes in RDEB-associated SCC as causative of accelerated accumulation 

of mutation burden in these patients. However, no specific genetic differences were found 

that accounted for the highly aggressive nature of RDEB-associated SCC because all driver 

genes were shared with other SCC subtypes. In addition, no genetic elements besides 

COL7A1 distinguished RDEB-associated SCC from other SCC subtypes. The variants 

found in RDEB-associated SCC were found to be highly similar to the ones found in aged 

sun-exposed Caucasian skin (Cho et al, 2018).

In this study, we examined genomic mutational signatures and gene expression in a female 

patient with generalized-severe RDEB who presented with her seventh recurrence of SCC. 

In addition to the excised SCC tumor, we also evaluated nonblistered skin and blood. 

To investigate the mutational evolution and changes in gene expression culminating in 

RDEB-associated SCC in this individual, we performed whole-genome sequencing (WGS) 

of all 3 tissues and RNA-seq of the skin and tumor samples. Similar to previous reports, 

we identified enhanced SCC PLK-1 expression compared with that in the skin, raising the 
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possibility that the PLK-1 inhibitor rigosertib might offer a therapeutic benefit. In addition, 

we discovered microsatellite instability (MSI) and accelerated aging as factors potentially 

contributing to the aggressive nature and early onset of RDEB-associated SCC.

RESULTS

Patient presentation and clinical course

The patient is a Caucasian female aged 32 years who presented with blisters at birth, 

prompting a diagnostic skin biopsy and genetic testing. COL7A1 gene sequencing revealed 

2 compound heterozygous variants: a pathogenic variant c.1564C>T (p.Q522*) in exon 12 

and a likely pathogenic variant c.3551-3T>G in intron 26 (Kern et al, 2006). Her clinical 

course was consistent with generalized-severe RDEB. Between the ages of 22 and 31 

years, the patient developed a total of seven unique bilateral lower extremity SCCs. All 

were in chronic wound or blister sites: 5 hyperkeratotic in appearance and 2 erosive. All 7 

were well-differentiated on histopathology, and none were metastatic. All but 1 SCC were 

amenable to resection with Mohs procedures and grafting with skin grafts. The 1 SCC 

not amenable to surgical resection was treated consecutively with acitretin, capecitabine, 

and pembrolizumab. The patient developed osteomyelitis in the area adjacent to the SCC 

and required below-the-knee amputation. The seventh SCC examined in greater depth in 

this study arose on the left dorsal foot and was treated with Mohs resection and xenograft 

placement (Figure 1a). Histopathological analysis of the tumor at the time of initial biopsy 

revealed irregular epidermal hyperplasia with pale-staining epithelium and mild keratinocyte 

atypia, an endophytic and undermining architectural growth pattern, and dermal islands of 

mildly atypical keratinizing squamous epithelium (Figure 1b). Underlying dermal fibrosis 

consistent with scarring from RDEB was also present. The final diagnosis was of well-

differentiated SCC with features typical to those seen in patients with RDEB extending to 

the deep and lateral margins. At the time of the initial biopsy, 3 tissue samples of blood, 

blister-adjacent skin, and the SCC were taken for WGS and RNA-seq analyses (Figure 1c).

Detection of COL7A1 variants by WGS

WGS was performed for the blood, skin, and tumor samples, and the WGS reads were 

visualized using Integrative Genomics Viewer. An overview of WGS mapping and coverage 

is provided in Table 1. As expected, WGS analyses detected the 2 COL7A1 variants found 

by the germline genetic testing at birth (Figure 2a), and these variants were present in blood, 

skin, and tumor (Figure 2b). The c.1564C>T variant is a nonsense pathogenic variant that 

changes glutamine to a premature termination codon (p.Q522*) in exon 12. The second, the 

c.3551-3T>G likely pathogenic variant, is predicted to affect an upstream splice site (Kern et 

al, 2006).

