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PURPOSE. A retinal mosaic, the spatial organization of a population of homotypic neurons,
is thought to sample a specific visual feature into the feedforward visual pathway. The
purpose of this study was to propose a universal modeling approach for precisely gener-
ating retinal mosaics and overcoming the limitations of previous models, especially in
modeling abnormal mosaic patterns under disease conditions.

METHODS. Here, we developed the optimization-based pairwise interaction point process
(O-PIPP). It incorporates optimization techniques into previous simulation approaches,
enabling directional control of the simulation process according to the user-designed
optimization target. For the convenience of the community, we implemented the O-PIPP
approach into a Python package and a website application.

RESULTS. We showed that the O-PIPP can generate more precise neural spatial patterns
of healthy and diseased mosaics compared to previous phenomenological approaches.
Notably, through modeling the retinal neural circuitry with O-PIPP–simulated retinitis
pigmentosa cone mosaics, we elucidated how the cone mosaic rearrangement impacted
the information processing of ganglion cells.

CONCLUSIONS. The O-PIPP provides a precise and universal tool to simulate realistic
mosaics, which could help to investigate the function of retinal mosaics in vision.

Keywords: retinal mosaic, neural circuitry, computational modeling, simulated annealing
algorithm, retinitis pigmentosa

Retinal mosaics refer to the spatial arrangement of homo-
typic neurons, which tile the retinal surface to sample

specific visual information1–3 and vary significantly across
cell types.4 Recent investigations have provided quantitative
descriptions of the spatial properties of mosaics from wild-
type,4–6 mutant,7 and diseased8,9 retinas. These cell-type–
specific mosaics play crucial roles in their functions and
establishing local retinal circuits.10–13 In addition to experi-
mental approaches, computational models can provide novel
insights into the formation and function of retinal mosaics.25

One major modeling approach aims to simulate the forma-
tion process of retinal mosaics and evaluate the impact of
developmental mechanisms such as homotypic interactions,
lateral migration, cell fate determination, and programmed
cell death.14 Based on these, mechanistic models that mimic
the dynamics of neural development have been proposed to
facilitate a better understanding of retinal mosaics, primar-
ily focusing on photoreceptors15–17 and ganglion cells.18–20

However, the mechanism-specific details of these mech-
anistic models limit their availability in different retinal
mosaics. Another modeling approach focuses on the simi-
larity between spatial patterns of the model and the realistic

data, at the price of omitting biologically plausible mecha-
nisms. These phenomenological models offer more simplic-
ity and generality when reproducing multitype mosaics21,22

and thus are often used to study the function of retinal
mosaics, such as the anti-aligned intermosaic coordination
of primate retinal receptive fields.12,13 However, the stochas-
ticity in these models leads to difficulty in precisely repro-
ducing the characteristics of spatial patterns, especially the
abnormal clustered mosaics that are common in disease reti-
nas.23,24 Therefore, we need a more precise and universal
retinal mosaic modeling approach.

In this work, we present the optimization-based pairwise
interaction point process (O-PIPP), which enables direc-
tional control of the simulation process according to the
user-designed optimization target. Results indicate that the
O-PIPP approach could simulate wild-type (WT) healthy reti-
nal mosaics ranging from highly regular to near-random
patterns with higher precision, as well as diseased reti-
nal mosaics featuring cell-free areas and clusters. In addi-
tion, by developing a three-layer retinal network model, we
demonstrated how abnormal cone mosaics alter the recep-
tive fields (RFs) of ganglion cells (GCs) in retinitis pigmen-
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tosa (RP), retinal dystrophies caused by photoreceptor loss.
Overall, the O-PIPP provides an option for more precise
and general mosaic modeling. Through the O-PIPP, we can
quickly model many mosaic patterns that are consistent
with the spatial characteristics of real retinal mosaic patterns
observed in experiments. This allows researchers to use
computational modeling to study the impact of these mosaic
patterns on visual information processing in both healthy
and diseased states.

