Skip to main content
. 2024 Apr 27;4(5):100540. doi: 10.1016/j.xops.2024.100540

Table 1.

Performance of Our Classification Model (Model 1) for Both Gradable and Ungradable Fundus Images in the Validation Dataset

Classification
Metrics
Gradable (n = 13 717)
Mean [95% CI]
Ungradable (n = 2328)
Mean [95% CI]
AUROC 0.9656 [0.9614, 0.9697] 0.9656 [0.9613, 0.9699]
Accuracy 0.9713 [0.9688, 0.9738] 0.9712 [0.9687, 0.9738]
Sensitivity (recall) 0.9736 [0.9710, 0.9763] 0.9575 [0.9499, 0.9652]
Specificity 0.9574 [0.9491, 0.9657] 0.9736 [0.9709, 0.9763]
Precision 0.9926 [0.9912, 0.9941] 0.8605 [0.8471, 0.8738]
F1-score 0.9830 [0.9815, 0.9846] 0.9063 [0.8981, 0.9145]

AUROC = area under the receiver operating characteristic curve; CI = confidence interval; n = number of fundus images.