RNA-seq confirms abnormal splicing caused by the c.3551-3T>G COL7A1 variant

At the time of initial diagnosis, the pathogenicity and role of the c.3551-3T>G COL7A1 
variant in aberrant RNA splicing could only be suggested by 2 splicing prediction algorithms 

(Kern et al, 2006). In our study, using the RNA-seq data from the skin and tumor samples 

visualized in Integrative Genomics Viewer with a sashimi plot, we documented that the 

c.3551-3T>G COL7A1 variant in intron 26 results in the inclusion of intron 26 and intron 
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27 in the final transcript (Figure 3a). To determine whether normally spliced transcripts are 

derived from the allele with the c.3551-3T>G variant, we used SpliceAI (Jaganathan et al, 

2019). This algorithm returned an acceptor loss of 0.82, strongly predicting the occurrence 

of some regular splicing from this allele. However, because the acceptor loss score was 

not 1, long-read RNA-seq would be needed to confirm that the normally spliced transcripts 

observed in the sashimi plot are not derived from the opposite allele.

RNA-seq reveals therapeutically targetable genes and pathways

Comparative RNA-seq analysis identified 5855 differentially expressed genes in the patient 

SCC compared with those in the skin, of which 1285 demonstrated increased mRNA levels, 

and 4570 demonstrated decreased mRNA levels (Figure 3b). Kyoto Encyclopedia of Genes 

and Genomes pathway enrichment analysis revealed enrichment of cell cycle (adjusted P = 

4.71 × 10−7), IL-17 signaling (adjusted P = 0.0012), and p53 signaling (adjusted P = 0.045) 

pathways and suppression of the focal adhesion (adjusted P = 2.86 × 10−8), extracellular 

matrix–receptor interaction (adjusted P = 2.62 × 10−7), phosphoinositide 3-kinase–Akt 

signaling (adjusted P = 4.06 × 10−7), MAPK signaling (adjusted P = 0.0009), complement 

and coagulation cascades (adjusted P = 0.0012), longevity regulating (adjusted P = 0.0028), 

and NOTCH signaling (adjusted P = 0.026) pathways (Figure 3c) (complete list from Kyoto 

Encyclopedia of Genes and Genomes analysis is shown in Supplementary Figure S1). 

Among the upregulated genes, we observed a 6.56-fold increase in PLK1 expression in the 

tumor sample compared with that in the skin. This finding might be of clinical relevance 

because PLK1 inhibitors are now being investigated in clinical trials for the treatment of 

solid tumors (Hagege et al, 2021).

RDEB-associated SCC somatic variants identified by WGS

The WGS of blood, skin, and SCC generated 716,133,302; 852,532,666; and 1,639,133,214 

reads, resulting in 35.80-fold, 42.65-fold, and 81.95-fold coverage, respectively (Table 1). 

A pairwise comparison revealed a similar non-synonymous mutational burden in the SCC 

tumor compared with that in blood or skin (0.260 per Mbp or 0.263 per Mbp, respectively), 

whereas a significantly lower mutation burden was observed in skin compared with that in 

blood (0.027 per Mbp) (Supplementary Table S1). Examination of the proband SCC tumor 

mutational profile, constructed by subtracting the somatic mutations in the skin from the 

somatic mutations in the tumor, revealed variants in the NOTCH, p53, SWI/SNF, Hippo, cell 

stress, and Ras MAPK/phosphoinositide 3-kinase pathways, whereas no variants were seen 

in the Rb pathway (Figure 4a). Variants in these pathways have been reported by Chang and 

Shain (2021) as the key driver mutations in RDEB-associated SCC. Specifically, we detected 

2 missense variants in NOTCH1—c.5976G>T (p.M1992I) and c.928G>T (p.G310W)—that 

were also reported in the study by Cho et al (2018) as well as an intragenic variant in 

NOTCH2. In addition, we found a missense variant in USP28, c.2682G>T (p.L894F), and 

an intragenic variant in MDM2, both components of the p53 pathway involved in DNA 

repair (Eischen, 2017; Lambrus et al, 2016). We also discovered variants in the members of 

the Hippo signaling pathway, including 2 in FAT1—c.9695_9696insGTA (p.3231_3232ins*) 

and c.283T>G (p.F95V)—also seen in the cohort of patients studied by Cho et al (2018) 

as well as an intragenic variant in YAP1. In the cell stress pathway, we detected a 

missense variant, variant c.339C>A (p.S113R), in CASP8, a mediator of apoptosis during 
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inflammation, previously noted as enriched in RDEB-associated SCC compared with that in 

other SCC types (Chang and Shain, 2021).