MATERIALS AND METHODS

In this section, we first introduce datasets of retinal mosaics
for experiments. We then introduce the metrics of spatial
patterns for mosaics and describe the technical details of the
O-PIPP approach and the building of the three-layer network
models. Finally, we provide the implemental details of this
work. In Table 1, we list abbreviations and acronyms used
in this article.

Datasets

This work used seven mosaics from WT retinas and rear-
ranged cone mosaics from RP rat retinas. The side length
(size) of these mosaic areas ranged from 100 μm to 500 μm,
and the cell numbers (n) ranged from 80 to 850. Notably,
due to the need to measure the spatial pattern of a single
mosaic with statistical methods, we ignored the data of reti-
nal mosaics with n < 50 to avoid inaccurate analysis results.
We provide the mosaic-related spatial analysis results in
Table 2.

Multitype Mosaics From WT Mouse Retinas. The
WT mouse retinal mosaics came from a published dataset4

including eight cell types: one horizontal cell (not distin-
guishing subtypes); four subtypes of amacrine cells (ACs),
including cholinergic ACs, VGluT3 ACs, dopaminergic ACs,
and AII ACs; and three subtypes of bipolar cells (BCs),
including type 2 BCs, type 3b BCs, and type 4 BCs. For each
cell type, the dataset contained an example natural mosaic
with 20 to ∼250 cells in a square, and the spatial analysis
resulted from 20 to ∼30 natural mosaics (Table 2). In this
study, we ignored the data of dopaminergic ACs for their
small n = 24.

Cone Mosaics From WT and RP Rat Retinas.
Another published dataset9 provided the rat cone mosaics of
WT and S334ter-line-3, a transgenic RP model. In this work,
we used the rearranged RP cone mosaics at postnatal day
87 (P87; 6-week survival period), whose M-cones are highly
clustered, and the data of WT cone mosaics on the same
postnatal day. The mosaic rearrangement did not change the
density of cones (∼4000 cells/mm2), so the WT cone mosaic

TABLE 2. Statistical Descriptions of WT Retinal Mosaics Across Cell
Types

Cell Type Size (μm) N NNRI VDRI

Horizontal cell 300 87 4.512 4.357
Cholinergic AC 300 122 3.931 3.454
VGluT3 AC 300 98 3.406 3.036
AII AC 200 160 3.016 2.643
Type 2 BC 200 174 2.913 2.294
Type 3b BC 200 202 2.781 2.118
Type 4 BC 200 100 2.461 2.123
WT cone 491 850 4.120 3.493
RP cone 491 850 2.485 1.065

and the RP one shared the same side length (size = 461 μm)
and cell number (n = 850).

Metrics of Mosaic Spatial Patterns

In this study, we used the mouse horizontal cell mosaic as an
example (Supplementary Fig. S1A) to introduce the metrics
of spatial patterns.4 The first step of the analysis was Delau-
nay triangulation25 to estimate neighborhoods based on cell
positions (Supplementary Fig. S1B). Then, we calculated
the nearest neighbor (NN) distance for the cell, the mini-
mum distance to its neighbors (Supplementary Fig. S1C[1]).
The triangulation also yielded a Voronoi diagram, and from
that we could calculate the area of cell Voronoi domains
(VDs; Supplementary Fig. S1C[2]). The frequencies of NN
distances and VD areas represented special patterns of a
mosaic (Supplementary Fig. S1D). We excluded cells close
to the edges to avoid the boundary effect26 and used trans-
parent colors to label them in mosaic figures. After getting
values of NN distances and VD areas, we could estimate the
nearest neighbor regularity index (NNRI) and the Voronoi
domain regularity index (VDRI). Here, the regularity index
(RI) is the ratio between the mean value and the standard
deviation of values, and NNRI is the mean of NN distances
divided by the standard deviation. The VDRI follows the
same calculation while using values of VD areas.

O-PIPP Approach

In this work, we summarized phenomenological model-
ing approaches into a three-stage process, including initial-
ization, update, and optimization (Fig. 1). Two existing
phenomenological models, the dmin model (Fig. 1A) and the
pairwise interaction point process (PIPP) model (Fig. 1B),
for comparison, are described in Supplementary Text S1.

