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Abstract

Super-resolution fluorescence microscopy allows the investigation of cellular structures at 

nanoscale resolution using light. Current developments in super-resolution microscopy have 

focused on reliable quantification of the underlying biological data. In this review, we first 

describe the basic principles of super-resolution microscopy techniques such as stimulated 

emission depletion (STED) microscopy and single-molecule localization microscopy (SMLM), 

and then give a broad overview of methodological developments to quantify super-resolution data, 

particularly those geared toward SMLM data. We cover commonly used techniques such as spatial 

point pattern analysis, colocalization, and protein copy number quantification but also describe 

more advanced techniques such as structural modeling, single-particle tracking, and biosensing. 

Finally, we provide an outlook on exciting new research directions to which quantitative super-

resolution microscopy might be applied.
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INTRODUCTION

Fluorescence microscopy is a powerful tool that offers several advantages over other 

microscopy methods including electron microscopy. Light is noninvasive, and fluorescence 

tagging of the biological entity of interest provides high contrast and molecular specificity. 
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While light microscopy began as a descriptive and qualitative tool, it has evolved into 

a highly quantitative method in biological studies. For example, fluorescence correlation 

spectroscopy (FCS) allows measurements of concentrations of molecules inside living cells 

(42), fluorescence resonance energy transfer (FRET) enables quantification of molecular 

interactions or conformational changes within individual molecules (1), and single-step 

photobleaching has been used extensively to determine the subunit stoichiometry of sparsely 

expressed small protein complexes (39, 40). However, until the 2000s, a major limitation 

of fluorescence light microscopy was its low spatial resolution (approximately 250 nm in 

x-y and approximately 500 nm in z) due to diffraction, meaning that light microscopy could 

only be applied to bulk quantification of many molecules residing within this diffraction-

limited volume or to sparsely expressed or labeled molecules that did not overlap within 

the diffraction-limited volume. Thus, the development of far-field super-resolution light 

microscopy, which overcame this limitation, revolutionized the study of subcellular biology.

The super-resolution revolution began with the development of stimulated emission 

depletion (STED) microscopy (87, 88), followed by stochastic optical reconstruction 

microscopy (STORM) (140); (fluorescence) photoactivated localization microscopy (f/

PALM) (15, 64); and, later, DNA-point accumulation in nanoscale topography (PAINT) 

(82, 152), an evolution of the original PAINT method by Sharonov & Hochstrasser (159). 

The latter three methods are now collectively referred to as single-molecule localization 

microscopy (SMLM) (92). The early days of super-resolution microscopy focused largely on 

proof-of-concept demonstrations and technological advances such as extending the methods 

to 3D and multicolor imaging (12, 73, 149). As the techniques have matured, they have 

become important discovery tools in cell biology and as such have needed to become more 

quantitative. Recent years have seen an explosion of analysis algorithms to improve both the 

preprocessing and postprocessing of super-resolution data, which enabled in situ structural 

biology with light microscopy, measurement of molecular clustering, and determination of 

protein copy number within molecular clusters, among other advances. In this review, we 

focus on the advances in quantitative super-resolution light microscopy, with a particular 

emphasis on quantitative SMLM.

OVERVIEW OF SUPER-RESOLUTION METHODS

Single-Molecule Localization Microscopy

STORM, f/PALM, and DNA-PAINT belong to a subclass of super-resolution microscopy 

methods that are collectively referred to as SMLM (see Figure 1a, i) as they all share 

the same concept for improving spatial resolution. The working principle behind these 

methods has been extensively reviewed (92, 146); thus, we provide only a brief description 

and instead focus on quantitative aspects of SMLM. In SMLM, the biological entity of 

interest is labeled with probes that can cycle between on and off states or that can change 

their spectral properties (e.g., switch from green to red) (Figure 1a, iii). In STORM and 

f/PALM, the on/off switching or the photoconversion is achieved by fluorophores whose 

photophysical properties can be tuned with light illumination and often with the use of 

chemical buffers. In DNA-PAINT, the on/off switching is achieved via the binding and 

unbinding of fluorophore-labeled single-stranded oligonucleotides (imager oligos) to and 
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from their target oligonucleotides (docking oligos). In all cases, the on/off switching or the 

photoconversion allows control over the proportion of fluorophores that are in the on state 

at any given time. Sparsely activating, immobilizing, or photoconverting a small proportion 

of fluorophores at a time ensures that their images do not overlap within a diffraction-

limited volume (Figure 1a, ii). The position of each fluorophore can then be determined 

with high precision (tens of nanometers) by fitting its image to a mathematical function 

(often a Gaussian). Through iterative cycles of fluorophore activation and localization, it 

is possible to reconstruct a pointillistic, high-resolution image of the underlying structure 

reaching a spatial resolution that is one order of magnitude better than the diffraction limit. 