Mutational profiling of RDEB-associated SCC

Mutational signatures represent unique sequence motifs found in cancer genomes that are 

associated with different mutational processes. Using the Catalogue of Somatic Mutations in 

Cancer SigProfiler search tool, we detected 9 signatures in the patient’s SCC compared with 

that in the skin. Specifically, we identified the clock-like associated with age (signatures 

1 and 5), APOBEC cytidine deaminase editing (signatures 2 and 13), a defective DNA 

mismatch repair and MSI (signature 15), a damage from ROS (signature 18), and a 

somatic hypermutation in lymphoid cells (signature 9) signatures (Figure 4b). The clock-

like signatures, the APOBEC signatures, and the damage from ROS signature were also 

observed in the Cho et al (2018) patient cohort. We did not detect signature 7 associated 

with UV damage in our tumor sample, whereas this signature was found by Cho et al (2018) 

to contribute to more than a third of their RDEB-associated SCC mutational signature 

profiles in some patients. However, our study uncovered the defective DNA mismatch repair 

and MSI signature (signature 15), which was not previously reported in RDEB-associated 

SCC.

Detection of high MSI in RDEB-associated SCC

DNA mismatch repair plays an important role in excising DNA mismatch errors that occur 

during DNA replication. Defects in mismatch repair lead to MSI resulting in increased 

mutational burden and enhanced tumor immunogenicity (Kauffmann et al, 2008; Wagner 

et al, 2016; Wilczak et al, 2017). High MSI has been previously reported in non-RDEB 

cutaneous SCC (Chang and Shain, 2021) and head and neck SCC (Cilona et al, 2020) 

but not in RDEB-associated SCC. Using the RNA-seq–based PreMSIm algorithm, we 

found that in our patient, the SCC tumor sample was classified as MSI high, whereas 

the skin sample was MSI low. RNA-seq analyses revealed increased expression of DNA 

mismatch repair–related transcripts such as MSH6, MLH3, RFC, PCNA, EXO1, and POLQ 
in RDEB-associated SCC compared with those in the skin. Interestingly, high genomic 

instability was also observed in the Cho et al (2018) cohort. However, the authors concluded 

that accelerated mutagenesis was driven by APOBECs and not defective DNA repair. 

High MSI status of the patient tumor might provide additional treatment options such as 

immunotherapy, which was approved by the United States Food and Drug Administration 

for patients with MSI-high tumors regardless of tumor type and tumor PD-L1 expression 

levels (Karpel et al, 2023).

Accelerated aging seen in both RDEB skin and SCC

To explore the functional impact of the variants identified in the patient’s SCC, we 

correlated 10,085 somatic variants with 5885 differentially expressed transcripts in the 

tumor compared with those in the skin. We identified 748 differentially expressed genes with 

somatic variants. To further explore the relevance of these findings to RDEB pathological 

processes, we compared these data with 3444 previously described differentially expressed 

transcripts from patients with RDEB and their age- and sex-matched (sex referring to the 

biological categories of female or male) healthy controls (Breitenbach et al, 2015). We 
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identified 80 transcripts that were shared between these datasets (Figure 5a). Gene Ontology 

analyses of these 80 transcripts revealed significant enrichment of categories such as positive 

regulation of cellular senescence (Gene Ontology: 2000774, adjusted P = 0.022) and positive 

regulation of cell aging (Gene Ontology: 0090343, adjusted P = 0.024), which included the 

genes ARG2 and HMGA2 (Figure 5b). ARG2 regulates nitric oxide synthesis and plays a 

role in promoting cell senescence and inflammation (Yepuri et al, 2012). HMGA2 promotes 

cancer cell proliferation, inhibits apoptosis, and influences DNA damage repair mechanisms 

(Mansoori et al, 2021).

Diverse environmental and genetic factors may result in differences in an individual’s 

chronological and biological age. On the basis of the RNA-seq results described earlier 

and our detection of the clock-like associated with age mutational signatures (signatures 1 

and 5) in the patient tumor sample, we hypothesized that RDEB might lead to accelerated 

aging in skin and SCC. Recent studies have shown that biological age can be determined 

using a curated set of DNA methylation marks (Bernabeu et al, 2023; Horvath, 2013) or 

RNa expression data using RNAAgeCalc (Ren and Kuan, 2020). RNAAgeCalc is a tissue-

specific transcriptional age calculator trained on RNA-seq data from healthy individuals. 