In the O-PIPP, all of the cells start with random posi-
tions in the initialization stage, similar to the PIPP model.
Then, the O-PIPP selects a certain proportion of cells and

TABLE 1. List of Abbreviations and Acronyms

Abbreviation Definition Abbreviation Definition

AC Amacrine cell PIPP Pairwise interaction point process
BC (Retinal) bipolar cell RF Receptive field
CI Convexity index RI Regularity index
GC (Retinal) ganglion cell RP Retinitis pigmentosa
KL Kullback–Leibler SA Simulated annealing
NN Nearest neighbor VD Voronoi domain
NNRI Nearest neighbor regularity index VDRI Voronoi domain regularity index
O-PIPP Optimization-based pairwise interaction point process WT Wild-type
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FIGURE 1. The “initialization–update–optimization” schema summarizes related phenomenological models and the O-PIPP approach.
(A) The dmin model from Reference 21. This model begins at an empty area and inserts cells one by one until all insertions are finished.
A new position is examined by the “exclusion zone” rule, and its distance to the closest neighbor must be larger than the dmin variable;
otherwise, the model must find another position to satisfy the rule. (B) The PIPP model from Reference 22. This model begins at a random
spatial distribution and uses a “death-and-birth” step to update all cells with a specific number of iteration steps. A selected cell is removed
and reinserted into the mosaic with a new position. The selection of a position is a random process controlled by the distance-based inter-
action function, which forms the “exclusion zone” of cells. The PIPP model accepts all update iterations. (C) The O-PIPP approach in this
work. This model incorporates simulated annealing techniques after an update to strategically accept the iteration results. (D) Schematic of
the SA optimization in the O-PIPP approach.

updates their positions simultaneously. Whether to accept
this position update depends on whether the result of this
update could make the modeling mosaic pattern closer to
the mosaic pattern to be simulated. We used optimization
algorithms (specifically, simulated annealing in this paper)
to complete this decision-making process.27 This was the
reason why we named it O-PIPP. The optimization algo-
rithm is a crucial part of the O-PIPP, not only controlling
the optimization direction of the mosaic but also determin-
ing the termination conditions of the O-PIPP. In the follow-
ing sections, we provide a more detailed description of the
optimization process adopted in this paper.

Optimization Target. We used loss L to quantify the
difference between the simulated mosaic and the realistic
mosaic. We set L as the optimization target; therefore, the
optimization algorithm would seek a mosaic with the small-
est loss value. Based on the spatial pattern metrics in the
Metrics of Mosaic Spatial Patterns section (Supplementary
Fig. S1D), we defined a feature-based loss, LF, of a simulated
mosaic by summing up its Kullback–Leibler (KL) divergences
of NN and VD28 to the simulation target as

LF =
∑
i

psNN (i) ∗ log

(
psNN (i)

ptNN (i)

)
+

∑
i

psVD(i) ∗ log

(
psVD(i)

ptVD(i)

)

(1)

Here, i represents the histogram bin index of distribution,
and p denotes the probability distribution of spatial features

(subscript NN or VD) from mosaics (superscript s for simu-
lated mosaic or t for target mosaic).

Optimization Process. In the O-PIPP, we used the
simulated annealing (SA) algorithm to control the optimiza-
tion process.27 Here, we would like to use the symbols in SA
but introduce their general meanings. We used T to repre-
sent the state of the optimization process, and its initial value
was T0. In each optimization, the O-PIPP calculated the loss
of the newly generated mosaic, Li+1 and compared it with
the loss of the previous one (Li). The O-PIPP would either
accept the new mosaic if Li+1 < Li or accept the mosaic with
a certain probability if Li+1 > Li. The acceptance probability,
Pac, was given as

Pac = e− Li+1 > Li
Ti (2)

where e denotes the exponential function, and Ti denotes
the current state of the optimization process. After this, the
O-PIPP would update the value of T strategically, as