The pointillistic nature of the SMLM images, as well as the often-stochastic nature of 

the photoswitching behavior, poses special challenges for image quantification, which are 

further discussed below.

Stimulated Emission Depletion

The working principle of STED (see Figure 1b, i) has also been reviewed extensively (144, 

177). In brief, molecules within a diffraction-limited volume are excited using the excitation 

beam. A donut-shaped depletion (or STED) beam forces the molecules where the STED 

beam intensity is high back to the ground state through stimulated emission such that the 

fluorescence signal from these molecules is suppressed (Figure 1b, ii, iii). This geometry has 

the effect of shrinking the excitation volume to only those molecules that are at the center 

of the depletion beam, where the STED laser intensity is zero. Stimulated depletion is only 

one mechanism for switching off molecules in the donut area. Photoswitchable molecules 

can also be used in a related method known as reversible saturable optical fluorescence 

transitions (RESOLFT) (61, 67).

More recently, STED has been combined with the concept of localization in a new 

method called minimal photon fluxes (MINFLUX) (11, 59) and the related methodology 

MINSTED (183). In MINFLUX, a donut-shaped probing excitation beam is used to 

localize photoswitchable molecules by iteratively scanning the beam around the molecule 

to improve the precision of localization to 1–3 nm. Related methods such as SIMFLUX 

(28), repetitive optical selective exposure (57, 58), and modulated localization (80) 

combine structured illumination with the concept of fluorophore localization to achieve 

high-precision localization in a larger field of view than MINFLUX and MINSTED, thereby 

improving throughput (18).

Methods like STED and RESOLFT require minimal preprocessing (often, images are only 

deconvolved to improve resolution further). However, the typical image postprocessing tools 

that have been developed for intensity-based images can be applied to these images, since 

they are intrinsically intensity based rather than point cloud based. We highlight some 

advanced quantitative extensions of these methods, such as STED-FCS and single-particle 

tracking (SPT) with MINFLUX, but our focus centers largely on quantification of SMLM 

images.
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SINGLE-MOLECULE LOCALIZATION MICROSCOPY IMAGE ANALYSIS

Preprocessing of Single-Molecule Localization Microscopy Data

To obtain robust quantitative super-resolution data, a variety of criteria must be considered, 

including optimized sample preparation, use of appropriate (imaging) buffers, and correct 

microscope settings (e.g., dichroic mirrors, laser power and wavelength). Assuming that 

all imaging precautions have been taken (see 173), a crucial part of quantitative SMLM 

is unbiased localization of the fluorophores, which includes steps like background removal 

(structured or unstructured background) (70, 74, 109, 113), photobleaching correction (75, 

128, 135, 176), drift correction (10, 27, 55, 112, 186), and 2D and 3D emitter detection and 

localization (9, 117, 125, 127, 163). Many of the works on these topics contain open-source 

algorithms that can be used within platforms such as ImageJ/FIJI, MATLAB, or Python. 

Moreover, to make the quantitative analysis of the super-resolution data from different 

microscope modalities accessible, several efforts have been made to create a platform that 

combines these different steps of the analysis pipeline (33, 102, 107, 115, 134).

An important consideration in the development of quantitative algorithms is that they should 

be properly evaluated and compared to other methods. In some cases, it is possible to 

quantify fundamental limits to the performance of the algorithm, such as the Cramer-Rao 

lower bound for the 3D localization precision (56, 121). However, in most cases, this 

quantification requires data for which the ground truth is known. Ground truth information 

may be experimentally obtained [e.g., by using well-defined DNA-origami structures (81, 

150)], but the gold standard is using simulated images. Super-resolution images can be 

readily simulated and tailored to the applications at hand [e.g., point spread function (PSF) 

engineering, camera type, structured background], and a wide range of open-source tools is 

available to do this (48, 119, 142, 172, 175). With the rise of open-source tools and software, 

a reproducible and more quantitative evaluation of the different methods is also needed. A 

first effort to compare different metrics (e.g., accuracy, precision, speed, emitter density) was 

performed by Sage et al. (142) and later updated to include more state-of-the-art techniques 

(143). These efforts have allowed direct comparison of different methods to make it easier 

to choose which algorithm to use for specific applications (leaderboards are continuously 

updated and can be consulted at https://srm.epfl.ch/Challenge).

In recent years, methods that investigate the reliability and confidence of the imaging data 

have been developed as well (30, 106, 110, 114). These methods of quantification can be 

used throughout the imaging process to assess the quality of the data to maximize accuracy 

and resolution and to benefit the downstream analysis. For example, in the case of the 

Haar wavelet kernel analysis (HAWK) (106), the super-resolved image is compared to a 

HAWK-processed reconstruction reference image to map and quantify structural differences 

between them. This procedure allows for estimating image quality, reliability, and artifact 

detection without the need to use intensity information, which is a common drawback of 

other methods.
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Statistical Analysis of Single-Molecule Localization Microscopy Data

In quantitative super-resolution microscopy, a significant portion of the conclusions are 

related to the resolution, quality, and spatial or structural details revealed in the image. 