We employed RNAAgeCalc to examine the biological age of our patient’s skin and tumor 

samples. Because the training dataset for RNAAgeCalc only included individuals between 

the ages of 18 and 65 years, we limited the RDEB and RDEB-associated SCC patient 

samples we curated (Chacón-Solano et al, 2019; Cho et al, 2018) to the same age group. 

As a comparison, we used RNA-seq data from healthy control skin and from nonlesional 

psoriasis skin (another inflammatory skin disease) from a previously published study (Tsoi 

et al, 2019). A highly statistically significant difference was seen when chronological age 

was compared with biological age for the RDEB skin (P = 0.007) (chronological age = 26.25 

± 8.86 years, biological age = 57.11 ± 9.55 years) and RDEB-associated SCC (P < 0.001) 

(chronological age = 27.44 ± 3.32 years, biological age = 77.19 ± 9.04 years) samples 

but not for the healthy control skin (P = .25) (chronological age = 32.63 ± 11.64 years, 

biological age = 34.70 ± 5.12 years) or nonlesional psoriasis skin (P = 0.67) (chronological 

age = 42.41 ± 15.80 years, biological age = 41.36 ± 7.23 years) samples (Figure 5c). These 

results potentially implicate accelerated biological aging in RDEB-associated skin disease 

and SCC development.

DISCUSSION

In this study, we employed integrated somatic and germline WGS and transcriptomic 

analyses across 3 different tissues in a single patient with RDEB to gain insight into possible 

patient-specific mechanisms of RDEB-associated SCC progression and potential therapeutic 

options for our discovery patient. We confirmed that the c.3551-3T>G COL7A1 variant 

results in abnormal splicing, as was previously predicted (Kern et al, 2006). The observation 

of high PLK1 RNA expression in the patient’s SCC points to the potential role of the 

clinically approved PLK1 inhibitor, rigosertib.

WGS of the skin and SCC from this patient revealed non-synonymous variants in the 

NOTCH, p53, SWI/SNF, Hippo, cell stress, and Ras MAPK/phosphoinositide 3-kinase 

pathways. This was echoed by the RNA-seq analysis, where the p53 signaling pathway 
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was activated, and the NOTCH, MAPK, and phosphoinositide 3-kinase/Akt signaling 

pathways were suppressed, according to Kyoto Encyclopedia of Genes and Genomes 

enrichment analysis. Cho et al (2018) noted that RDEB-associated SCC develops at much 

lower mutation burden rates than UV-induced SCC but acquires similar driver mutations. 

In our study, we also observed a relatively low tumor mutation burden rate on the 

basis of the somatic variants detected by WGS. It is conceivable that the inflammatory 

microenvironment and increased cell turnover resulting from excessive wound healing 

accelerates tumor progression regardless of the relatively low number of non-synonymous 

variants.

WGS identified several mutational signatures that have also been reported in other RDEB-

associated SCC cases (Cho et al, 2018). We detected an additional signature, defective 

DNA mismatch repair and MSI, which was in line with the MSI-high status of SCC by 

transcriptional analysis. This observation suggests potential therapeutic options such as the 

use of the PD-1 inhibitor Keytruda, which was recently approved by the United States Food 

and Drug Administration for the treatment of solid tumors with high MSI status regardless 

of the tumor PDL-1 expression levels (Karpel et al, 2023; Migden et al, 2018; Sharon and 

Bell, 2022). Notably, another PD-1 inhibitor, cemiplimab, has already been successfully 

used in a male patient with RDEB aged 32 years with metastatic SCC (Khaddour et al, 

2020).

From the original RNAAgeCalc publication (Ren and Kuan, 2020), the authors noted that 

transcriptional age is associated with mutation burden in some The Cancer Genome Atlas 

cancers. However, the relatively low mutation burden rate in our discovery patient and 

other patients with RDEB implies that accelerated aging as measured by the transcriptional 

age calculator RNAAgeCalc is not simply attributed to tumor mutation burden for RDEB-

associated SCC. Our previously unreported finding that biological age is accelerated in 

RDEB skin and RDEB-associated SCC has several implications. Notably, the accelerated 

biological age of skin from individuals with RDEB (57.11 years) and those with RDEB-

associated SCC tumors (77.16 years) is comparable with the age of onset for UV-induced 

SCC (70 years [Garcovich et al, 2017]) and head and neck SCC (66 years [Johnson et al, 

2020]) in the general population, which might explain the extremely early onset of SCC seen 

in patients with RDEB.