Ti+1 =
{
Ti, [L]i+1 ≤ [L]i
α ∗ Ti, [L]i+1 > [L]i

(3)

where α is the hyperparameter to control the speed of opti-
mization, and [L]i denotes the average value of the loss of
generated mosaics before.29 As α < 1, the acceptance of a
new mosaic would become more and more strict. The opti-
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TABLE 3. Parameters Employed in Models Across Cell Types

O-PIPP PIPP dmin

Cell Type T0 Tmin α Pu δ φ αh dmean dstd

Horizontal cell 2 0.0001 0.95 0.01 7.5 32.12 2.65 39 7
Cholinergic AC 5.0 33.02 3.01 39 8
VGluT3 AC 8.0 26.77 1.35 26 6
AII AC 1.5 10.02 1.35 7 2
Type 2 BC 2.0 7.04 1.96 7 2
Type 3b BC 2.0 8.33 2.72 7 2
Type 4 BC 1.5 13.84 1.10 5 1
WT cone 0.5 5.0 4.63 1.39 — —
RP cone 4.0 2.03 5.22 — —

mization process would be terminated when T was below a
preset threshold (Tmin).

For better clarification, we have visualized the trace of LF
alongside an O-PIPP optimization process on simulating the
horizontal cell mosaic (Supplementary Fig. S2). The LF was
1.21 at the beginning, and the corresponding distributions
of features were obviously different from the target mosaic
(inset 1 in Supplementary Fig. S2). After optimization, the
LF decreased to 0.08, and the corresponding feature distri-
butions of the simulated mosaic were much closer to targets
(inset 4 in Supplementary Fig. S2).

Parameters of the O-PIPPModel. Parameters of the
O-PIPP model (Table 3) influenced the simulation in two
stages:

1. During the cell update stage, parameters included
those inherited from the PIPP (δ, φ, and αh)30 and
the probability of update of a single cell, denoted as
Pu, which was a specific parameter introduced in the
O-PIPP. We maintained the values of δ, φ, and αh as
those used by the PIPP model and set the Pu as 0.01
after conducting a parameter search (refer to Supple-
mentary Text S1, Section S3). Here, we chose to update
only a portion of cell positions (Pu = 0.01) rather than
updating all cell positions (Pu = 1) as in the PIPP. This
decision ensures a smooth decrease in loss during the
optimization process and enhances optimization effi-
ciency.

2. During the optimization stage, parameters were
mainly utilized to control the optimization process.
These parameters included the initial state T0, α for
state updating, and termination threshold Tmin. In our
study, we applied the general parameter set (α = 0.95,
T0 = 2, Tmin = 0.0001) on simulating the horizontal,
AC, and BC mosaics. However, for cone mosaics, utiliz-
ing this set led to excessively long simulation times
(>500,000 iterations). Instead, we chose a smaller
value of T0 (0.5), resulting in acceptable iteration
numbers (100,000∼200,000). The chosen parameter
values are listed in Table 3.

In Supplementary Text S1, Section S3, we took the hori-
zontal cell mosaic as an example to explore how param-
eter sets changed the performance of the O-PIPP model,
and results indicated that the current choice (α = 0.95,
T0 = 0.5, Tmin = 0.0001, and Pu = 0.01) was better than
other parameters considering both the performance and the
time consumption (Supplementary Figs. S3, S4). Parameters
effects on dmin and the PIPP are shown in Supplementary
Table S1 and Supplementary Figure S5, respectively.

Retinal Discrete Neuronal Network Models

In this section, we introduce how to build cone ON-type
BCs and ON-type GC neuronal network models for WT and
RP rat retinas with natural or simulated mosaics (Supple-
mentary Fig. S6). The neural dynamics of the model31 and
estimation of receptive fields32,33 are described in Supple-
mentary Text S2.