Statistical approaches are therefore important to quantify these properties (Figure 2). For 

example, the image resolution is dependent on probe properties (e.g., detected photons), 

imaging properties (e.g., pixel size), and sample properties (e.g., labeling density) (35). 

Some of these considerations can theoretically be described based on statistical theorems, 

such as the Nyquist-Shannon sampling theorem for labeling density (45, 120, 158) or 

the analytical expression for localization precision (165), but in practice, other factors 

(e.g., probe size) also limit resolution. Therefore, to more accurately quantify the spatial 

resolution in experimental images, several analysis methods have been developed, such as 

Fourier ring correlation (89, 118) and parameter-free estimation of image resolution (38). 

As an example, the parameter-free method (38) calculates the correlation of a single image 

in the frequency domain with respect to a frequency mask of decreasing size. This method 

takes into account that high-frequency information is related to noise, and low-frequency 

information is related to structural information. This means that, at first, there will be a 

steady increase in correlation when the noise is removed; after reaching a maximum, the 

correlation will decrease again as structural information is removed. Therefore, the image 

resolution is determined by determining the point where correlation is maximal.

Several postprocessing algorithms also make use of statistical analysis. Pair-correlation 

functions, for example, have been used to quantify true spatial organization by addressing 

imaging artifacts such as overcounting due to multiple blinking (see the section titled 

Protein Copy Number Quantification in Single-Molecule Localization Microscopy) (155, 

174), to quantify colocalization (see the section titled Colocalization) (103, 153, 166), to 

perform drift correction (27, 112), and to align images (65, 66, 153). In the image alignment 

application, pair-correlations are used as a way of performing model-free particle averaging 

to increase the signal-to-noise ratio and, thus, the effective image resolution (see the section 

titled Structural Biology and Structural Modeling). Other statistical methods also play an 

important role in the spatial point analysis of data clusters. A well-known example is the 

Ripley’s K function and its derivatives (86, 136), which have been used in both 2D and 3D 

imaging applications obtained with different microscopy modalities (3, 54, 91, 102, 130, 

131). These functions use second-moment properties to describe the relationship between 

the clusters present in a sample by comparing the number of found points within a given 

distance to what would be expected if there was complete spatial randomness. Deviations 

from complete spatial randomness then indicate scales of clustering and/or dispersion.

Clustering and Segmentation of Single-Molecule Localization Microscopy Data

Statistical analyses such as Ripley’s K function, discussed above, are useful for extracting 

information on the average distribution of points in the SMLM images. However, they 

do not provide information on individual clusters and structures or their heterogeneity. 

Clustering and segmentation methods (Figure 2) group SMLM localizations into discrete 

objects (clusters) that represent collections of molecules or structures of interest. Thus, 

these methods allow extraction of properties of individual objects and characterization of 

heterogeneity in the SMLM data.
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Density-based methods.—Density-based spatial clustering of applications with noise 

(DBSCAN) can segment clusters of arbitrary shape and only requires a small number of 

user-defined parameters, which makes it a popular method for clustering SMLM data. The 

algorithm groups points with many nearby neighbors as clusters and marks any points 

that have neighbors too far away as noise. Many studies have used DBSCAN to segment 

SMLM data in diverse biological settings (91, 102, 126). However, one disadvantage of this 

method is that parameter selection is subjective, as it requires two input parameters, ε, the 

neighborhood radius, and MinPts, the minimum number of localizations within ε required to 

be considered a cluster. It is also relatively slow in comparison to more recent density-based 

algorithms (111), especially as data sets get larger.

Voronoi tessellation–based methods.—Voronoi tessellation is a mathematical concept 

that has been adopted for use in SMLM. This method clusters point cloud data by dividing 

the space around each SMLM localization into polygonal regions (Voronoi cells) defined 

by Euclidean distances to their nearest neighbors (4, 19, 94). Each Voronoi cell is centered 

around one localization and is constructed by edges (lines in this 2D application) that 

are equidistant to the two nearest sites (i.e., localizations). The cell areas or other cell 

parameters are then used as thresholds for segmenting the localizations into clusters. 

For example, regions of the Voronoi diagram with smaller cell areas translate to regions 

with higher molecular density. Thus, high-density regions can be segmented by placing a 

threshold on the Voronoi cell area and selecting cells that are smaller than the threshold. 

Cells that fulfill this criterion and are also neighbors of one another can get grouped together 

to form a clustered object (94). Thresholds can be set manually or automatically based 

on comparison between Voronoi cell attributes and a reference distribution (e.g., complete 

spatial randomness or uniform distribution) (4, 94). Voronoi tessellation has been adapted 

for the clustering of 3D SMLM data (4) and has been useful for scalable clustering (e.g., 

from individual nanoclusters up to larger, more complex cellular structures) in several 

biological applications (60, 62, 122, 130).