In summary, our study highlights the importance of an integrated, multiomics approach to 

caring for patients with rare disorders such as RDEB. Owing to limited patient availability, 

clinical trials investigating potential therapies are relatively scarce in these populations. 

Multitissue multiomics analyses in a single patient may help point to new therapeutic 

avenues to explore.

MATERIALS AND METHODS

Study approval

Biospecimen collection was completed with written informed patient consent on a 

University of Minnesota Institutional Review Board–approved protocol (MT2013-01R). 

Evaluation of the specimens was determined not to constitute human subject research by the 
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same Institutional Review Board, although the patient provided written informed consent for 

use of medical photography and histopathology images in this manuscript.

WGS and variant calling

WGS was performed on the Broad Institute Genomics Platform. Reads were aligned to the 

hg19 genome build. Integrative Genomics Viewer (Robinson et al, 2011) (version 2.11.2) 

was used for sequencing visualization. Germline variants were called using the GATK 

common practices workflow (DePristo et al, 2011) and Freebayes (Garrison and Marth, 

20121) (version 1.3.2). Genetic variants were filtered at a minimum quality score of 20 

using vcftools (Danecek et al, 2011) (version 0.1.16). Variant annotations and functional 

effect predictions were obtained using snpEff (Cingolani et al, 2012) (version 3.6). Somatic 

single-nucleotide variations and insertions/deletions in tumor against skin, tumor against 

blood, and skin against blood were detected using MuTect1 (Cibulskis et al, 2013) and 

Strelka (Saunders et al, 2012).

RNA-seq

RNA-seq was performed on the Broad Institute Genomics Platform. Paired-end reads were 

aligned to hg19/build 37 using Burrows-Wheeler Aligner (Li and Durbin, 2009). To generate 

FASTQ files, the BAM files were sorted using bio-samtools (version 1.43) sort -n -o 

followed by bedtools (version 2.27.1) bamtofastq (version 1.3.2) conversion using -fq2 to 

output paired-end FASTQ files. Samtools (Li et al, 2009) (version 1.9) was used for bam 

file sorting and indexing. Integrative Genomics Viewer (Robinson et al, 2011) (version 

2.11.2) was used for sequencing visualization and sashimi plot generation. FASTQ files 

from a normal skin sample were downloaded from the National Center for Biotechnology 

Information Sequence Read Archive (GSM4127073) as a control for the splice junction 

sashimi plot. The FASTQ files were processed using the bcbio-nextgen pipeline (Ewels et 

al, 2016) from the Harvard Bioinformatics Core. Within this pipeline, quality control was 

performed using fastqc (version 0.11.5), and sequence reads were aligned to the human 

reference genome (hg19) using STAR (Spliced Transcripts Alignment to a Reference) 

(Dobin et al, 2013) (version 2.5.2b). Log2 fold change > 1.5 in gene expression between 

tumor and skin was used as a cutoff for differentially expressed genes.

Mutational signature analysis

Mutational signature analysis was conducted on nonsynonymous SNVs in tumor against 

skin in the R environment using deconstructSigs (Rosenthal et al, 2016) (version 1.8.0). The 

proportion of mutations in each of the possible 96 trinucleotide contexts was calculated to 

create a sample signature profile (Supplementary Figure S2). A multiple linear regression 

model was fitted to determine the linear combination of Catalogue of Somatic Mutations in 

Cancer consensus mutational signatures.

1Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv 2012.

Lee et al. Page 9

J Invest Dermatol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MSI prediction

MSI status was predicted on the basis of mRNA gene expression using PreMSIm (Li et al, 

2020) (version 1.0). Transcripts Per Kilobase Million–normalized values of SCC and normal 

skin RNA-seq datasets, along with a training dataset of 1383 pancancer RNA-seq samples 

from The Cancer Genome Atlas, were added 1, log2 transformed, and rescaled to the range 

(0, 1). Each sample was classified as MSI high or MSI low on the basis of their expression 

of a 15-gene panel, which included the genes DDX27, EPM2AIP1, HENMT1, LYG1, 
MLH1, MSH4, NHLRC1, NOL4L, RNL2, RPL22L1, SHROOM4, SMAP1, TTC30A, and 

ZSWIM3.