Neural Connections. Neural connections are
restricted by the relative position and the radius of the
dendrite field of cells. We adopted the following biologi-
cally plausible rules to constrain the connections of a single
cell:

1. A cone inputs to a single BC or not.31

2. A BC receives a maximum of eight cone inputs.34

3. A cell only receives inputs from cells with a distance
less than its dendrite field radius (30 μm for BCs and
150 μm for GCs).35

4. The BC that does not receive cone inputs is removed
to mimic the dendritic retraction in the RP retina.36

Cell Mosaics. The cone layer used generated mosaics
or mosaics from the dataset provided earlier in the Cone
Mosaics from WT and RP Rat Retinas section. The GC layer
had only one cell with a random position. We used the
O-PIPP approach to generate the WT BC mosaic. The RP
circuitry models share the same BC mosaic due to the no-
modification of the spatial organization of cone BCs at P87.36

Due to the lack of data on cone bipolar cell spatial distribu-
tion, we designed a new optimization target, the connection-
based loss, Lc. Specifically, after the update iteration, we built
a network model with the generated BC mosaic and the WT
cone mosaic by connecting rules discussed in the Neural
Connections section. Then, we summarized connection pairs
between BCs and cones and calculated loss Lc as

Lc =
(
1 − BCf

NBC

)
+

(
1 − Cf

NC

)
(4)

where BCf and Cf denote the number of BCs and cones meet-
ing these rules: A BC receives four to approximately six cone
inputs,34 and a cone has its downstream BC.31 Ncone = 850
and NBC = 850/5 = 170 denote cell numbers, respectively.

Simulation Details

Due to the stochasticity in every model, we simulated 50
mosaics and calculated the average performance of mosaics
as the final measurement. The parameters of the models are
summarized in Table 3. We implemented all methods and
computer simulations in Python with scientific computing
packages (Numpy/Scipy/NetworkX), except that the interac-
tion function parameters were estimated using R with the
spatstat package (R Foundation for Statistical Computing,
Vienna, Austria).37 We have developed the O-PIPP package,
written in Python 3, which is freely available from Github
(https://github.com/heliy/OPIPP). With implemented simu-
lation and optimization methods, it can generate mosaics
with user-designed spatial features. We also provided a web
application where users can upload retinal mosaics, do O-
PIPP simulation, and download generated mosaics (https:
//opipp-online.streamlit.app/).

https://github.com/heliy/OPIPP
https://opipp-online.streamlit.app/
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RESULTS

We evaluated and compared modeling performance between
the O-PIPP approach and previous models on different reti-
nal spatial mosaic types (Fig. 2). After that, we demonstrated
the specific ability of O-PIPP to model abnormal mosaics
by modeling the clustered cone mosaic pattern from RP
retinas (Fig. 3). Based on this, we built three-layer discrete
neuronal network models with realistic RP cone mosaics and
reproduced the RF alteration of GCs observed in experimen-
tal research (Fig. 4). Our results indicate the superiority of
the O-PIPP approach in building more biologically realistic
models.

O-PIPP Shows More Precise Modeling of WT
Retinal Mosaics

To validate the versatility and superiority of the O-PIPP, we
modeled seven retinal mosaic patterns (Fig. 2; Supplemen-
tary Tables S2–S4). These mosaics came from WT healthy
animals, and their patterns ranged from semi-near regular to
near-random distribution.4 It is not difficult to observe that
random examples from the simulated mosaics by the O-PIPP
(Fig. 2[2]) exhibit significant similarity with data samples

(Fig. 2[1]). In each mosaic pattern, the statistics of both the
NN distance (Fig. 2[3], red) and VD area (Fig. 2[5], red) could
fit very well with those from data samples (Figs. 2[3] and
2[5], gray). However, mosaics generated by PIPP and dmin

displayed different degrees of similarity with sample data
across diverse mosaic patterns (Supplementary Fig. S7)—
for example, the type 4 BC mosaic simulated by the PIPP
(Supplementary Figs. S7A[2] and S7A[3]) and the VGluT3
amacrine cell mosaic simulated by dmin (Supplementary Figs.
S7E[5] and S7E[6]). Additionally, we randomly selected three
examples from the simulation results of horizontal cells to
demonstrate the influence of stochastic factors on model
outcomes (Supplementary Fig. S8). From two key spatial
metrics, NNRI (Fig. 2[4]) and VDRI (Fig. 2[6]), it is clear
that the mosaic models through the O-PIPP reproduced
data samples (the red dashed lines) much more stably and
precisely than the other two. The NN (Fig. 2[7], brown)
and VD (Fig. 2[7], yellow) KL divergence, which evaluated
the distribution similarity between models and data, also
quantitatively describe the better reproduction of the O-
PIPP (the lower, the better). In summary, the O-PIPP simu-
lated mosaics could reproduce the spatial features of data
samples more accurately and robustly than the other two
methods.