Bayesian clustering methods.—Bayesian methods seek to control for uncertainties 

in molecule localization, background signal, and user bias by employing algorithms that 

propose many potential clustering schematics based on the data being analyzed and scoring 

those schematics according to a Bayesian generative model (53). In the approach of Griffié 

et al. (53), every localization in a region of interest (ROI) is assumed to be a molecule whose 

coordinates come with errors because of the localization process, and the center of each 

potential cluster and the radii of the clusters are assumed to be distributed uniformly over 

the ROI. Localizations are then assigned either as background or as part of the cluster. This 

cluster configuration is then compared to the Bayesian generative model (which assumes 

Gaussian clusters and a completely spatially random background) and given a posterior 

probability. Thousands of potential configurations are investigated in this way, and the 

best-scoring configuration is then the output of the algorithm. Bayesian methods have also 

been adapted for clustering of 3D SMLM data, in addition to that of 2D data (54).

While the reduction of user input may be helpful for reducing bias, assumptions about what 

a localization truly represents can become problematic. Localizations that are assumed to 
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have come from separate molecules (rather than one molecule that has blinked multiple 

times) by an algorithm could output a proposal with artificially large or wholly false clusters. 

In fact, for all of the clustering algorithms described above, careful attention to the reduction 

of blinking artifacts is important.

Protein Copy Number Quantification in Single-Molecule Localization Microscopy

SMLM is particularly useful for studying the characteristics of protein distribution (24, 

181) and has been used to identify protein nanodomains, nanoscale areas of a cell wherein 

certain proteins cluster together (Figure 2). Prominent examples include lipid rafts (162) 

and receptor clustering (31, 76, 97, 145, 154). In the time since these nanodomains 

were described, questions have arisen about the true number of proteins making up such 

clusters, as artifacts intrinsic to the SMLM labeling and the data acquisition process 

make interpretation of clustered SMLM data less straightforward (5, 13, 37). In SMLM 

imaging modalities like STORM and PALM, undercounting of localizations can come from 

incomplete labeling, fluorophore failure to photoactivate, and premature photobleaching, 

leading to artificially sparse reconstruction of structures. In contrast, overcounting from 

repeated captures of the same fluorophore across many frames makes for artificially dense 

reconstructions. Both scenarios are problematic for later clustering and segmentation steps in 

the data analysis process and for biological interpretation of the reconstructed image.

Initial methods to address these issues focused on the problem of multiple fluorophore 

blinks. These methods included simple time thresholds in which localizations that appeared 

within a time shorter than the threshold were combined together (5, 6, 29). In addition, 

kinetic models of fluorophore photophysics have been developed to account for fluorophore 

blinking (137). However, these methods either are too simplistic and fail in high-density 

labeling scenarios (time threshold) or do not fully capture the complexity of fluorophore 

photophysics (kinetic models). More recently, several advanced methods have been 

developed to account for blinking. These include pairwise distance distribution correction, 

which uses pairwise distance distributions of molecules separated temporally by several 

frames longer than the lifetime of a fluorophore to determine a true pairwise distance 

distribution (17). In addition to these computational methods, an experimental method for 

addressing the stochastic nature of fluorophore photophysics in STORM or PALM is the use 

of quantitative DNA-PAINT, also known as qPAINT (81). In qPAINT, bright and dark times 

of fluorophores are tied to well-defined kinetic constants of DNA binding and the influx rate 

of imager strands, rather than the stochasticity of dye photophysics. Thus, well-characterized 

blinking translates to protein counting when the frequency of blinks in a certain time period 

from a single protein labeled with a single docking strand is determined. If the frequency 

for one protein is four blinks within a given time period, then a cluster of four proteins will 

blink with four times the frequency (given that the rate of influx of imaging strands remains 

constant).

While these approaches can account for artifacts related to fluorophore blinking, they 

do not account for other artifacts coming from failed localizations or unknown labeling 

stoichiometry. In the sections below, we describe techniques that account for these additional 

artifacts to properly determine protein clustering and protein copy number.
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Titration methods.—Titration methods utilize careful modulation of labeling density by, 

for example, titrating the concentration of the fluorescent antibody (13, 41, 60). Generally, 

the number of SMLM localizations associated with a single secondary antibody is found by 

diluting the antibody concentration in a stain until fluorescent signals of single fluorophore-

bound secondary antibodies can be detected. The same titration process is performed with 

a primary antibody to determine the saturation of epitopes on the targeted protein. The data 

from the primary and secondary titration experiments is then used to estimate the number 

of secondary antibodies that bind to each primary. Taken together, this information allows 

for estimations of protein copy number in experimental conditions by comparing the density 

profile of localizations in an experimental cluster to the profile of a known single protein.