Biological age calculation

RNAAgeCalc (Ren and Kuan, 2020) (version 1.2.0) was used to calculate the biological 

age from the non-SCC and SCC RNA-seq data from this study as well as normal skin, 

nonlesional psoriatic skin, RDEB non-SCC skin, and RDEB-associated SCC samples from 

the following National Center for Biotechnology Information Gene Expression Omnibus 

datasets: GSE121212, GSE111582, and GSE119501. The RNA age predictor is trained by 

all tissues automatically using the GTExAge signature.

Statistical analysis

To compare biological to chronological age, a paired t-test was used, with α < 0.05 used as 

the cutoff for significance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Clinical images and histology for the patient RDEB-associated SCC and overview of 
analysis approach.
(a) Photographs of the patient RDEB-associated SCC at the time of biopsy, at Mohs and 

post-Mohs procedure. (b) Representative H&E images of the biopsied SCC shown at ×20 

and ×40 magnification (left panel) and ×40 and ×100 magnification (right panel). Black 

squares indicate the areas shown at the higher magnification in the adjacent images. Bar 

= 100 μm. (c) Schematic illustration of experimental design: blood, skin, and SCC tumor 

tissues were collected at the time of surgery and analyzed using WGS and RNA-seq. RDEB, 

recessive dystrophic epidermolysis bullosa; RNA-seq, RNA sequencing; SCC, squamous 

cell carcinoma; WGS, whole-genome sequencing.
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Figure 2. Confirmation of COL7A1 pathogenic genetic variants by WGS.
(a) The table depicts the COL7A1 variants diagnosed by clinical genetic testing. IGV plot 

illustrates (b) c.1564 C>T variant in exon 12 and (c) c.3551-3T>G variant in intron 26. 

IGV, Integrative Genomics Viewer; SCC, squamous cell carcinoma; WGS, whole-genome 

sequencing.
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Figure 3. RNA-seq analyses of the patient skin and SCC samples.
(a) Read coverages are represented as histograms for normal skin (red), RDEB skin (blue), 

and RDEB-associated SCC tumor (green). The arch depicts the splicing sites, and the 

number in the arch indicates RNA-seq reads in this region. The triangle indicates the 

position of the c.3551-3T>G variant. Track heights are indicated in brackets. (b) Fold 

change analysis of gene expression in the RDEB-associated SCC tumor compared with that 

in the skin. (c) KEGG pathways enriched among the differentially expressed genes. KEGG, 

Kyoto Encyclopedia of Genes and Genomes; RDEB, recessive dystrophic epidermolysis 

bullosa; RNA-seq, RNA sequencing; SCC, squamous cell carcinoma.
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Figure 4. WGS analyses of the patient’s skin and SCC.
(a) Tiling plot of somatic variants detected in RDEB skin and SCC grouped by 

oncogenic pathways. The percentages of SCC samples with a variant in the given pathway 

were reported by Chang and Shain (2021). (b) Pie chart showing the proportions of 

single-nucleotide variants corresponding to specific COSMIC mutational signatures. The 

previously unreported defective DNA mismatch repair and microsatellite instability and 

clock-like associated with age signatures are highlighted in red. COSMIC, Catalogue of 

Somatic Mutations in Cancer; PI3K, phosphoinositide 3-kinase; RDEB, recessive dystrophic 

epidermolysis bullosa; SCC, squamous cell carcinoma; WGS, whole-genome sequencing.
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Figure 5. Detection of age-related transcriptional changes in patient skin and SCC.
(a) Overlap between somatic variants from comparing WGS tumor with skin (our patient, 

n = 1), differentially expressed genes upregulated when comparing RNA-seq of tumor with 

skin (our patient, n = 1), and differentially expressed genes upregulated when comparing 

microarray of RDEB with normal controls (n = 3 for each). (b) GO analysis on 80 

overlapping genes from a. (c) Comparison of chronological with biological age for healthy 

control skin (n = 38), nonlesional skin from patients with psoriasis (n = 27), nonlesional 

skin from patients with RDEB (n = 8), and RDEB-associated SCC tumors (n = 9). Mean 

± SD is shown. Pairing of samples is depicted in green; discovery patient samples are in 

blue. GO, Gene Ontology; ns, not significant; RDEB, recessive dystrophic epidermolysis 

bullosa; RNA-seq, RNA sequencing; SCC, squamous cell carcinoma; WGS, whole-genome 

sequencing.
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