FIGURE 2. Simulation results with the O-PIPP approach on WT retinal mosaics. (A–G) Cell types are ordered by the regularity index (NNRI)
of the natural mosaic. Scale bars: 100 μm. (1) The natural mosaics adapted from Reference 4. (2) The artificial mosaics generated by the
O-PIPP approach. (3) The distributions of NN distances in natural mosaics (gray), overlaid by values extracted from O-PIPP–simulated
mosaics (transparent red). (4) Boxplots of NNRIs of the single mosaic simulated by the O-PIPP approach, the PIPP model, and the dmin
model. (5) The distributions of VD areas in natural mosaics (gray), overlaid by values extracted from O-PIPP-generated mosaics (transparent
red). (6) Boxplots of the VDRIs of the single mosaics simulated by the O-PIPP approach, the PIPP model, and the dmin model. (7) The loss
of simulated mosaics.
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FIGURE 3. Simulation results with the O-PIPP approach and the PIPP model on RP retinal mosaics. (A) Sample mosaics from PIPP-simulated
WT mosaics (1), O-PIPP–simulated WT mosaics (2), and natural WT mosaics (3; adapted from Ref. 9). (B) The distributions of NN distances
in natural WT mosaics (gray), overlaid by values extracted from PIPP-simulated WT mosaics (left, transparent red) and O-PIPP–simulated
WT mosaics (right, transparent red). (C) The distributions of VD areas in natural WT mosaics (gray), overlaid by values extracted from
PIPP-simulated WT mosaics (left, transparent red) and O-PIPP–simulated WT mosaics (right, transparent red). (D) The loss of simulated
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WT cone mosaics. (E) Sample mosaics from PIPP-simulated RP mosaics (1), O-PIPP–simulated RP mosaics (2), and the natural RP mosaic
(3; adapted from Ref. 9). (F) The distributions of NN distances in natural RP mosaics (gray), overlaid by values extracted from PIPP-simulated
RP mosaics (left, transparent red) and O-PIPP–simulated RP mosaics (right, transparent red). (G) The distributions of VD areas in natural
RP mosaics (gray), overlaid by values extracted from PIPP-simulated RP mosaics (left, transparent red) and O-PIPP–simulated RP mosaics
(right, transparent red). (H) The loss of simulated RP cone mosaics.

FIGURE 4. Receptive fields of GCs in retinal neural networks. (A) The RFs (1) and the binarized RFs (2) of the GCs from an O-PIPP–simulated
RP retinal network and an O-PIPP–simulated WT retinal network. Distributions of CIs of GC RFs from two populations of networks (3).
(B) The RFs (1) and the binarized RFs (2) of the GCs from a PIPP-simulated RP retinal network and a PIPP-simulated WT retinal network.
(3) Distributions of CIs of GC RFs from two populations of networks.

O-PIPP Can Model Abnormal RP Mosaics

The O-PIPP is also superior in its ability to model abnormal
mosaic patterns, which cannot be well solved by the clas-
sic PIPP. To prove this, we modeled the cone mosaic from
WT and RP rats9 with the PIPP and O-PIPP. In the situation
of modeling the WT cone mosaic that had a normal mosaic
pattern, the result was the same as the cases in Figure 2. Both
the PIPP and the O-PIPP could simulate similar mosaics as
the data sample (Fig. 3A), even though the O-PIPP displayed
greater similarity with regard to NN distance (Fig. 3B), VD
area (Fig. 3C), and KL divergence (Fig. 3D). Much more obvi-

ous performance differences were observed when modeling
the RP cone mosaic. The PIPP failed to accurately model the
RP cone mosaic pattern, as shown in Figure 3E. However,
with the O-PIPP (Fig. 3E[2]), we reproduced the data sample
mosaic pattern easily by defining an optimization function
with target spatial features. Results for NN distance (Fig. 3F),
VD area (Fig. 3G), and KL divergence (Fig. 3H) reveal the
distinct performance between the PIPP and the O-PIPP (note
the tail of VD area in Fig. 3G and unseen O-PIPP KL diver-
gence in Fig. 3H). In short, the O-PIPP could model disease
retinal mosaics by defining a suitable optimization function,
remedying the PIPP limitation.
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Retinal Circuitry Model With RP Cone Mosaics
Reproduces Alteration on GC RFs