Other calibration tools.—Alternative methods for deducing protein copy number include 

those that utilize a fluorescently labeled calibration tool with a known copy number against 

which experimental clusters can be compared. Some recent examples include DNA origami, 

bacterial homo-oligomers, and nuclear pore complex (NPC) proteins (25, 44, 170). For 

example, DNA origami structures can be designed with extreme precision in dimension 

(several nanometers) and can be made to support regularly spaced handles that can be 

conjugated with multiple copies of a fluorescently labeled protein of interest (71, 139). Since 

the copy number of proteins attached to the origami is already known, it can be used as 

a calibration standard, allowing it to account for the photophysical and labeling variables 

mentioned above. The copy number of the protein of interest in the experimental sample 

can then be determined by comparing the SMLM localization distributions of the sample to 

calibration distributions calculated for the DNA origami standard (25).

One major drawback of both the DNA origami approach and the bacterial homo-oligomer 

is that the copy number of the proteins within the calibration standard is typically low (1–6 

proteins), and extrapolating the calibration to larger protein complexes gives large errors 

in copy number estimation (25). To overcome this problem, well-characterized subunits 

of the NPC offer another option for protein counting in clustered SMLM data (170). 

Nup96, for instance, forms ring structures of 16 subunits on both the cytoplasmic and 

nucleoplasmic faces of the NPC for a total copy number of 32 (178). However, the NPC 

offers a fixed stoichiometry for quantification, and it is not clear how well the calibration 

will perform when the protein copy number of interest is much smaller or larger than the 

Nup96 stoichiometry (77). Thus, there is still a need for flexible, easy-to-use calibration 

standards whose copy number can easily be tuned over a large range.

Colocalization

Multicolor imaging has been a powerful tool for revealing the spatial relationships among 

different molecular species and for understanding their interdependence. Methods that can 

quantify the spatial relationship and colocalization in standard microscopy images have 

been around for a long time and typically fall into two categories: pixel-based methods 

and object-based methods. The former includes the Pearson’s correlation, Manders overlap, 

and Spearman correlation coefficients. Object-based methods typically rely on segmentation 

of individual objects or structures and measurement of their overlap percentage or nearest-

neighbor distances. Both types of analysis have been adapted and applied to super-resolution 
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microscopy. In the simplest scenario, super-resolution images can be rendered as pixel-based 

images, and the typical correlation coefficients can be computed on the pixel-based data 

(164). However, this approach has the drawback of arbitrary choice of pixel size and 

potential pixelation artifacts. Pair-correlation and other statistical analysis (see the section 

titled Statistical Analysis of Single-Molecule Localization Microscopy Data) can also be 

directly applied to point localizations to quantify the (average) spatial relationship between 

different molecular species in SMLM data (101, 138, 153, 155, 166, 187). Colocalization 

analysis can also be applied in conjunction with clustering and segmentation algorithms (4, 

95, 126). For example, Voronoi tessellation has been extended to quantify the overlap of 

segmented clusters in multicolor SMLM images in 2D (4) and 3D (95). Coloc-Tesseler 

computes the normalized pair-density from the overlapping Voronoi diagrams of two 

molecular species to quantify their spatial colocalization in a density- and parameter-free 

manner. In another approach, clusters segmented by DBSCAN or Voronoi in one channel are 

assigned as reference clusters, and the clusters of the second channel are compared to these. 

A cluster is then considered to be colocalized with a reference cluster if the proportion of its 

localizations that fall within this reference cluster is higher than a predetermined threshold 

(60).

ADVANCED QUANTITATIVE METHODS

In the sections below, we describe more advanced quantitative tools for super-resolution 

microscopy. This list is by no means exhaustive, but it offers details on the most commonly 

used methodologies.

Structural Biology and Structural Modeling

While super-resolution light microscopy has great potential for determining the structure of 

multiprotein complexes in situ (98, 161), several limitations make it challenging to directly 

achieve the structural-level resolution that is typical in cryo-electron microscopy (EM) 

and cryo-electron tomography (ET). First, the spatial resolution of super-resolution light 

microscopy remains at the nanometer scale, in contrast to the Ångström-scale resolution 

provided by cryo-EM and cryo-ET. In addition, while fluorescence tagging provides high 

contrast and molecular specificity, it only allows visualization of a few proteins at a 

time. This makes visualization of all subunits within large molecular complexes difficult. 

Additionally, in super-resolution light microscopy, the subunit of interest is rarely directly 

visualized. Instead, a label that can be separated from the subunit by tens of nanometers 

is visualized (92). Still, concepts that are typically used in single-particle cryo-EM have 

been adapted for super-resolution microscopy in select examples to determine the subunit 

arrangement of multiprotein complexes (116, 141, 160, 169). In this case, a subunit within 

a specific molecular structure is labeled and visualized with super-resolution microscopy. 

Many such images are segmented, aligned, and averaged together to determine the position 

of the subunit with nanometer precision. For a symmetric structure, like the NPC, this 

procedure can be repeated individually for multiple subunits to determine their relative 

position within the NPC complex in 2D (100, 169) as well as in 3D (141). For structures 

that are not symmetric, a reference subunit can be imaged together with the subunit of 

interest in multicolor to enable image alignment and averaging based on the reference 
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image (116). This approach was used to produce a pseudotemporal order of molecular 

events that take place during clathrin-mediated endocytosis (116). Moreover, when applied 

to purified proteins, 2D images of single-protein subunits of mixed orientation can be used 

to reconstruct a 3D volumetric image using established EM analysis routines (160).

All of these approaches require robust data analysis workflows for segmenting, classifying, 

aligning, and averaging structures of interest. Segmentation is typically achieved through 

methods like DBSCAN or Voronoi. For alignment and averaging, different approaches have 

been developed (98). In one class of methods, a high-resolution, pixel-based representation 

of the point cloud data is reconstructed by binning the localizations into intensity-based 

pixels. Image cross-correlation can then be used to align and average the images (141, 

169). However, approaches that rely on reconstructed images can be prone to reconstruction 

artifacts, and thus, direct analysis of the point cloud data may be preferable. Methods that 

work on the point cloud data include template-based methods that use a priori knowledge 

of the structure of interest (21, 100), as well as template-free methods that generate a data-

driven template by maximizing a merit function from the 2D or 3D localizations (65, 66, 

153). Finally, after averaging, simple geometric expressions are used to model the biological 

structures (e.g., circles, Gaussian profiles, lines) to get access to subunit information.

Single-Particle Tracking

In SPT (Figure 2), molecules are tracked in time to quantify dynamic behavior in 2D and 

3D in living cells (72, 104, 129). SPT in its most standard version requires sparse labeling 

of the protein of interest such that the molecules do not overlap in a diffraction-limited 

volume. However, SPT can be combined with PALM (104, 147) to increase the density of 

molecules that are imaged and tracked. SPT has also more recently been combined with 

MINFLUX microscopy (11, 148) to improve localization precision and temporal resolution. 

The analysis of SPT data shares many commonalities with SMLM analysis, including probe 

detection and localization, but with the addition of linking the localized points from one 

frame to the next to create trajectories. Many software packages are publicly available, 

including multiple-target tracing (MTT) (156), u-track (79), TrackMate (43, 171), and 

Single-Molecule Analysis by Unsupervised Gibbs sampling (SMAUG) (84), to help with 

the analysis of different types of SPT experiments.

The first step in SPT analysis is the probe localization. This is a more complicated process 

than the localization of typical SMLM data, as the probe PSFs can be deformed due to 

movement (i.e., motion blur effect) (36) and as high temporal resolution is needed to 

accurately follow the dynamics (121); both of these factors lower the localization precision. 

The use of MINFLUX makes this step more robust, as it provides very high localization 

precision without the need for high photon counts (approximately 1 nm precision), which 

allows for faster dynamics to be investigated (100-fold enhancement) (11). Additionally, 

methodological advances have also been made to robustly identify single particles in noisy 

situations (109).

The second step of SPT analysis is linking the detected probes in subsequent frames to 

form trajectories in time. Even though the concept is simple, many problems arise in 

this step, such as crossing trajectories or gaps due to blinking (for more information, 
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see 105), but these issues can be minimized using experimental optimization methods 

such as implementing strategies for reduced blinking (34), sparse labeling, or simultaneous 

multicolor SPT (23). Other efforts have been made on the computational side with the use of 

deep learning algorithms (43, 51) or Bayesian statistics (26, 129).

The final step is to interpret the linked trajectories and use them for quantification with one 

of the many tools available. The extracted information can be classified according to two 

main approaches. The first class, Lagrangian methods, focuses on quantifying individual 

molecule dynamics. In this class, aspects such as diffusive motion (e.g., mean square 

displacement, apparent diffusion coefficient) or transient state kinetics are characterized (51, 

72, 104). The second class of approaches is made up of the Eulerian methods, which focus 

on characterizing distinct regions in the sample by looking at the dynamics of the molecules 

passing through (14, 108, 156). Both types of methods have their pros and cons, but 

generally speaking, Lagrangian methods are computationally expensive in most applications 

due to the fact that they track all individual particles (although this is a drawback in most 

SPT calculations and does not affect tracking performance). However, due to this tracking, 

Lagrangian methods give access to information on every individual particle. In contrast, the 

Eulerian methods are faster, as they calculate ensemble statistics, with the drawback that 

subtle differences between individual particles will not be noticed. SPT has been applied 

in a diverse set of biological contexts, including dynamics of membrane receptors (104, 

108, 156), actin dynamics (2, 50, 189), intracellular transport dynamics (127, 129, 191), and 

transcription factor mobility in the nucleus (78, 93, 167, 188).