Modeling abnormal mosaics has significant meaning in the
study of retinal disease. It is well known that photorecep-
tor loss and mosaic rearrangement are typical characteris-
tics of the RP retina, but their effects on retinal circuitry and
function remain to be investigated. Computational model-
ing can facilitate the exploration based on experimental
research. Therefore, after obtaining cone mosaics, we devel-
oped a three-layer discrete neuronal network model (Supple-
mentary Fig. S6). With these models, we could obtain the
corresponding GC RF through spike-triggered average anal-
ysis (Fig. 4[1], Supplementary Fig. S9).32 Binarization of the
RF yielded the convex hull (Fig. 4[2]), and the convexity
index (CI) was the quantitative description of the convex
hull (Fig. 4[3]).38 Because the PIPP could not model the RP
cone mosaic well, we could not distinguish between the
RFs and convex hulls nor the distribution of CIs between
PIPP-simulated WT and RP retinas (Fig. 4A). However, with
the O-PIPP, both the WT and RP cone mosaic models were
much more biologically plausible, as well as the GC RFs
(Fig. 4B[1]) and corresponding convex hulls (Fig. 4B[2]). Of
greatest importance is that the RF CIs had wider distribu-
tions and smaller peak values, which was also observed
in experimental recordings.38 In conclusion, better retinal
mosaic models could contribute to more biologically plau-
sible retinal circuitry models, which have the potential to
promote our understanding of retinal diseases.

DISCUSSION

Overall, we provide a more precise and universal mosaic
generation method, the O-PIPP approach. We demonstrated
its advantages by simulating various neural spatial orga-
nizations, including different healthy mosaics4 and clus-
tered RP mosaics.9 Additionally, we exhibited the ability
of biologically plausible retinal discrete neuronal network
models to reproduce experimental observations.38 Our find-
ings suggest the significance and potential of the O-PIPP
in retinal computational modeling research, which will be
helpful to many studies, such as retinal development, retinal
diseases, retinal circuits, and neural computations in visual
information processing.

Advantages of the O-PIPP Compared With the
PIPP

The core of the PIPP, the interaction function, only describes
the local spatial features of cells and is insufficient for
describing spatial features on a larger scale. Therefore,
the PIPP does not perform well in modeling mosaics in
certain disease states, which limits its broader application.
To address this, we introduced an optimization process
based on PIPP. By designing optimization objectives, we
can constrain the spatial features of mosaics on a larger
spatial scale. Experiments have shown that this optimization
process not only enables the modeling of special disease
mosaic patterns but also significantly improves the accuracy
of conventional mosaic modeling (Figs. 2, 3).

Moreover, the optimization objectives are not limited to
spatial features. By using the connection relationships of
cells under disease conditions as constraints, we success-
fully modeled the spatial distribution of bipolar cells in RP
states (Supplementary Fig. S6). The resulting retinal network

model accurately reproduces the physiological characteris-
tics observed in actual experiments (Fig. 4).

In theory, the O-PIPP can be implemented independently
of the PIPP, as the interaction function can be replaced by
other local updation rules. The widespread use of the PIPP
makes developing the O-PIPP based on the PIPP an optimal
choice. This allows the O-PIPP to fully leverage the existing
advantages of the PIPP while ensuring sufficient compati-
bility, which facilitates quicker adoption of the O-PIPP by
researchers in the field.