Stimulated Emission Depletion-Fluorescence Correlation Spectroscopy

FCS is a quantitative spectroscopic method for measuring molecular interactions, 

determining molecular concentrations, and observing the dynamic movement of molecules 

in living cells. This method relies on analyzing temporal fluctuations in the fluorescent 

intensity of small quantities of labeled molecules as they pass through a spot of focused 

light (focal volume) (85). Early use of FCS was limited by diffraction to focal volumes of 

approximately 250 × 250 × 500 nm3, and averaging over these large volumes of molecules 

made it very challenging to visualize heterogeneities caused by molecular interactions that 

take place at length scales smaller than the diffraction limit.

As STED intrinsically uses a confocal geometry, it is highly compatible with FCS 

measurements. STED-FCS shrinks the focal volume to subdiffraction dimensions, allowing 

the observation of molecular dynamics that happen at small length scales, thus extending the 

spatiotemporal resolution of light microscopy. Since its introduction, STED-FCS has been 

applied to studies of lipid and protein diffusion in the plasma membranes of eukaryotic cells 

and adapted for scanning detection of multiple areas for the observation of heterogeneity in 

membrane architecture (69, 151, 157).

Biosensing

Determining the biochemical activity of cellular constituents is a core goal of cell biology, 

and this field was revolutionized by genetically encoded sensors, which typically consist 

of two different domains: the sensing domain, which is responsible for the sensing of 
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presence or absence of activity, analyte, or interaction, and the reporting domain, which 

produces the measurable signal. The two main classes of these sensors are FRET-based 

sensors (two fluorophores) and biosensors that use the change in fluorescence intensity as a 

read-out (single fluorophore). The FRET-based sensors can provide absolute quantification 

of the activity but have several drawbacks related to their large construct size and their 

limited multiplexing capabilities. Single-fluorophore biosensors, in contrast, are fast and 

small and can be used in multiplexed experiments, but as their emission depends on the 

local concentration of the probe, absolute numbers remain difficult to obtain (with some 

exceptions; see 16), and response saturation cannot be detected. Nevertheless, biological 

activity has been quantified and monitored in real time with different microscopy modalities 

including super-resolution optical fluctuation imaging. Examples of applications include 

calcium sensing (22, 46), pH sensing (96, 133), and voltage sensing (49, 83). Greenwald et 

al. (52) provide a more complete overview.

Deep Learning

Recently, the use of deep learning in super-resolution microscopy has experienced an 

immense increase in popularity. The main applications are emitter or object detection (117, 

132), object classification (63, 99), tracking (7, 51), segmentation (68, 168), preprocessing 

(90, 113, 185), and augmented microscopy (123, 180). In their simplest form, super-

resolution raw images can be described as a convolution of the PSF with a point-like emitter 

with the addition of background and noise. Given that convolutional neural networks use 

convolutions as sliding filters of the input features, their usefulness in this application is 

evident. As a result, deep learning methods remain robust in situations of low signal-to-noise 

ratio, at higher emitter densities, and with incomplete labeling (20, 47, 124, 132) and will 

typically outperform classical image processing techniques when they are evaluated in terms 

of robustness, precision, accuracy, and fidelity. Regardless of their indispensable role and 

future potential in quantitative super-resolution microscopy, there are several drawbacks to 

be considered, including their need for powerful resources, their high entry threshold for 

users, a large degree of parameter tuning during training, and their limited interpretability. 

Fortunately, the community has recognized these limitations and is actively seeking to 

resolve them with, for example, the initiation of the ZeroCostDL4Mic platform (179), an 

open-source resource with tutorials, Jupyter notebook availabilities, and many different 

example data sets.

Classification

Classification (Figure 2) is important when discriminating multiple types of known objects 

from one another (8, 32) or when detecting new groups present in a data set (60, 141). 

Classification can be performed in two different ways. The first is by use of an unsupervised 

procedure [e.g., hierarchical cluster analysis (HCA), topological data analysis], which 

requires no user input and is data driven but is usually less precise in its quantification. 

The second type of classification algorithm is made up of supervised procedures (e.g., deep 

learning–based methods, support vector machine) where a ground truth must be provided to 

the algorithm during the training step so that the classification model can learn the features 

that set the different classes apart. In both cases, the classification is done using different 

variables that describe the structures adequately. These descriptors can be extracted from 
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the data or reconstructed images and can differ greatly from application to application. 

For example, Gyparaki et al. (60) used an iterative HCA on eight features that describe 

super-resolved Tau protein aggregates (e.g., number of localizations, aggregate area, aspect 

ratio) to find 22 different classes that may represent different stages in Tau aggregation. 

Other studies (32, 141) have used classification in combination with structural modeling to 

extract relevant biological or structural parameters.

CONCLUSION AND FUTURE PERSPECTIVES

Since the introduction of super-resolution microscopy techniques to biological 

investigations, the field has grown and innovated in many exciting ways. The emphasis 

of early studies was primarily on the development of new techniques for visualization. 

Now that these techniques are well-established, attention can and has already been directed 

toward quantifying the information acquired through them to gain new insights into the 

underlying biology. An important aspect of quantitative super-resolution imaging is robust 

preprocessing of the images (e.g., background removal, localization), and many efforts have 

been made to develop quantitative tools that maximize precision, accuracy, fidelity, etc., 

efforts that subsequently have positive effects on the postprocessing quantification. What 

many of the quantification methods have in common is that extensive knowledge of the 

(physical) basis of the data or images (i.e., a priori knowledge) serves as a basis to maximize 

the information that can be quantified. However, each method has its own advantages and 

drawbacks, as discussed throughout this work. Ultimately, the method of choice is highly 

dependent on the biological application and the biological questions being addressed.

As inspiring and encouraging as the topics reviewed are for applications in cell biology and 

beyond, challenges remain. Many of the methods covered were developed by independent 

research groups that use different programming environments, resulting in analysis pipelines 

that are not necessarily streamlined and inevitable technological compatibility issues. To 

address this problem, the creation of an open-source tool that combines these powerful 

algorithms to standardize and generalize these platforms should be the subject of a greater 

community effort. Moreover, it would be appropriate to include an active feedback system in 

this pipeline that tells users at each step of the analysis how reliable and robust a procedure 

is and how it influences the quality of the data and results. This will lower the threshold 

for nonexpert users to use super-resolution microscopy in their research (as it is complicated 

to navigate the vast range of available methods) and will further improve reliability and 

reproducibility of results by removing user dependencies.

Exciting opportunities have also arisen with the recent developments in multiplexed 

microscopy, as well as MINSTED and MINFLUX, as these techniques allow for imaging 

a large number of molecular species or achieving much higher localization precisions than 

what is typically achieved with SMLM [1–2 nm, or even in the Ångström range (184)]. 

These higher-resolution techniques hold great promise for probing spatiotemporal dynamics 

of molecules that were previously inaccessible. Moreover, this unprecedented precision will 

further incentivize studies and applications in structural biology, as it allows access to the 

subunits of the biological structures without the need for averaging. These advancements 
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bring super-resolution microscopy closer to cryo-EM or cryo-ET, with the added benefit of 

live-cell compatibility, and allow for studying cell biology in native conditions.

Finally, deep learning algorithms have accelerated advances in the field by taking advantage 

of the intrinsic structure of fluorescence images, but the rise of algorithms based on deep 

learning has certainly not hit its peak, and these algorithms still have a lot of unused 

potential in this field. Developments from Ounkomol et al. (123) and Wang et al. (182), 

for example, enable super-resolution modalities without the need for expensive equipment 

by using deep learning to predict fluorescence images from transmitted-light images. This 

so-called augmented microscopy is promising, but more advances are needed before this 

technology can be used in quantitative experiments. A promising candidate to achieve 

this goal is the use of generative adversarial networks (GANs), an up-and-coming deep 

learning technique increasingly being applied to super-resolution microscopy (180, 190). 

Their structure allows for automatic pattern discovery in the data, which is then used to 

generate new data that cannot be distinguished from experimental data. They are especially 

powerful in applications where both the input and output of the deep learning algorithm 

are images (i.e., image-to-image translation) and may play a key role in democratizing 

quantitative super-resolution modalities. Some of the drawbacks of existing deep learning 

algorithms (e.g., their bias toward training data) may also potentially be overcome using 

GANs, as they are excellent at generating realistic examples across a range of problems. 

Moreover, to date, deep learning algorithms have been black box techniques (information 

is known only about the input and output). Gaining insight into the image features that are 

important for successfully completing the algorithm’s task is a line of research that should 

be further explored, as the understanding of what makes an algorithm successful will lead to 

more robust and precise results, given that this information can be exploited throughout the 

optimization.

From the topics discussed in this review, it is clear that progress in this field will 

undoubtedly continue, and exciting new discoveries will be made based on the quantitative 

analysis of the molecular mechanisms that drive living systems.
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Figure 1. 
Schematic representation of the microscope modalities covered in this review. (a) SMLM. 

The microscope setup (i), the working principle (ii), and some examples to achieve on/off 
switching of fluorescent proteins and organic dyes (iii) are shown. (b) STED microscopy. 

The microscope setup (i), the working principle (ii), and a Jablonski diagram of the STED 

excitation and emission (iii) are shown. Abbreviations: DM, dichroic mirror; SMLM, single-

molecule localization microscopy; STED, stimulated emission depletion.
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Figure 2. 
A broad range of quantitative analysis techniques that use input localizations (probe 

positions) to quantify different applications in cell biology. Abbreviations: MSD, mean 

square displacement; PC, principal component.
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