Reason for the Current Methodology

Selecting Simulated Annealing in Optimization.
The optimization stage in the O-PIPP serves as an engine
that drives the mosaic toward specific spatial or connecting
features. In this work, we employed the simulated anneal-
ing algorithm due to two requirements arising from the
mosaic application: (1) the algorithm must function with-
out differentiable loss functions, given the complexity of
feature calculations, and (2) it must introduce random-
ness into the process to generate massive mosaics from a
single starting value. These requirements exclude many opti-
mization algorithms in computer science, such as gradient-
based searches39 and grid search algorithms. In theory,
several other optimization algorithms may also be suitable,
particularly methods within metaheuristic techniques.40 This
remains open for further research.

Selecting NN and VD as Evaluation Metrics.
Metrics that describe spatial patterns of retinal mosaics are
mainly adopted from computational geometry and point
pattern analysis.41 Various metrics have been applied in reti-
nal mosaics analysis, including the NN distance or the VD
area in this work, and several distance-based functions to
describe the correlation among points (L, G functions).4,30

Also, previous work has proposed spatial autocorrelation-
related metrics for retinal mosaics, such as the effective
radius and the packing factor.42

We selected the NN distance, VD area, and their probabil-
ity distributions in our study for the following reasons: (1)
Their numerical values can be obtained from one real mosaic
figure. (2) They are reliable in distinguishing minor differ-
ences between two mosaics by relocating a small partition
of cells. (3) They provide sufficient constraints for capturing
the retinal mosaics spatial pattern compared to metrics; for
example, the G function is the cumulative frequency distri-
bution of NN distances, and the L function is the cumula-
tive frequency distribution of cell–cell distances.4 The effec-
tive radius and the packing factor42 are further calculations
based on the L function and therefore do not provide more
information. (4) They are widely used in retinal mosaic
research, and their corresponding physical spatial meanings
are easy to understand.43–45

Significance and Potential Applications of More
Realistic Mosaics Modeling

More than 60 types of retinal cells form different mosaic
distribution patterns to sample specific types of visual infor-
mation. The mechanisms behind the formation of these
specific mosaic patterns have always been a fundamental
research topic. At the same time, understanding the relation-
ship between these mosaic patterns and visual functions is
also a significant theme.
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One key research area involves exploring the correlation
between photoreceptor mosaic changes and visual function
in disease states by combining in vivo retinal imaging and
visual function tests.46–50 Similar studies on animals9,51,52 can
more easily recruit ex vivo techniques. In this paper, we
have demonstrated how O-PIPP provides a supplementary
approach to exploring the underlying mechanisms between
abnormal retinal structure and visual function loss.

Another research area aims to uncover how healthy
retinal mosaics directly influence visual processing, and
this is where mathematical and computational modeling is
more widely used. The most straightforward perspective
is to regard photoreceptor mosaics as sampling devices,
using computational simulations to assess how different
mosaics impact signal sampling.53 Typically, these simula-
tions consider only regular and irregular mosaic patterns.
Similarly, retinal ganglion cells (RGCs) are often regarded
as feature extractors in visual pathways. Efficient coding
models have shown that coordinating retinal receptive fields
among rats and primates, particularly the intermosaic coor-
dination of ON and OFF RGCs, optimized information trans-
mission.12,54 However, current retinal network models typi-
cally organize homotypic cells into grid arrays, ignoring
type-specific spatial organizations and neural connections
based on relative arbor distances (reviewed in Ref. 55). Other
theoretical models simulate disease-induced changes in the
retina using a well-mixed schema, where a single cell repre-
sents a population, thus neglecting mosaic-specific spatial
effects (reviewed in Ref. 56). In the downstream visual path-
way of retinas, RGC mosaics modeled as hexagonal lattices
were initially thought to shape orientation maps in the
visual cortex.57 More realistic RGC mosaic models using
PIPP have evolved different perspectives.58 Similarly, apply-
ing O-PIPP in the aforementioned models can enhance their
biological realism, helping us to understand the relation-
ship between structure and function through computational
modeling.

To sum up, by bridging the gap between anatomical
observations and computational models, the O-PIPP can
help to provide a more comprehensive understanding of
the intricacies of retinal development, retinal diseases, and
neural computations in visual information processing.
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